/* $NetBSD: lfs_vnops.c,v 1.143 2005/04/14 00:58:26 perseant Exp $ */ /*- * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Konrad E. Schroder . * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the NetBSD * Foundation, Inc. and its contributors. * 4. Neither the name of The NetBSD Foundation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * Copyright (c) 1986, 1989, 1991, 1993, 1995 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)lfs_vnops.c 8.13 (Berkeley) 6/10/95 */ #include __KERNEL_RCSID(0, "$NetBSD: lfs_vnops.c,v 1.143 2005/04/14 00:58:26 perseant Exp $"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include extern pid_t lfs_writer_daemon; /* Global vfs data structures for lfs. */ int (**lfs_vnodeop_p)(void *); const struct vnodeopv_entry_desc lfs_vnodeop_entries[] = { { &vop_default_desc, vn_default_error }, { &vop_lookup_desc, ufs_lookup }, /* lookup */ { &vop_create_desc, lfs_create }, /* create */ { &vop_whiteout_desc, ufs_whiteout }, /* whiteout */ { &vop_mknod_desc, lfs_mknod }, /* mknod */ { &vop_open_desc, ufs_open }, /* open */ { &vop_close_desc, lfs_close }, /* close */ { &vop_access_desc, ufs_access }, /* access */ { &vop_getattr_desc, lfs_getattr }, /* getattr */ { &vop_setattr_desc, lfs_setattr }, /* setattr */ { &vop_read_desc, lfs_read }, /* read */ { &vop_write_desc, lfs_write }, /* write */ { &vop_lease_desc, ufs_lease_check }, /* lease */ { &vop_ioctl_desc, ufs_ioctl }, /* ioctl */ { &vop_fcntl_desc, lfs_fcntl }, /* fcntl */ { &vop_poll_desc, ufs_poll }, /* poll */ { &vop_kqfilter_desc, genfs_kqfilter }, /* kqfilter */ { &vop_revoke_desc, ufs_revoke }, /* revoke */ { &vop_mmap_desc, lfs_mmap }, /* mmap */ { &vop_fsync_desc, lfs_fsync }, /* fsync */ { &vop_seek_desc, ufs_seek }, /* seek */ { &vop_remove_desc, lfs_remove }, /* remove */ { &vop_link_desc, lfs_link }, /* link */ { &vop_rename_desc, lfs_rename }, /* rename */ { &vop_mkdir_desc, lfs_mkdir }, /* mkdir */ { &vop_rmdir_desc, lfs_rmdir }, /* rmdir */ { &vop_symlink_desc, lfs_symlink }, /* symlink */ { &vop_readdir_desc, ufs_readdir }, /* readdir */ { &vop_readlink_desc, ufs_readlink }, /* readlink */ { &vop_abortop_desc, ufs_abortop }, /* abortop */ { &vop_inactive_desc, lfs_inactive }, /* inactive */ { &vop_reclaim_desc, lfs_reclaim }, /* reclaim */ { &vop_lock_desc, ufs_lock }, /* lock */ { &vop_unlock_desc, ufs_unlock }, /* unlock */ { &vop_bmap_desc, ufs_bmap }, /* bmap */ { &vop_strategy_desc, lfs_strategy }, /* strategy */ { &vop_print_desc, ufs_print }, /* print */ { &vop_islocked_desc, ufs_islocked }, /* islocked */ { &vop_pathconf_desc, ufs_pathconf }, /* pathconf */ { &vop_advlock_desc, ufs_advlock }, /* advlock */ { &vop_blkatoff_desc, lfs_blkatoff }, /* blkatoff */ { &vop_valloc_desc, lfs_valloc }, /* valloc */ { &vop_balloc_desc, lfs_balloc }, /* balloc */ { &vop_vfree_desc, lfs_vfree }, /* vfree */ { &vop_truncate_desc, lfs_truncate }, /* truncate */ { &vop_update_desc, lfs_update }, /* update */ { &vop_bwrite_desc, lfs_bwrite }, /* bwrite */ { &vop_getpages_desc, lfs_getpages }, /* getpages */ { &vop_putpages_desc, lfs_putpages }, /* putpages */ { NULL, NULL } }; const struct vnodeopv_desc lfs_vnodeop_opv_desc = { &lfs_vnodeop_p, lfs_vnodeop_entries }; int (**lfs_specop_p)(void *); const struct vnodeopv_entry_desc lfs_specop_entries[] = { { &vop_default_desc, vn_default_error }, { &vop_lookup_desc, spec_lookup }, /* lookup */ { &vop_create_desc, spec_create }, /* create */ { &vop_mknod_desc, spec_mknod }, /* mknod */ { &vop_open_desc, spec_open }, /* open */ { &vop_close_desc, lfsspec_close }, /* close */ { &vop_access_desc, ufs_access }, /* access */ { &vop_getattr_desc, lfs_getattr }, /* getattr */ { &vop_setattr_desc, lfs_setattr }, /* setattr */ { &vop_read_desc, ufsspec_read }, /* read */ { &vop_write_desc, ufsspec_write }, /* write */ { &vop_lease_desc, spec_lease_check }, /* lease */ { &vop_ioctl_desc, spec_ioctl }, /* ioctl */ { &vop_fcntl_desc, ufs_fcntl }, /* fcntl */ { &vop_poll_desc, spec_poll }, /* poll */ { &vop_kqfilter_desc, spec_kqfilter }, /* kqfilter */ { &vop_revoke_desc, spec_revoke }, /* revoke */ { &vop_mmap_desc, spec_mmap }, /* mmap */ { &vop_fsync_desc, spec_fsync }, /* fsync */ { &vop_seek_desc, spec_seek }, /* seek */ { &vop_remove_desc, spec_remove }, /* remove */ { &vop_link_desc, spec_link }, /* link */ { &vop_rename_desc, spec_rename }, /* rename */ { &vop_mkdir_desc, spec_mkdir }, /* mkdir */ { &vop_rmdir_desc, spec_rmdir }, /* rmdir */ { &vop_symlink_desc, spec_symlink }, /* symlink */ { &vop_readdir_desc, spec_readdir }, /* readdir */ { &vop_readlink_desc, spec_readlink }, /* readlink */ { &vop_abortop_desc, spec_abortop }, /* abortop */ { &vop_inactive_desc, lfs_inactive }, /* inactive */ { &vop_reclaim_desc, lfs_reclaim }, /* reclaim */ { &vop_lock_desc, ufs_lock }, /* lock */ { &vop_unlock_desc, ufs_unlock }, /* unlock */ { &vop_bmap_desc, spec_bmap }, /* bmap */ { &vop_strategy_desc, spec_strategy }, /* strategy */ { &vop_print_desc, ufs_print }, /* print */ { &vop_islocked_desc, ufs_islocked }, /* islocked */ { &vop_pathconf_desc, spec_pathconf }, /* pathconf */ { &vop_advlock_desc, spec_advlock }, /* advlock */ { &vop_blkatoff_desc, spec_blkatoff }, /* blkatoff */ { &vop_valloc_desc, spec_valloc }, /* valloc */ { &vop_vfree_desc, lfs_vfree }, /* vfree */ { &vop_truncate_desc, spec_truncate }, /* truncate */ { &vop_update_desc, lfs_update }, /* update */ { &vop_bwrite_desc, vn_bwrite }, /* bwrite */ { &vop_getpages_desc, spec_getpages }, /* getpages */ { &vop_putpages_desc, spec_putpages }, /* putpages */ { NULL, NULL } }; const struct vnodeopv_desc lfs_specop_opv_desc = { &lfs_specop_p, lfs_specop_entries }; int (**lfs_fifoop_p)(void *); const struct vnodeopv_entry_desc lfs_fifoop_entries[] = { { &vop_default_desc, vn_default_error }, { &vop_lookup_desc, fifo_lookup }, /* lookup */ { &vop_create_desc, fifo_create }, /* create */ { &vop_mknod_desc, fifo_mknod }, /* mknod */ { &vop_open_desc, fifo_open }, /* open */ { &vop_close_desc, lfsfifo_close }, /* close */ { &vop_access_desc, ufs_access }, /* access */ { &vop_getattr_desc, lfs_getattr }, /* getattr */ { &vop_setattr_desc, lfs_setattr }, /* setattr */ { &vop_read_desc, ufsfifo_read }, /* read */ { &vop_write_desc, ufsfifo_write }, /* write */ { &vop_lease_desc, fifo_lease_check }, /* lease */ { &vop_ioctl_desc, fifo_ioctl }, /* ioctl */ { &vop_fcntl_desc, ufs_fcntl }, /* fcntl */ { &vop_poll_desc, fifo_poll }, /* poll */ { &vop_kqfilter_desc, fifo_kqfilter }, /* kqfilter */ { &vop_revoke_desc, fifo_revoke }, /* revoke */ { &vop_mmap_desc, fifo_mmap }, /* mmap */ { &vop_fsync_desc, fifo_fsync }, /* fsync */ { &vop_seek_desc, fifo_seek }, /* seek */ { &vop_remove_desc, fifo_remove }, /* remove */ { &vop_link_desc, fifo_link }, /* link */ { &vop_rename_desc, fifo_rename }, /* rename */ { &vop_mkdir_desc, fifo_mkdir }, /* mkdir */ { &vop_rmdir_desc, fifo_rmdir }, /* rmdir */ { &vop_symlink_desc, fifo_symlink }, /* symlink */ { &vop_readdir_desc, fifo_readdir }, /* readdir */ { &vop_readlink_desc, fifo_readlink }, /* readlink */ { &vop_abortop_desc, fifo_abortop }, /* abortop */ { &vop_inactive_desc, lfs_inactive }, /* inactive */ { &vop_reclaim_desc, lfs_reclaim }, /* reclaim */ { &vop_lock_desc, ufs_lock }, /* lock */ { &vop_unlock_desc, ufs_unlock }, /* unlock */ { &vop_bmap_desc, fifo_bmap }, /* bmap */ { &vop_strategy_desc, fifo_strategy }, /* strategy */ { &vop_print_desc, ufs_print }, /* print */ { &vop_islocked_desc, ufs_islocked }, /* islocked */ { &vop_pathconf_desc, fifo_pathconf }, /* pathconf */ { &vop_advlock_desc, fifo_advlock }, /* advlock */ { &vop_blkatoff_desc, fifo_blkatoff }, /* blkatoff */ { &vop_valloc_desc, fifo_valloc }, /* valloc */ { &vop_vfree_desc, lfs_vfree }, /* vfree */ { &vop_truncate_desc, fifo_truncate }, /* truncate */ { &vop_update_desc, lfs_update }, /* update */ { &vop_bwrite_desc, lfs_bwrite }, /* bwrite */ { &vop_putpages_desc, fifo_putpages }, /* putpages */ { NULL, NULL } }; const struct vnodeopv_desc lfs_fifoop_opv_desc = { &lfs_fifoop_p, lfs_fifoop_entries }; static int check_dirty(struct lfs *, struct vnode *, off_t, off_t, off_t, int, int); /* * A function version of LFS_ITIMES, for the UFS functions which call ITIMES */ void lfs_itimes(struct inode *ip, struct timespec *acc, struct timespec *mod, struct timespec *cre) { LFS_ITIMES(ip, acc, mod, cre); } #define LFS_READWRITE #include #undef LFS_READWRITE /* * Synch an open file. */ /* ARGSUSED */ int lfs_fsync(void *v) { struct vop_fsync_args /* { struct vnode *a_vp; struct ucred *a_cred; int a_flags; off_t offlo; off_t offhi; struct proc *a_p; } */ *ap = v; struct vnode *vp = ap->a_vp; int error, wait; /* * Trickle sync checks for need to do a checkpoint after possible * activity from the pagedaemon. */ if (ap->a_flags & FSYNC_LAZY) { simple_lock(&lfs_subsys_lock); wakeup(&lfs_writer_daemon); simple_unlock(&lfs_subsys_lock); return 0; } wait = (ap->a_flags & FSYNC_WAIT); simple_lock(&vp->v_interlock); error = VOP_PUTPAGES(vp, trunc_page(ap->a_offlo), round_page(ap->a_offhi), PGO_CLEANIT | (wait ? PGO_SYNCIO : 0)); if (error) return error; error = VOP_UPDATE(vp, NULL, NULL, wait ? UPDATE_WAIT : 0); if (error == 0 && ap->a_flags & FSYNC_CACHE) { int l = 0; error = VOP_IOCTL(VTOI(vp)->i_devvp, DIOCCACHESYNC, &l, FWRITE, ap->a_p->p_ucred, ap->a_p); } if (wait && !VPISEMPTY(vp)) LFS_SET_UINO(VTOI(vp), IN_MODIFIED); return error; } /* * Take IN_ADIROP off, then call ufs_inactive. */ int lfs_inactive(void *v) { struct vop_inactive_args /* { struct vnode *a_vp; struct proc *a_p; } */ *ap = v; KASSERT(VTOI(ap->a_vp)->i_nlink == VTOI(ap->a_vp)->i_ffs_effnlink); lfs_unmark_vnode(ap->a_vp); /* * The Ifile is only ever inactivated on unmount. * Streamline this process by not giving it more dirty blocks. */ if (VTOI(ap->a_vp)->i_number == LFS_IFILE_INUM) { LFS_CLR_UINO(VTOI(ap->a_vp), IN_ALLMOD); VOP_UNLOCK(ap->a_vp, 0); return 0; } return ufs_inactive(v); } /* * These macros are used to bracket UFS directory ops, so that we can * identify all the pages touched during directory ops which need to * be ordered and flushed atomically, so that they may be recovered. * * Because we have to mark nodes VDIROP in order to prevent * the cache from reclaiming them while a dirop is in progress, we must * also manage the number of nodes so marked (otherwise we can run out). * We do this by setting lfs_dirvcount to the number of marked vnodes; it * is decremented during segment write, when VDIROP is taken off. */ #define MARK_VNODE(vp) lfs_mark_vnode(vp) #define UNMARK_VNODE(vp) lfs_unmark_vnode(vp) #define SET_DIROP_CREATE(dvp, vpp) lfs_set_dirop_create((dvp), (vpp)) #define SET_DIROP_REMOVE(dvp, vp) lfs_set_dirop((dvp), (vp)) static int lfs_set_dirop_create(struct vnode *, struct vnode **); static int lfs_set_dirop(struct vnode *, struct vnode *); static int lfs_set_dirop(struct vnode *dvp, struct vnode *vp) { struct lfs *fs; int error; KASSERT(VOP_ISLOCKED(dvp)); KASSERT(vp == NULL || VOP_ISLOCKED(vp)); fs = VTOI(dvp)->i_lfs; ASSERT_NO_SEGLOCK(fs); /* * LFS_NRESERVE calculates direct and indirect blocks as well * as an inode block; an overestimate in most cases. */ if ((error = lfs_reserve(fs, dvp, vp, LFS_NRESERVE(fs))) != 0) return (error); restart: simple_lock(&fs->lfs_interlock); if (fs->lfs_dirops == 0) { simple_unlock(&fs->lfs_interlock); lfs_check(dvp, LFS_UNUSED_LBN, 0); simple_lock(&fs->lfs_interlock); } while (fs->lfs_writer) ltsleep(&fs->lfs_dirops, (PRIBIO + 1), "lfs_sdirop", 0, &fs->lfs_interlock); simple_lock(&lfs_subsys_lock); if (lfs_dirvcount > LFS_MAX_DIROP && fs->lfs_dirops == 0) { wakeup(&lfs_writer_daemon); simple_unlock(&lfs_subsys_lock); simple_unlock(&fs->lfs_interlock); preempt(1); goto restart; } if (lfs_dirvcount > LFS_MAX_DIROP) { simple_unlock(&fs->lfs_interlock); DLOG((DLOG_DIROP, "lfs_set_dirop: sleeping with dirops=%d, " "dirvcount=%d\n", fs->lfs_dirops, lfs_dirvcount)); if ((error = ltsleep(&lfs_dirvcount, PCATCH | PUSER | PNORELOCK, "lfs_maxdirop", 0, &lfs_subsys_lock)) != 0) { goto unreserve; } goto restart; } simple_unlock(&lfs_subsys_lock); ++fs->lfs_dirops; fs->lfs_doifile = 1; simple_unlock(&fs->lfs_interlock); /* Hold a reference so SET_ENDOP will be happy */ vref(dvp); if (vp) { vref(vp); MARK_VNODE(vp); } MARK_VNODE(dvp); return 0; unreserve: lfs_reserve(fs, dvp, vp, -LFS_NRESERVE(fs)); return error; } /* * Get a new vnode *before* adjusting the dirop count, to avoid a deadlock * in getnewvnode(), if we have a stacked filesystem mounted on top * of us. * * NB: this means we have to clear the new vnodes on error. Fortunately * SET_ENDOP is there to do that for us. */ static int lfs_set_dirop_create(struct vnode *dvp, struct vnode **vpp) { int error; struct lfs *fs; fs = VFSTOUFS(dvp->v_mount)->um_lfs; ASSERT_NO_SEGLOCK(fs); if (fs->lfs_ronly) return EROFS; if (vpp && (error = getnewvnode(VT_LFS, dvp->v_mount, lfs_vnodeop_p, vpp))) { DLOG((DLOG_ALLOC, "lfs_set_dirop_create: dvp %p error %d\n", dvp, error)); return error; } if ((error = lfs_set_dirop(dvp, NULL)) != 0) { if (vpp) { ungetnewvnode(*vpp); *vpp = NULL; } return error; } return 0; } #define SET_ENDOP_BASE(fs, dvp, str) \ do { \ simple_lock(&(fs)->lfs_interlock); \ --(fs)->lfs_dirops; \ if (!(fs)->lfs_dirops) { \ if ((fs)->lfs_nadirop) { \ panic("SET_ENDOP: %s: no dirops but " \ " nadirop=%d", (str), \ (fs)->lfs_nadirop); \ } \ wakeup(&(fs)->lfs_writer); \ simple_unlock(&(fs)->lfs_interlock); \ lfs_check((dvp), LFS_UNUSED_LBN, 0); \ } else \ simple_unlock(&(fs)->lfs_interlock); \ } while(0) #define SET_ENDOP_CREATE(fs, dvp, nvpp, str) \ do { \ UNMARK_VNODE(dvp); \ if (nvpp && *nvpp) \ UNMARK_VNODE(*nvpp); \ /* Check for error return to stem vnode leakage */ \ if (nvpp && *nvpp && !((*nvpp)->v_flag & VDIROP)) \ ungetnewvnode(*(nvpp)); \ SET_ENDOP_BASE((fs), (dvp), (str)); \ lfs_reserve((fs), (dvp), NULL, -LFS_NRESERVE(fs)); \ vrele(dvp); \ } while(0) #define SET_ENDOP_CREATE_AP(ap, str) \ SET_ENDOP_CREATE(VTOI((ap)->a_dvp)->i_lfs, (ap)->a_dvp, \ (ap)->a_vpp, (str)) #define SET_ENDOP_REMOVE(fs, dvp, ovp, str) \ do { \ UNMARK_VNODE(dvp); \ if (ovp) \ UNMARK_VNODE(ovp); \ SET_ENDOP_BASE((fs), (dvp), (str)); \ lfs_reserve((fs), (dvp), (ovp), -LFS_NRESERVE(fs)); \ vrele(dvp); \ if (ovp) \ vrele(ovp); \ } while(0) void lfs_mark_vnode(struct vnode *vp) { struct inode *ip = VTOI(vp); struct lfs *fs = ip->i_lfs; simple_lock(&fs->lfs_interlock); if (!(ip->i_flag & IN_ADIROP)) { if (!(vp->v_flag & VDIROP)) { (void)lfs_vref(vp); simple_lock(&lfs_subsys_lock); ++lfs_dirvcount; simple_unlock(&lfs_subsys_lock); TAILQ_INSERT_TAIL(&fs->lfs_dchainhd, ip, i_lfs_dchain); vp->v_flag |= VDIROP; } ++fs->lfs_nadirop; ip->i_flag |= IN_ADIROP; } else KASSERT(vp->v_flag & VDIROP); simple_unlock(&fs->lfs_interlock); } void lfs_unmark_vnode(struct vnode *vp) { struct inode *ip = VTOI(vp); if (ip->i_flag & IN_ADIROP) { KASSERT(vp->v_flag & VDIROP); simple_lock(&ip->i_lfs->lfs_interlock); --ip->i_lfs->lfs_nadirop; simple_unlock(&ip->i_lfs->lfs_interlock); ip->i_flag &= ~IN_ADIROP; } } int lfs_symlink(void *v) { struct vop_symlink_args /* { struct vnode *a_dvp; struct vnode **a_vpp; struct componentname *a_cnp; struct vattr *a_vap; char *a_target; } */ *ap = v; int error; if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) { vput(ap->a_dvp); return error; } error = ufs_symlink(ap); SET_ENDOP_CREATE_AP(ap, "symlink"); return (error); } int lfs_mknod(void *v) { struct vop_mknod_args /* { struct vnode *a_dvp; struct vnode **a_vpp; struct componentname *a_cnp; struct vattr *a_vap; } */ *ap = v; struct vattr *vap = ap->a_vap; struct vnode **vpp = ap->a_vpp; struct inode *ip; int error; struct mount *mp; ino_t ino; if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) { vput(ap->a_dvp); return error; } error = ufs_makeinode(MAKEIMODE(vap->va_type, vap->va_mode), ap->a_dvp, vpp, ap->a_cnp); /* Either way we're done with the dirop at this point */ SET_ENDOP_CREATE_AP(ap, "mknod"); if (error) return (error); ip = VTOI(*vpp); mp = (*vpp)->v_mount; ino = ip->i_number; ip->i_flag |= IN_ACCESS | IN_CHANGE | IN_UPDATE; if (vap->va_rdev != VNOVAL) { /* * Want to be able to use this to make badblock * inodes, so don't truncate the dev number. */ #if 0 ip->i_ffs1_rdev = ufs_rw32(vap->va_rdev, UFS_MPNEEDSWAP((*vpp)->v_mount)); #else ip->i_ffs1_rdev = vap->va_rdev; #endif } /* * Call fsync to write the vnode so that we don't have to deal with * flushing it when it's marked VDIROP|VXLOCK. * * XXX KS - If we can't flush we also can't call vgone(), so must * return. But, that leaves this vnode in limbo, also not good. * Can this ever happen (barring hardware failure)? */ if ((error = VOP_FSYNC(*vpp, NOCRED, FSYNC_WAIT, 0, 0, curproc)) != 0) { panic("lfs_mknod: couldn't fsync (ino %d)", ino); /* return (error); */ } /* * Remove vnode so that it will be reloaded by VFS_VGET and * checked to see if it is an alias of an existing entry in * the inode cache. */ /* Used to be vput, but that causes us to call VOP_INACTIVE twice. */ VOP_UNLOCK(*vpp, 0); lfs_vunref(*vpp); (*vpp)->v_type = VNON; vgone(*vpp); error = VFS_VGET(mp, ino, vpp); if (error != 0) { *vpp = NULL; return (error); } return (0); } int lfs_create(void *v) { struct vop_create_args /* { struct vnode *a_dvp; struct vnode **a_vpp; struct componentname *a_cnp; struct vattr *a_vap; } */ *ap = v; int error; if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) { vput(ap->a_dvp); return error; } error = ufs_create(ap); SET_ENDOP_CREATE_AP(ap, "create"); return (error); } int lfs_mkdir(void *v) { struct vop_mkdir_args /* { struct vnode *a_dvp; struct vnode **a_vpp; struct componentname *a_cnp; struct vattr *a_vap; } */ *ap = v; int error; if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) { vput(ap->a_dvp); return error; } error = ufs_mkdir(ap); SET_ENDOP_CREATE_AP(ap, "mkdir"); return (error); } int lfs_remove(void *v) { struct vop_remove_args /* { struct vnode *a_dvp; struct vnode *a_vp; struct componentname *a_cnp; } */ *ap = v; struct vnode *dvp, *vp; int error; dvp = ap->a_dvp; vp = ap->a_vp; if ((error = SET_DIROP_REMOVE(dvp, vp)) != 0) { if (dvp == vp) vrele(vp); else vput(vp); vput(dvp); return error; } error = ufs_remove(ap); SET_ENDOP_REMOVE(VTOI(dvp)->i_lfs, dvp, vp, "remove"); return (error); } int lfs_rmdir(void *v) { struct vop_rmdir_args /* { struct vnodeop_desc *a_desc; struct vnode *a_dvp; struct vnode *a_vp; struct componentname *a_cnp; } */ *ap = v; struct vnode *vp; int error; vp = ap->a_vp; if ((error = SET_DIROP_REMOVE(ap->a_dvp, ap->a_vp)) != 0) { vrele(ap->a_dvp); if (ap->a_vp != ap->a_dvp) VOP_UNLOCK(ap->a_dvp, 0); vput(vp); return error; } error = ufs_rmdir(ap); SET_ENDOP_REMOVE(VTOI(ap->a_dvp)->i_lfs, ap->a_dvp, vp, "rmdir"); return (error); } int lfs_link(void *v) { struct vop_link_args /* { struct vnode *a_dvp; struct vnode *a_vp; struct componentname *a_cnp; } */ *ap = v; int error; struct vnode **vpp = NULL; if ((error = SET_DIROP_CREATE(ap->a_dvp, vpp)) != 0) { vput(ap->a_dvp); return error; } error = ufs_link(ap); SET_ENDOP_CREATE(VTOI(ap->a_dvp)->i_lfs, ap->a_dvp, vpp, "link"); return (error); } int lfs_rename(void *v) { struct vop_rename_args /* { struct vnode *a_fdvp; struct vnode *a_fvp; struct componentname *a_fcnp; struct vnode *a_tdvp; struct vnode *a_tvp; struct componentname *a_tcnp; } */ *ap = v; struct vnode *tvp, *fvp, *tdvp, *fdvp; struct componentname *tcnp, *fcnp; int error; struct lfs *fs; fs = VTOI(ap->a_fdvp)->i_lfs; tvp = ap->a_tvp; tdvp = ap->a_tdvp; tcnp = ap->a_tcnp; fvp = ap->a_fvp; fdvp = ap->a_fdvp; fcnp = ap->a_fcnp; /* * Check for cross-device rename. * If it is, we don't want to set dirops, just error out. * (In particular note that MARK_VNODE(tdvp) will DTWT on * a cross-device rename.) * * Copied from ufs_rename. */ if ((fvp->v_mount != tdvp->v_mount) || (tvp && (fvp->v_mount != tvp->v_mount))) { error = EXDEV; goto errout; } /* * Check to make sure we're not renaming a vnode onto itself * (deleting a hard link by renaming one name onto another); * if we are we can't recursively call VOP_REMOVE since that * would leave us with an unaccounted-for number of live dirops. * * Inline the relevant section of ufs_rename here, *before* * calling SET_DIROP_REMOVE. */ if (tvp && ((VTOI(tvp)->i_flags & (IMMUTABLE | APPEND)) || (VTOI(tdvp)->i_flags & APPEND))) { error = EPERM; goto errout; } if (fvp == tvp) { if (fvp->v_type == VDIR) { error = EINVAL; goto errout; } /* Release destination completely. */ VOP_ABORTOP(tdvp, tcnp); vput(tdvp); vput(tvp); /* Delete source. */ vrele(fvp); fcnp->cn_flags &= ~(MODMASK | SAVESTART); fcnp->cn_flags |= LOCKPARENT | LOCKLEAF; fcnp->cn_nameiop = DELETE; if ((error = relookup(fdvp, &fvp, fcnp))){ /* relookup blew away fdvp */ return (error); } return (VOP_REMOVE(fdvp, fvp, fcnp)); } if ((error = SET_DIROP_REMOVE(tdvp, tvp)) != 0) goto errout; MARK_VNODE(fdvp); MARK_VNODE(fvp); error = ufs_rename(ap); UNMARK_VNODE(fdvp); UNMARK_VNODE(fvp); SET_ENDOP_REMOVE(fs, tdvp, tvp, "rename"); return (error); errout: VOP_ABORTOP(tdvp, ap->a_tcnp); /* XXX, why not in NFS? */ if (tdvp == tvp) vrele(tdvp); else vput(tdvp); if (tvp) vput(tvp); VOP_ABORTOP(fdvp, ap->a_fcnp); /* XXX, why not in NFS? */ vrele(fdvp); vrele(fvp); return (error); } /* XXX hack to avoid calling ITIMES in getattr */ int lfs_getattr(void *v) { struct vop_getattr_args /* { struct vnode *a_vp; struct vattr *a_vap; struct ucred *a_cred; struct proc *a_p; } */ *ap = v; struct vnode *vp = ap->a_vp; struct inode *ip = VTOI(vp); struct vattr *vap = ap->a_vap; struct lfs *fs = ip->i_lfs; /* * Copy from inode table */ vap->va_fsid = ip->i_dev; vap->va_fileid = ip->i_number; vap->va_mode = ip->i_mode & ~IFMT; vap->va_nlink = ip->i_nlink; vap->va_uid = ip->i_uid; vap->va_gid = ip->i_gid; vap->va_rdev = (dev_t)ip->i_ffs1_rdev; vap->va_size = vp->v_size; vap->va_atime.tv_sec = ip->i_ffs1_atime; vap->va_atime.tv_nsec = ip->i_ffs1_atimensec; vap->va_mtime.tv_sec = ip->i_ffs1_mtime; vap->va_mtime.tv_nsec = ip->i_ffs1_mtimensec; vap->va_ctime.tv_sec = ip->i_ffs1_ctime; vap->va_ctime.tv_nsec = ip->i_ffs1_ctimensec; vap->va_flags = ip->i_flags; vap->va_gen = ip->i_gen; /* this doesn't belong here */ if (vp->v_type == VBLK) vap->va_blocksize = BLKDEV_IOSIZE; else if (vp->v_type == VCHR) vap->va_blocksize = MAXBSIZE; else vap->va_blocksize = vp->v_mount->mnt_stat.f_iosize; vap->va_bytes = fsbtob(fs, (u_quad_t)ip->i_lfs_effnblks); vap->va_type = vp->v_type; vap->va_filerev = ip->i_modrev; return (0); } /* * Check to make sure the inode blocks won't choke the buffer * cache, then call ufs_setattr as usual. */ int lfs_setattr(void *v) { struct vop_getattr_args /* { struct vnode *a_vp; struct vattr *a_vap; struct ucred *a_cred; struct proc *a_p; } */ *ap = v; struct vnode *vp = ap->a_vp; lfs_check(vp, LFS_UNUSED_LBN, 0); return ufs_setattr(v); } /* * Close called * * XXX -- we were using ufs_close, but since it updates the * times on the inode, we might need to bump the uinodes * count. */ /* ARGSUSED */ int lfs_close(void *v) { struct vop_close_args /* { struct vnode *a_vp; int a_fflag; struct ucred *a_cred; struct proc *a_p; } */ *ap = v; struct vnode *vp = ap->a_vp; struct inode *ip = VTOI(vp); struct timespec ts; if (vp == ip->i_lfs->lfs_ivnode && vp->v_mount->mnt_iflag & IMNT_UNMOUNT) return 0; if (vp->v_usecount > 1 && vp != ip->i_lfs->lfs_ivnode) { TIMEVAL_TO_TIMESPEC(&time, &ts); LFS_ITIMES(ip, &ts, &ts, &ts); } return (0); } /* * Close wrapper for special devices. * * Update the times on the inode then do device close. */ int lfsspec_close(void *v) { struct vop_close_args /* { struct vnode *a_vp; int a_fflag; struct ucred *a_cred; struct proc *a_p; } */ *ap = v; struct vnode *vp; struct inode *ip; struct timespec ts; vp = ap->a_vp; ip = VTOI(vp); if (vp->v_usecount > 1) { TIMEVAL_TO_TIMESPEC(&time, &ts); LFS_ITIMES(ip, &ts, &ts, &ts); } return (VOCALL (spec_vnodeop_p, VOFFSET(vop_close), ap)); } /* * Close wrapper for fifo's. * * Update the times on the inode then do device close. */ int lfsfifo_close(void *v) { struct vop_close_args /* { struct vnode *a_vp; int a_fflag; struct ucred *a_cred; struct proc *a_p; } */ *ap = v; struct vnode *vp; struct inode *ip; struct timespec ts; vp = ap->a_vp; ip = VTOI(vp); if (ap->a_vp->v_usecount > 1) { TIMEVAL_TO_TIMESPEC(&time, &ts); LFS_ITIMES(ip, &ts, &ts, &ts); } return (VOCALL (fifo_vnodeop_p, VOFFSET(vop_close), ap)); } /* * Reclaim an inode so that it can be used for other purposes. */ int lfs_reclaim(void *v) { struct vop_reclaim_args /* { struct vnode *a_vp; struct proc *a_p; } */ *ap = v; struct vnode *vp = ap->a_vp; struct inode *ip = VTOI(vp); int error; KASSERT(ip->i_nlink == ip->i_ffs_effnlink); LFS_CLR_UINO(ip, IN_ALLMOD); if ((error = ufs_reclaim(vp, ap->a_p))) return (error); pool_put(&lfs_dinode_pool, ip->i_din.ffs1_din); pool_put(&lfs_inoext_pool, ip->inode_ext.lfs); ip->inode_ext.lfs = NULL; pool_put(&lfs_inode_pool, vp->v_data); vp->v_data = NULL; return (0); } /* * Read a block from a storage device. * In order to avoid reading blocks that are in the process of being * written by the cleaner---and hence are not mutexed by the normal * buffer cache / page cache mechanisms---check for collisions before * reading. * * We inline ufs_strategy to make sure that the VOP_BMAP occurs *before* * the active cleaner test. * * XXX This code assumes that lfs_markv makes synchronous checkpoints. */ int lfs_strategy(void *v) { struct vop_strategy_args /* { struct vnode *a_vp; struct buf *a_bp; } */ *ap = v; struct buf *bp; struct lfs *fs; struct vnode *vp; struct inode *ip; daddr_t tbn; int i, sn, error, slept; bp = ap->a_bp; vp = ap->a_vp; ip = VTOI(vp); fs = ip->i_lfs; /* lfs uses its strategy routine only for read */ KASSERT(bp->b_flags & B_READ); if (vp->v_type == VBLK || vp->v_type == VCHR) panic("lfs_strategy: spec"); KASSERT(bp->b_bcount != 0); if (bp->b_blkno == bp->b_lblkno) { error = VOP_BMAP(vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL); if (error) { bp->b_error = error; bp->b_flags |= B_ERROR; biodone(bp); return (error); } if ((long)bp->b_blkno == -1) /* no valid data */ clrbuf(bp); } if ((long)bp->b_blkno < 0) { /* block is not on disk */ biodone(bp); return (0); } slept = 1; simple_lock(&fs->lfs_interlock); while (slept && fs->lfs_seglock) { simple_unlock(&fs->lfs_interlock); /* * Look through list of intervals. * There will only be intervals to look through * if the cleaner holds the seglock. * Since the cleaner is synchronous, we can trust * the list of intervals to be current. */ tbn = dbtofsb(fs, bp->b_blkno); sn = dtosn(fs, tbn); slept = 0; for (i = 0; i < fs->lfs_cleanind; i++) { if (sn == dtosn(fs, fs->lfs_cleanint[i]) && tbn >= fs->lfs_cleanint[i]) { DLOG((DLOG_CLEAN, "lfs_strategy: ino %d lbn %" PRId64 " ind %d sn %d fsb %" PRIx32 " given sn %d fsb %" PRIx64 "\n", ip->i_number, bp->b_lblkno, i, dtosn(fs, fs->lfs_cleanint[i]), fs->lfs_cleanint[i], sn, tbn)); DLOG((DLOG_CLEAN, "lfs_strategy: sleeping on ino %d lbn %" PRId64 "\n", ip->i_number, bp->b_lblkno)); simple_lock(&fs->lfs_interlock); if (fs->lfs_seglock) ltsleep(&fs->lfs_seglock, (PRIBIO + 1) | PNORELOCK, "lfs_strategy", 0, &fs->lfs_interlock); /* Things may be different now; start over. */ slept = 1; break; } } simple_lock(&fs->lfs_interlock); } simple_unlock(&fs->lfs_interlock); vp = ip->i_devvp; VOP_STRATEGY(vp, bp); return (0); } static void lfs_flush_dirops(struct lfs *fs) { struct inode *ip, *nip; struct vnode *vp; extern int lfs_dostats; struct segment *sp; int needunlock; ASSERT_NO_SEGLOCK(fs); if (fs->lfs_ronly) return; simple_lock(&fs->lfs_interlock); if (TAILQ_FIRST(&fs->lfs_dchainhd) == NULL) { simple_unlock(&fs->lfs_interlock); return; } else simple_unlock(&fs->lfs_interlock); if (lfs_dostats) ++lfs_stats.flush_invoked; /* * Inline lfs_segwrite/lfs_writevnodes, but just for dirops. * Technically this is a checkpoint (the on-disk state is valid) * even though we are leaving out all the file data. */ lfs_imtime(fs); lfs_seglock(fs, SEGM_CKP); sp = fs->lfs_sp; /* * lfs_writevnodes, optimized to get dirops out of the way. * Only write dirops, and don't flush files' pages, only * blocks from the directories. * * We don't need to vref these files because they are * dirops and so hold an extra reference until the * segunlock clears them of that status. * * We don't need to check for IN_ADIROP because we know that * no dirops are active. * */ simple_lock(&fs->lfs_interlock); for (ip = TAILQ_FIRST(&fs->lfs_dchainhd); ip != NULL; ip = nip) { nip = TAILQ_NEXT(ip, i_lfs_dchain); simple_unlock(&fs->lfs_interlock); vp = ITOV(ip); /* * All writes to directories come from dirops; all * writes to files' direct blocks go through the page * cache, which we're not touching. Reads to files * and/or directories will not be affected by writing * directory blocks inodes and file inodes. So we don't * really need to lock. If we don't lock, though, * make sure that we don't clear IN_MODIFIED * unnecessarily. */ if (vp->v_flag & VXLOCK) continue; if (vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT) == 0) { needunlock = 1; } else { DLOG((DLOG_VNODE, "lfs_flush_dirops: flushing locked ino %d\n", VTOI(vp)->i_number)); needunlock = 0; } if (vp->v_type != VREG && ((ip->i_flag & IN_ALLMOD) || !VPISEMPTY(vp))) { lfs_writefile(fs, sp, vp); if (!VPISEMPTY(vp) && !WRITEINPROG(vp) && !(ip->i_flag & IN_ALLMOD)) { LFS_SET_UINO(ip, IN_MODIFIED); } } (void) lfs_writeinode(fs, sp, ip); if (needunlock) VOP_UNLOCK(vp, 0); else LFS_SET_UINO(ip, IN_MODIFIED); simple_lock(&fs->lfs_interlock); } simple_unlock(&fs->lfs_interlock); /* We've written all the dirops there are */ ((SEGSUM *)(sp->segsum))->ss_flags &= ~(SS_CONT); (void) lfs_writeseg(fs, sp); lfs_segunlock(fs); } /* * Provide a fcntl interface to sys_lfs_{segwait,bmapv,markv}. */ int lfs_fcntl(void *v) { struct vop_fcntl_args /* { struct vnode *a_vp; u_long a_command; caddr_t a_data; int a_fflag; struct ucred *a_cred; struct proc *a_p; } */ *ap = v; struct timeval *tvp; BLOCK_INFO *blkiov; CLEANERINFO *cip; int blkcnt, error, oclean; struct lfs_fcntl_markv blkvp; fsid_t *fsidp; struct lfs *fs; struct buf *bp; fhandle_t *fhp; daddr_t off; /* Only respect LFS fcntls on fs root or Ifile */ if (VTOI(ap->a_vp)->i_number != ROOTINO && VTOI(ap->a_vp)->i_number != LFS_IFILE_INUM) { return ufs_fcntl(v); } /* Avoid locking a draining lock */ if (ap->a_vp->v_mount->mnt_iflag & IMNT_UNMOUNT) { return ESHUTDOWN; } fs = VTOI(ap->a_vp)->i_lfs; fsidp = &ap->a_vp->v_mount->mnt_stat.f_fsidx; switch (ap->a_command) { case LFCNSEGWAITALL: case LFCNSEGWAITALL_COMPAT: fsidp = NULL; /* FALLSTHROUGH */ case LFCNSEGWAIT: case LFCNSEGWAIT_COMPAT: tvp = (struct timeval *)ap->a_data; simple_lock(&fs->lfs_interlock); ++fs->lfs_sleepers; simple_unlock(&fs->lfs_interlock); VOP_UNLOCK(ap->a_vp, 0); error = lfs_segwait(fsidp, tvp); VOP_LOCK(ap->a_vp, LK_EXCLUSIVE); simple_lock(&fs->lfs_interlock); if (--fs->lfs_sleepers == 0) wakeup(&fs->lfs_sleepers); simple_unlock(&fs->lfs_interlock); return error; case LFCNBMAPV: case LFCNMARKV: if ((error = suser(ap->a_p->p_ucred, &ap->a_p->p_acflag)) != 0) return (error); blkvp = *(struct lfs_fcntl_markv *)ap->a_data; blkcnt = blkvp.blkcnt; if ((u_int) blkcnt > LFS_MARKV_MAXBLKCNT) return (EINVAL); blkiov = malloc(blkcnt * sizeof(BLOCK_INFO), M_SEGMENT, M_WAITOK); if ((error = copyin(blkvp.blkiov, blkiov, blkcnt * sizeof(BLOCK_INFO))) != 0) { free(blkiov, M_SEGMENT); return error; } simple_lock(&fs->lfs_interlock); ++fs->lfs_sleepers; simple_unlock(&fs->lfs_interlock); VOP_UNLOCK(ap->a_vp, 0); if (ap->a_command == LFCNBMAPV) error = lfs_bmapv(ap->a_p, fsidp, blkiov, blkcnt); else /* LFCNMARKV */ error = lfs_markv(ap->a_p, fsidp, blkiov, blkcnt); if (error == 0) error = copyout(blkiov, blkvp.blkiov, blkcnt * sizeof(BLOCK_INFO)); VOP_LOCK(ap->a_vp, LK_EXCLUSIVE); simple_lock(&fs->lfs_interlock); if (--fs->lfs_sleepers == 0) wakeup(&fs->lfs_sleepers); simple_unlock(&fs->lfs_interlock); free(blkiov, M_SEGMENT); return error; case LFCNRECLAIM: /* * Flush dirops and write Ifile, allowing empty segments * to be immediately reclaimed. */ VOP_UNLOCK(ap->a_vp, 0); lfs_writer_enter(fs, "pndirop"); off = fs->lfs_offset; lfs_seglock(fs, SEGM_FORCE_CKP | SEGM_CKP); lfs_flush_dirops(fs); LFS_CLEANERINFO(cip, fs, bp); oclean = cip->clean; LFS_SYNC_CLEANERINFO(cip, fs, bp, 1); lfs_segwrite(ap->a_vp->v_mount, SEGM_FORCE_CKP); lfs_segunlock(fs); lfs_writer_leave(fs); #ifdef DEBUG LFS_CLEANERINFO(cip, fs, bp); DLOG((DLOG_CLEAN, "lfs_fcntl: reclaim wrote %" PRId64 " blocks, cleaned %" PRId32 " segments (activesb %d)\n", fs->lfs_offset - off, cip->clean - oclean, fs->lfs_activesb)); LFS_SYNC_CLEANERINFO(cip, fs, bp, 0); #endif VOP_LOCK(ap->a_vp, LK_EXCLUSIVE); return 0; case LFCNIFILEFH: /* Return the filehandle of the Ifile */ if ((error = suser(ap->a_p->p_ucred, &ap->a_p->p_acflag)) != 0) return (error); fhp = (struct fhandle *)ap->a_data; fhp->fh_fsid = *fsidp; return lfs_vptofh(fs->lfs_ivnode, &(fhp->fh_fid)); default: return ufs_fcntl(v); } return 0; } int lfs_getpages(void *v) { struct vop_getpages_args /* { struct vnode *a_vp; voff_t a_offset; struct vm_page **a_m; int *a_count; int a_centeridx; vm_prot_t a_access_type; int a_advice; int a_flags; } */ *ap = v; if (VTOI(ap->a_vp)->i_number == LFS_IFILE_INUM && (ap->a_access_type & VM_PROT_WRITE) != 0) { return EPERM; } if ((ap->a_access_type & VM_PROT_WRITE) != 0) { LFS_SET_UINO(VTOI(ap->a_vp), IN_MODIFIED); } /* * we're relying on the fact that genfs_getpages() always read in * entire filesystem blocks. */ return genfs_getpages(v); } /* * Make sure that for all pages in every block in the given range, * either all are dirty or all are clean. If any of the pages * we've seen so far are dirty, put the vnode on the paging chain, * and mark it IN_PAGING. * * If checkfirst != 0, don't check all the pages but return at the * first dirty page. */ static int check_dirty(struct lfs *fs, struct vnode *vp, off_t startoffset, off_t endoffset, off_t blkeof, int flags, int checkfirst) { int by_list; struct vm_page *curpg = NULL; /* XXX: gcc */ struct vm_page *pgs[MAXBSIZE / PAGE_SIZE], *pg; off_t soff = 0; /* XXX: gcc */ voff_t off; int i; int nonexistent; int any_dirty; /* number of dirty pages */ int dirty; /* number of dirty pages in a block */ int tdirty; int pages_per_block = fs->lfs_bsize >> PAGE_SHIFT; ASSERT_MAYBE_SEGLOCK(fs); top: by_list = (vp->v_uobj.uo_npages <= ((endoffset - startoffset) >> PAGE_SHIFT) * UVM_PAGE_HASH_PENALTY); any_dirty = 0; if (by_list) { curpg = TAILQ_FIRST(&vp->v_uobj.memq); } else { soff = startoffset; } while (by_list || soff < MIN(blkeof, endoffset)) { if (by_list) { /* * Find the first page in a block. Skip * blocks outside our area of interest or beyond * the end of file. */ if (pages_per_block > 1) { while (curpg && ((curpg->offset & fs->lfs_bmask) || curpg->offset >= vp->v_size || curpg->offset >= endoffset)) curpg = TAILQ_NEXT(curpg, listq); } if (curpg == NULL) break; soff = curpg->offset; } /* * Mark all pages in extended range busy; find out if any * of them are dirty. */ nonexistent = dirty = 0; for (i = 0; i == 0 || i < pages_per_block; i++) { if (by_list && pages_per_block <= 1) { pgs[i] = pg = curpg; } else { off = soff + (i << PAGE_SHIFT); pgs[i] = pg = uvm_pagelookup(&vp->v_uobj, off); if (pg == NULL) { ++nonexistent; continue; } } KASSERT(pg != NULL); while (pg->flags & PG_BUSY) { pg->flags |= PG_WANTED; UVM_UNLOCK_AND_WAIT(pg, &vp->v_interlock, 0, "lfsput", 0); simple_lock(&vp->v_interlock); if (by_list) { if (i > 0) uvm_page_unbusy(pgs, i); goto top; } } pg->flags |= PG_BUSY; UVM_PAGE_OWN(pg, "lfs_putpages"); pmap_page_protect(pg, VM_PROT_NONE); tdirty = (pmap_clear_modify(pg) || (pg->flags & PG_CLEAN) == 0); dirty += tdirty; } if (pages_per_block > 0 && nonexistent >= pages_per_block) { if (by_list) { curpg = TAILQ_NEXT(curpg, listq); } else { soff += fs->lfs_bsize; } continue; } any_dirty += dirty; KASSERT(nonexistent == 0); /* * If any are dirty make all dirty; unbusy them, * but if we were asked to clean, wire them so that * the pagedaemon doesn't bother us about them while * they're on their way to disk. */ for (i = 0; i == 0 || i < pages_per_block; i++) { pg = pgs[i]; KASSERT(!((pg->flags & PG_CLEAN) && (pg->flags & PG_DELWRI))); if (dirty) { pg->flags &= ~PG_CLEAN; if (flags & PGO_FREE) { /* XXXUBC need better way to update */ simple_lock(&lfs_subsys_lock); lfs_subsys_pages += MIN(1, pages_per_block); simple_unlock(&lfs_subsys_lock); /* * Wire the page so that * pdaemon doesn't see it again. */ uvm_lock_pageq(); uvm_pagewire(pg); uvm_unlock_pageq(); /* Suspended write flag */ pg->flags |= PG_DELWRI; } } if (pg->flags & PG_WANTED) wakeup(pg); pg->flags &= ~(PG_WANTED|PG_BUSY); UVM_PAGE_OWN(pg, NULL); } if (checkfirst && any_dirty) break; if (by_list) { curpg = TAILQ_NEXT(curpg, listq); } else { soff += MAX(PAGE_SIZE, fs->lfs_bsize); } } /* * If any pages were dirty, mark this inode as "pageout requested", * and put it on the paging queue. * XXXUBC locking (check locking on dchainhd too) */ #ifdef notyet if (any_dirty) { if (!(ip->i_flags & IN_PAGING)) { ip->i_flags |= IN_PAGING; simple_lock(&fs->lfs_interlock); TAILQ_INSERT_TAIL(&fs->lfs_pchainhd, ip, i_lfs_pchain); simple_unlock(&fs->lfs_interlock); } } #endif return any_dirty; } /* * lfs_putpages functions like genfs_putpages except that * * (1) It needs to bounds-check the incoming requests to ensure that * they are block-aligned; if they are not, expand the range and * do the right thing in case, e.g., the requested range is clean * but the expanded range is dirty. * (2) It needs to explicitly send blocks to be written when it is done. * VOP_PUTPAGES is not ever called with the seglock held, so * we simply take the seglock and let lfs_segunlock wait for us. * XXX Actually we can be called with the seglock held, if we have * XXX to flush a vnode while lfs_markv is in operation. As of this * XXX writing we panic in this case. * * Assumptions: * * (1) The caller does not hold any pages in this vnode busy. If it does, * there is a danger that when we expand the page range and busy the * pages we will deadlock. * (2) We are called with vp->v_interlock held; we must return with it * released. * (3) We don't absolutely have to free pages right away, provided that * the request does not have PGO_SYNCIO. When the pagedaemon gives * us a request with PGO_FREE, we take the pages out of the paging * queue and wake up the writer, which will handle freeing them for us. * * We ensure that for any filesystem block, all pages for that * block are either resident or not, even if those pages are higher * than EOF; that means that we will be getting requests to free * "unused" pages above EOF all the time, and should ignore them. * * XXX note that we're (ab)using PGO_LOCKED as "seglock held". */ int lfs_putpages(void *v) { int error; struct vop_putpages_args /* { struct vnode *a_vp; voff_t a_offlo; voff_t a_offhi; int a_flags; } */ *ap = v; struct vnode *vp; struct inode *ip; struct lfs *fs; struct segment *sp; off_t origoffset, startoffset, endoffset, origendoffset, blkeof; off_t off, max_endoffset; int s; boolean_t seglocked, sync, pagedaemon; struct vm_page *pg; UVMHIST_FUNC("lfs_putpages"); UVMHIST_CALLED(ubchist); vp = ap->a_vp; ip = VTOI(vp); fs = ip->i_lfs; sync = (ap->a_flags & PGO_SYNCIO) != 0; pagedaemon = (curproc == uvm.pagedaemon_proc); /* Putpages does nothing for metadata. */ if (vp == fs->lfs_ivnode || vp->v_type != VREG) { simple_unlock(&vp->v_interlock); return 0; } /* * If there are no pages, don't do anything. */ if (vp->v_uobj.uo_npages == 0) { s = splbio(); if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL && (vp->v_flag & VONWORKLST)) { vp->v_flag &= ~VONWORKLST; LIST_REMOVE(vp, v_synclist); } splx(s); simple_unlock(&vp->v_interlock); return 0; } blkeof = blkroundup(fs, ip->i_size); /* * Ignore requests to free pages past EOF but in the same block * as EOF, unless the request is synchronous. (XXX why sync?) * XXXUBC Make these pages look "active" so the pagedaemon won't * XXXUBC bother us with them again. */ if (!sync && ap->a_offlo >= ip->i_size && ap->a_offlo < blkeof) { origoffset = ap->a_offlo; for (off = origoffset; off < blkeof; off += fs->lfs_bsize) { pg = uvm_pagelookup(&vp->v_uobj, off); KASSERT(pg != NULL); while (pg->flags & PG_BUSY) { pg->flags |= PG_WANTED; UVM_UNLOCK_AND_WAIT(pg, &vp->v_interlock, 0, "lfsput2", 0); simple_lock(&vp->v_interlock); } uvm_lock_pageq(); uvm_pageactivate(pg); uvm_unlock_pageq(); } ap->a_offlo = blkeof; if (ap->a_offhi > 0 && ap->a_offhi <= ap->a_offlo) { simple_unlock(&vp->v_interlock); return 0; } } /* * Extend page range to start and end at block boundaries. * (For the purposes of VOP_PUTPAGES, fragments don't exist.) */ origoffset = ap->a_offlo; origendoffset = ap->a_offhi; startoffset = origoffset & ~(fs->lfs_bmask); max_endoffset = (trunc_page(LLONG_MAX) >> fs->lfs_bshift) << fs->lfs_bshift; if (origendoffset == 0 || ap->a_flags & PGO_ALLPAGES) { endoffset = max_endoffset; origendoffset = endoffset; } else { origendoffset = round_page(ap->a_offhi); endoffset = round_page(blkroundup(fs, origendoffset)); } KASSERT(startoffset > 0 || endoffset >= startoffset); if (startoffset == endoffset) { /* Nothing to do, why were we called? */ simple_unlock(&vp->v_interlock); DLOG((DLOG_PAGE, "lfs_putpages: startoffset = endoffset = %" PRId64 "\n", startoffset)); return 0; } ap->a_offlo = startoffset; ap->a_offhi = endoffset; if (!(ap->a_flags & PGO_CLEANIT)) return genfs_putpages(v); /* * If there are more than one page per block, we don't want * to get caught locking them backwards; so set PGO_BUSYFAIL * to avoid deadlocks. */ ap->a_flags |= PGO_BUSYFAIL; do { int r; /* If no pages are dirty, we can just use genfs_putpages. */ if (check_dirty(fs, vp, startoffset, endoffset, blkeof, ap->a_flags, 1) != 0) break; /* * Sometimes pages are dirtied between the time that * we check and the time we try to clean them. * Instruct lfs_gop_write to return EDEADLK in this case * so we can write them properly. */ ip->i_lfs_iflags |= LFSI_NO_GOP_WRITE; r = genfs_putpages(v); ip->i_lfs_iflags &= ~LFSI_NO_GOP_WRITE; if (r != EDEADLK) return r; /* Start over. */ preempt(1); simple_lock(&vp->v_interlock); } while(1); /* * Dirty and asked to clean. * * Pagedaemon can't actually write LFS pages; wake up * the writer to take care of that. The writer will * notice the pager inode queue and act on that. */ if (pagedaemon) { simple_lock(&fs->lfs_interlock); ++fs->lfs_pdflush; simple_unlock(&fs->lfs_interlock); wakeup(&lfs_writer_daemon); simple_unlock(&vp->v_interlock); return EWOULDBLOCK; } /* * If this is a file created in a recent dirop, we can't flush its * inode until the dirop is complete. Drain dirops, then flush the * filesystem (taking care of any other pending dirops while we're * at it). */ if ((ap->a_flags & (PGO_CLEANIT|PGO_LOCKED)) == PGO_CLEANIT && (vp->v_flag & VDIROP)) { int locked; DLOG((DLOG_PAGE, "lfs_putpages: flushing VDIROP\n")); locked = VOP_ISLOCKED(vp) && /* XXX */ vp->v_lock.lk_lockholder == curproc->p_pid; simple_unlock(&vp->v_interlock); lfs_writer_enter(fs, "ppdirop"); if (locked) VOP_UNLOCK(vp, 0); simple_lock(&fs->lfs_interlock); lfs_flush_fs(fs, sync ? SEGM_SYNC : 0); simple_unlock(&fs->lfs_interlock); simple_lock(&vp->v_interlock); if (locked) VOP_LOCK(vp, LK_EXCLUSIVE); lfs_writer_leave(fs); /* XXX the flush should have taken care of this one too! */ } /* * This is it. We are going to write some pages. From here on * down it's all just mechanics. * * Don't let genfs_putpages wait; lfs_segunlock will wait for us. */ ap->a_flags &= ~PGO_SYNCIO; /* * If we've already got the seglock, flush the node and return. * The FIP has already been set up for us by lfs_writefile, * and FIP cleanup and lfs_updatemeta will also be done there, * unless genfs_putpages returns EDEADLK; then we must flush * what we have, and correct FIP and segment header accounting. */ seglocked = (ap->a_flags & PGO_LOCKED) != 0; if (!seglocked) { simple_unlock(&vp->v_interlock); /* * Take the seglock, because we are going to be writing pages. */ error = lfs_seglock(fs, SEGM_PROT | (sync ? SEGM_SYNC : 0)); if (error != 0) return error; simple_lock(&vp->v_interlock); } /* * VOP_PUTPAGES should not be called while holding the seglock. * XXXUBC fix lfs_markv, or do this properly. */ #ifdef notyet KASSERT(fs->lfs_seglock == 1); #endif /* notyet */ /* * We assume we're being called with sp->fip pointing at blank space. * Account for a new FIP in the segment header, and set sp->vp. * (This should duplicate the setup at the top of lfs_writefile().) */ sp = fs->lfs_sp; if (!seglocked) { if (sp->seg_bytes_left < fs->lfs_bsize || sp->sum_bytes_left < sizeof(struct finfo)) (void) lfs_writeseg(fs, fs->lfs_sp); sp->sum_bytes_left -= FINFOSIZE; ++((SEGSUM *)(sp->segsum))->ss_nfinfo; } KASSERT(sp->vp == NULL); sp->vp = vp; if (!seglocked) { if (vp->v_flag & VDIROP) ((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT); } sp->fip->fi_nblocks = 0; sp->fip->fi_ino = ip->i_number; sp->fip->fi_version = ip->i_gen; /* * Loop through genfs_putpages until all pages are gathered. * genfs_putpages() drops the interlock, so reacquire it if necessary. * Whenever we lose the interlock we have to rerun check_dirty, as * well. */ again: check_dirty(fs, vp, startoffset, endoffset, blkeof, ap->a_flags, 0); if ((error = genfs_putpages(v)) == EDEADLK) { DLOG((DLOG_PAGE, "lfs_putpages: genfs_putpages returned" " EDEADLK [2] ino %d off %x (seg %d)\n", ip->i_number, fs->lfs_offset, dtosn(fs, fs->lfs_offset))); /* If nothing to write, short-circuit */ if (sp->cbpp - sp->bpp > 1) { /* Write gathered pages */ lfs_updatemeta(sp); (void) lfs_writeseg(fs, sp); /* * Reinitialize brand new FIP and add us to it. * (This should duplicate the fixup in * lfs_gatherpages().) */ KASSERT(sp->vp == vp); sp->fip->fi_version = ip->i_gen; sp->fip->fi_ino = ip->i_number; /* Add us to the new segment summary. */ ++((SEGSUM *)(sp->segsum))->ss_nfinfo; sp->sum_bytes_left -= FINFOSIZE; } /* Give the write a chance to complete */ preempt(1); /* We've lost the interlock. Start over. */ simple_lock(&vp->v_interlock); goto again; } KASSERT(sp->vp == vp); if (!seglocked) { sp->vp = NULL; /* XXX lfs_gather below will set this */ /* Write indirect blocks as well */ lfs_gather(fs, fs->lfs_sp, vp, lfs_match_indir); lfs_gather(fs, fs->lfs_sp, vp, lfs_match_dindir); lfs_gather(fs, fs->lfs_sp, vp, lfs_match_tindir); KASSERT(sp->vp == NULL); sp->vp = vp; } /* * Blocks are now gathered into a segment waiting to be written. * All that's left to do is update metadata, and write them. */ lfs_updatemeta(sp); KASSERT(sp->vp == vp); sp->vp = NULL; if (seglocked) { /* we're called by lfs_writefile. */ return error; } /* * Clean up FIP, since we're done writing this file. * This should duplicate cleanup at the end of lfs_writefile(). */ if (sp->fip->fi_nblocks != 0) { sp->fip = (FINFO*)((caddr_t)sp->fip + FINFOSIZE + sizeof(int32_t) * sp->fip->fi_nblocks); sp->start_lbp = &sp->fip->fi_blocks[0]; } else { sp->sum_bytes_left += FINFOSIZE; --((SEGSUM *)(sp->segsum))->ss_nfinfo; } lfs_writeseg(fs, fs->lfs_sp); /* * XXX - with the malloc/copy writeseg, the pages are freed by now * even if we don't wait (e.g. if we hold a nested lock). This * will not be true if we stop using malloc/copy. */ KASSERT(fs->lfs_sp->seg_flags & SEGM_PROT); lfs_segunlock(fs); /* * Wait for v_numoutput to drop to zero. The seglock should * take care of this, but there is a slight possibility that * aiodoned might not have got around to our buffers yet. */ if (sync) { int s; s = splbio(); simple_lock(&global_v_numoutput_slock); while (vp->v_numoutput > 0) { DLOG((DLOG_PAGE, "lfs_putpages: ino %d sleeping on" " num %d\n", ip->i_number, vp->v_numoutput)); vp->v_flag |= VBWAIT; ltsleep(&vp->v_numoutput, PRIBIO + 1, "lfs_vn", 0, &global_v_numoutput_slock); } simple_unlock(&global_v_numoutput_slock); splx(s); } return error; } /* * Return the last logical file offset that should be written for this file * if we're doing a write that ends at "size". If writing, we need to know * about sizes on disk, i.e. fragments if there are any; if reading, we need * to know about entire blocks. */ void lfs_gop_size(struct vnode *vp, off_t size, off_t *eobp, int flags) { struct inode *ip = VTOI(vp); struct lfs *fs = ip->i_lfs; daddr_t olbn, nlbn; KASSERT(flags & (GOP_SIZE_READ | GOP_SIZE_WRITE)); KASSERT((flags & (GOP_SIZE_READ | GOP_SIZE_WRITE)) != (GOP_SIZE_READ | GOP_SIZE_WRITE)); olbn = lblkno(fs, ip->i_size); nlbn = lblkno(fs, size); if (!(flags & GOP_SIZE_MEM) && nlbn < NDADDR && olbn <= nlbn) { *eobp = fragroundup(fs, size); } else { *eobp = blkroundup(fs, size); } } #ifdef DEBUG void lfs_dump_vop(void *); void lfs_dump_vop(void *v) { struct vop_putpages_args /* { struct vnode *a_vp; voff_t a_offlo; voff_t a_offhi; int a_flags; } */ *ap = v; #ifdef DDB vfs_vnode_print(ap->a_vp, 0, printf); #endif lfs_dump_dinode(VTOI(ap->a_vp)->i_din.ffs1_din); } #endif int lfs_mmap(void *v) { struct vop_mmap_args /* { const struct vnodeop_desc *a_desc; struct vnode *a_vp; int a_fflags; struct ucred *a_cred; struct proc *a_p; } */ *ap = v; if (VTOI(ap->a_vp)->i_number == LFS_IFILE_INUM) return EOPNOTSUPP; return ufs_mmap(v); }