/* * Written by Julian Elischer (julian@tfs.com) * for TRW Financial Systems for use under the MACH(2.5) operating system. * * TRW Financial Systems, in accordance with their agreement with Carnegie * Mellon University, makes this software available to CMU to distribute * or use in any manner that they see fit as long as this message is kept with * the software. For this reason TFS also grants any other persons or * organisations permission to use or modify this software. * * TFS supplies this software to be publicly redistributed * on the understanding that TFS is not responsible for the correct * functioning of this software in any circumstances. * * $Id: aha1742.c,v 1.17 1994/01/03 23:53:32 mycroft Exp $ */ #include "ahb.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef DDB int Debugger(); #else DDB #define Debugger() panic("should call debugger here (adaptec.c)") #endif DDB typedef unsigned long int physaddr; #define PHYSTOKV(x) ((x) + KERNBASE) #define KVTOPHYS(x) vtophys(x) extern int delaycount; /* from clock setup code */ #define NUM_CONCURRENT 16 /* number of concurrent ops per board */ #define AHB_NSEG 33 /* number of dma segments supported */ #define FUDGE(X) (X>>1) /* our loops are slower than spinwait() */ /* * AHA1740 standard EISA Host ID regs (Offset from slot base) */ #define HID0 0xC80 /* 0,1: msb of ID2, 3-7: ID1 */ #define HID1 0xC81 /* 0-4: ID3, 4-7: LSB ID2 */ #define HID2 0xC82 /* product, 0=174[20] 1 = 1744 */ #define HID3 0xC83 /* firmware revision */ #define CHAR1(B1,B2) (((B1>>2) & 0x1F) | '@') #define CHAR2(B1,B2) (((B1<<3) & 0x18) | ((B2>>5) & 0x7)|'@') #define CHAR3(B1,B2) ((B2 & 0x1F) | '@') /* AHA1740 EISA board control registers (Offset from slot base) */ #define EBCTRL 0xC84 #define CDEN 0x01 /* * AHA1740 EISA board mode registers (Offset from slot base) */ #define PORTADDR 0xCC0 #define PORTADDR_ENHANCED 0x80 #define BIOSADDR 0xCC1 #define INTDEF 0xCC2 #define SCSIDEF 0xCC3 #define BUSDEF 0xCC4 #define RESV0 0xCC5 #define RESV1 0xCC6 #define RESV2 0xCC7 /* bit definitions for INTDEF */ #define INT9 0x00 #define INT10 0x01 #define INT11 0x02 #define INT12 0x03 #define INT14 0x05 #define INT15 0x06 #define INTHIGH 0x08 /* int high=ACTIVE (else edge) */ #define INTEN 0x10 /* bit definitions for SCSIDEF */ #define HSCSIID 0x0F /* our SCSI ID */ #define RSTPWR 0x10 /* reset scsi bus on power up or reset */ /* bit definitions for BUSDEF */ #define B0uS 0x00 /* give up bus immediatly */ #define B4uS 0x01 /* delay 4uSec. */ #define B8uS 0x02 /* * AHA1740 ENHANCED mode mailbox control regs (Offset from slot base) */ #define MBOXOUT0 0xCD0 #define MBOXOUT1 0xCD1 #define MBOXOUT2 0xCD2 #define MBOXOUT3 0xCD3 #define ATTN 0xCD4 #define G2CNTRL 0xCD5 #define G2INTST 0xCD6 #define G2STAT 0xCD7 #define MBOXIN0 0xCD8 #define MBOXIN1 0xCD9 #define MBOXIN2 0xCDA #define MBOXIN3 0xCDB #define G2STAT2 0xCDC /* * Bit definitions for the 5 control/status registers */ #define ATTN_TARGET 0x0F #define ATTN_OPCODE 0xF0 #define OP_IMMED 0x10 #define AHB_TARG_RESET 0x80 #define OP_START_ECB 0x40 #define OP_ABORT_ECB 0x50 #define G2CNTRL_SET_HOST_READY 0x20 #define G2CNTRL_CLEAR_EISA_INT 0x40 #define G2CNTRL_HARD_RESET 0x80 #define G2INTST_TARGET 0x0F #define G2INTST_INT_STAT 0xF0 #define AHB_ECB_OK 0x10 #define AHB_ECB_RECOVERED 0x50 #define AHB_HW_ERR 0x70 #define AHB_IMMED_OK 0xA0 #define AHB_ECB_ERR 0xC0 #define AHB_ASN 0xD0 /* for target mode */ #define AHB_IMMED_ERR 0xE0 #define G2STAT_BUSY 0x01 #define G2STAT_INT_PEND 0x02 #define G2STAT_MBOX_EMPTY 0x04 #define G2STAT2_HOST_READY 0x01 struct ahb_dma_seg { physaddr addr; long len; }; struct ahb_ecb_status { u_short status; # define ST_DON 0x0001 # define ST_DU 0x0002 # define ST_QF 0x0008 # define ST_SC 0x0010 # define ST_DO 0x0020 # define ST_CH 0x0040 # define ST_INT 0x0080 # define ST_ASA 0x0100 # define ST_SNS 0x0200 # define ST_INI 0x0800 # define ST_ME 0x1000 # define ST_ECA 0x4000 u_char ha_status; # define HS_OK 0x00 # define HS_CMD_ABORTED_HOST 0x04 # define HS_CMD_ABORTED_ADAPTER 0x05 # define HS_TIMED_OUT 0x11 # define HS_HARDWARE_ERR 0x20 # define HS_SCSI_RESET_ADAPTER 0x22 # define HS_SCSI_RESET_INCOMING 0x23 u_char targ_status; # define TS_OK 0x00 # define TS_CHECK_CONDITION 0x02 # define TS_BUSY 0x08 u_long resid_count; u_long resid_addr; u_short addit_status; u_char sense_len; u_char unused[9]; u_char cdb[6]; }; struct ecb { u_char opcode; # define ECB_SCSI_OP 0x01 u_char :4; u_char options:3; u_char :1; short opt1; # define ECB_CNE 0x0001 # define ECB_DI 0x0080 # define ECB_SES 0x0400 # define ECB_S_G 0x1000 # define ECB_DSB 0x4000 # define ECB_ARS 0x8000 short opt2; # define ECB_LUN 0x0007 # define ECB_TAG 0x0008 # define ECB_TT 0x0030 # define ECB_ND 0x0040 # define ECB_DAT 0x0100 # define ECB_DIR 0x0200 # define ECB_ST 0x0400 # define ECB_CHK 0x0800 # define ECB_REC 0x4000 # define ECB_NRB 0x8000 u_short unused1; physaddr data; u_long datalen; physaddr status; physaddr chain; short unused2; short unused3; physaddr sense; u_char senselen; u_char cdblen; short cksum; u_char cdb[12]; /*-----------------end of hardware supported fields----------------*/ struct ecb *next; /* in free list */ struct scsi_xfer *xs; /* the scsi_xfer for this cmd */ long int delta; /* difference from previous*/ struct ecb *later,*sooner; int flags; #define ECB_FREE 0 #define ECB_ACTIVE 1 #define ECB_ABORTED 2 #define ECB_IMMED 4 #define ECB_IMMED_FAIL 8 struct ahb_dma_seg ahb_dma[AHB_NSEG]; struct ahb_ecb_status ecb_status; struct scsi_sense_data ecb_sense; }; struct ecb *ahb_soonest = (struct ecb *)0; struct ecb *ahb_latest = (struct ecb *)0; long int ahb_furtherest = 0; /* longest time in the timeout queue */ struct ahb_data { int flags; #define AHB_INIT 0x01; int baseport; struct ecb ecbs[NUM_CONCURRENT]; struct ecb *free_ecb; int our_id; /* our scsi id */ int vect; struct ecb *immed_ecb; /* an outstanding immediete command */ } ahb_data[NAHB]; struct ecb *cheat; #define MAX_SLOTS 8 static ahb_slot = 0; /* slot last board was found in */ static ahb_unit = 0; int ahb_debug = 0; #define AHB_SHOWECBS 0x01 #define AHB_SHOWINTS 0x02 #define AHB_SHOWCMDS 0x04 #define AHB_SHOWMISC 0x08 #define FAIL 1 #define SUCCESS 0 #define PAGESIZ 4096 int ahbprobe(struct isa_device *); int ahbprobe1(struct isa_device *); int ahb_attach(struct isa_device *); long int ahb_adapter_info(int); int ahbintr(int); void ahb_done(int, struct ecb *, int); void ahb_free_ecb(int, struct ecb *, int); struct ecb * ahb_get_ecb(int, int); int ahb_init(int); void ahbminphys(struct buf *); int ahb_scsi_cmd(struct scsi_xfer *); void ahb_add_timeout(struct ecb *, int); void ahb_remove_timeout(struct ecb *); void ahb_timeout(int); void ahb_show_scsi_cmd(struct scsi_xfer *); void ahb_print_ecb(struct ecb *); void ahb_print_active_ecb(void); struct isa_driver ahbdriver = { ahbprobe, ahb_attach, "ahb" }; struct scsi_switch ahb_switch[NAHB]; /* * Function to send a command out through a mailbox */ void ahb_send_mbox(int unit, int opcode, int target, struct ecb *ecb) { int port = ahb_data[unit].baseport; int spincount = FUDGE(delaycount) * 1; /* 1ms should be enough */ int stport = port + G2STAT, s; s = splbio(); while( ((inb(stport) & (G2STAT_BUSY | G2STAT_MBOX_EMPTY)) != G2STAT_MBOX_EMPTY) && spincount--) ; if(spincount == -1) { printf("ahb%d: board not responding\n",unit); Debugger(); } outl(port+MBOXOUT0, KVTOPHYS(ecb)); /* don't know this will work */ outb(port+ATTN, opcode|target); splx(s); } /* * Function to poll for command completion when in poll mode * wait is in msec */ int ahb_poll(int unit, int wait) { int port = ahb_data[unit].baseport; int spincount = FUDGE(delaycount) * wait; /* in msec */ int stport = port + G2STAT; int start = spincount; retry: while( spincount-- && (!(inb(stport) & G2STAT_INT_PEND))) ; if(spincount == -1) { printf("ahb%d: board not responding\n",unit); return(EIO); } if( (int)cheat != PHYSTOKV(inl(port+MBOXIN0)) ) { printf("discarding %x ", inl(port+MBOXIN0)); outb(port + G2CNTRL, G2CNTRL_CLEAR_EISA_INT); spinwait(50); goto retry; } ahbintr(unit); return(0); } /* * Function to send an immediate type command to the adapter */ void ahb_send_immed(int unit, int target, u_long cmd) { int port = ahb_data[unit].baseport; int spincount = FUDGE(delaycount) * 1; /* 1ms should be enough */ int s = splbio(); int stport = port + G2STAT; while( ((inb(stport) & (G2STAT_BUSY | G2STAT_MBOX_EMPTY)) != (G2STAT_MBOX_EMPTY)) && spincount--) ; if(spincount == -1) { printf("ahb%d: board not responding\n",unit); Debugger(); } outl(port + MBOXOUT0, cmd); /* don't know this will work */ outb(port + G2CNTRL, G2CNTRL_SET_HOST_READY); outb(port + ATTN, OP_IMMED | target); splx(s); } /* * Check the slots looking for a board we recognise * If we find one, note it's address (slot) and call * the actual probe routine to check it out. */ int ahbprobe(struct isa_device *dev) { int port; u_char byte1,byte2,byte3; ahb_slot++; while (ahb_slot<8) { port = 0x1000 * ahb_slot; byte1 = inb(port + HID0); byte2 = inb(port + HID1); byte3 = inb(port + HID2); if(byte1 == 0xff) { ahb_slot++; continue; } if ((CHAR1(byte1,byte2) == 'A') && (CHAR2(byte1,byte2) == 'D') && (CHAR3(byte1,byte2) == 'P') && ((byte3 == 0 ) || (byte3 == 1))) { dev->id_iobase = port; return ahbprobe1(dev); } ahb_slot++; } return 0; } /* * Check if the device can be found at the port given * * and if so, set it up ready for further work * * as an argument, takes the isa_device structure from * * autoconf.c * */ int ahbprobe1(struct isa_device *dev) { int unit = ahb_unit; dev->id_unit = unit; ahb_data[unit].baseport = dev->id_iobase; if(unit >= NAHB) { printf("ahb: unit number (%d) too high\n",unit); return 0; } /* * Try initialise a unit at this location * sets up dma and bus speed, loads ahb_data[unit].vect* */ if (ahb_init(unit) != 0) return 0; /* If it's there, put in it's interrupt vectors */ dev->id_irq = (1 << ahb_data[unit].vect); dev->id_drq = -1; /* using EISA dma */ ahb_unit++; return 0x1000; } /* * Attach all the sub-devices we can find */ int ahb_attach(struct isa_device *dev) { static int firsttime; static int firstswitch[NAHB]; int masunit = dev->id_masunit; int r; if (!firstswitch[masunit]) { firstswitch[masunit] = 1; ahb_switch[masunit].name = "ahb"; ahb_switch[masunit].scsi_cmd = ahb_scsi_cmd; ahb_switch[masunit].scsi_minphys = ahbminphys; ahb_switch[masunit].open_target_lu = 0; ahb_switch[masunit].close_target_lu = 0; ahb_switch[masunit].adapter_info = ahb_adapter_info; for (r = 0; r < 8; r++) { ahb_switch[masunit].empty[r] = 0; ahb_switch[masunit].used[r] = 0; ahb_switch[masunit].printed[r] = 0; } } r = scsi_attach(masunit, ahb_data[masunit].our_id, &ahb_switch[masunit], &dev->id_physid, &dev->id_unit, dev->id_flags); /* only one for all boards */ if(firsttime==0) { firsttime = 1; ahb_timeout(0); } return r; } /* * Return some information to the caller about * * the adapter and it's capabilities * * 2 outstanding requests at a time per device */ long int ahb_adapter_info(int unit) { return 2; } /* * Catch an interrupt from the adaptor */ int ahbintr(int unit) { struct ecb *ecb; unsigned char stat; register i; u_char ahbstat; int target; long int mboxval; int port = ahb_data[unit].baseport; if(scsi_debug & PRINTROUTINES) printf("ahbintr "); while(inb(port + G2STAT) & G2STAT_INT_PEND) { /* * First get all the information and then * acknowlege the interrupt */ ahbstat = inb(port + G2INTST); target = ahbstat & G2INTST_TARGET; stat = ahbstat & G2INTST_INT_STAT; mboxval = inl(port + MBOXIN0);/* don't know this will work */ outb(port + G2CNTRL, G2CNTRL_CLEAR_EISA_INT); if(scsi_debug & TRACEINTERRUPTS) printf("status = 0x%x ",stat); /* * Process the completed operation */ if(stat == AHB_ECB_OK) ecb = (struct ecb *)PHYSTOKV(mboxval); else { switch(stat) { case AHB_IMMED_OK: ecb = ahb_data[unit].immed_ecb; ahb_data[unit].immed_ecb = 0; break; case AHB_IMMED_ERR: ecb = ahb_data[unit].immed_ecb; ecb->flags |= ECB_IMMED_FAIL; ahb_data[unit].immed_ecb = 0; break; case AHB_ASN: /* for target mode */ ecb = 0; break; case AHB_HW_ERR: ecb = 0; break; case AHB_ECB_RECOVERED: ecb = (struct ecb *)PHYSTOKV(mboxval); break; case AHB_ECB_ERR: ecb = (struct ecb *)PHYSTOKV(mboxval); break; default: printf(" Unknown return from ahb%d(%x)\n",unit,ahbstat); ecb=0; } } if(ecb) { if(ahb_debug & AHB_SHOWCMDS ) ahb_show_scsi_cmd(ecb->xs); if((ahb_debug & AHB_SHOWECBS) && ecb) printf("",ecb); ahb_remove_timeout(ecb); ahb_done(unit, ecb, (stat==AHB_ECB_OK)? SUCCESS: FAIL); } } return 1; } /* * We have a ecb which has been processed by the * adaptor, now we look to see how the operation * went. */ void ahb_done(int unit, struct ecb *ecb, int state) { struct ahb_ecb_status *stat = &ecb->ecb_status; struct scsi_sense_data *s1,*s2; struct scsi_xfer *xs = ecb->xs; if(scsi_debug & (PRINTROUTINES | TRACEINTERRUPTS)) printf("ahb_done "); /* * Otherwise, put the results of the operation * into the xfer and call whoever started it */ if(ecb->flags & ECB_IMMED) { if(ecb->flags & ECB_IMMED_FAIL) xs->error = XS_DRIVER_STUFFUP; goto done; } if ( (state == SUCCESS) || (xs->flags & SCSI_ERR_OK)) { /* All went correctly OR errors expected */ xs->resid = 0; xs->error = 0; } else { s1 = &(ecb->ecb_sense); s2 = &(xs->sense); if(stat->ha_status) { switch(stat->ha_status) { case HS_SCSI_RESET_ADAPTER: break; case HS_SCSI_RESET_INCOMING: break; case HS_CMD_ABORTED_HOST: /* No response */ case HS_CMD_ABORTED_ADAPTER: /* No response */ break; case HS_TIMED_OUT: /* No response */ if (ahb_debug & AHB_SHOWMISC) printf("timeout reported back\n"); xs->error = XS_TIMEOUT; break; default: /* Other scsi protocol messes */ xs->error = XS_DRIVER_STUFFUP; if (ahb_debug & AHB_SHOWMISC) printf("unexpected ha_status: %x\n", stat->ha_status); } } else { switch(stat->targ_status) { case TS_CHECK_CONDITION: *s2 = *s1; xs->error = XS_SENSE; break; case TS_BUSY: xs->error = XS_BUSY; break; default: if (ahb_debug & AHB_SHOWMISC) printf("unexpected targ_status: %x\n", stat->targ_status); xs->error = XS_DRIVER_STUFFUP; } } } done: xs->flags |= ITSDONE; ahb_free_ecb(unit, ecb, xs->flags); if(xs->when_done) (*(xs->when_done))(xs->done_arg,xs->done_arg2); } /* * A ecb (and hence a mbx-out is put onto the * free list. */ void ahb_free_ecb(int unit, struct ecb *ecb, int flags) { unsigned int opri; if(scsi_debug & PRINTROUTINES) printf("ecb%d(0x%x)> ",unit,flags); if (!(flags & SCSI_NOMASK)) opri = splbio(); ecb->next = ahb_data[unit].free_ecb; ahb_data[unit].free_ecb = ecb; ecb->flags = ECB_FREE; /* * If there were none, wake abybody waiting for * one to come free, starting with queued entries* */ if (!ecb->next) wakeup((caddr_t)&ahb_data[unit].free_ecb); if (!(flags & SCSI_NOMASK)) splx(opri); } /* * Get a free ecb (and hence mbox-out entry) */ struct ecb * ahb_get_ecb(int unit, int flags) { unsigned opri; struct ecb *rc; if(scsi_debug & PRINTROUTINES) printf("next; rc->flags = ECB_ACTIVE; } if (!(flags & SCSI_NOMASK)) splx(opri); return rc; } /* * Start the board, ready for normal operation */ int ahb_init(int unit) { int port = ahb_data[unit].baseport; int intdef; int spincount = FUDGE(delaycount) * 1000; /* 1 sec enough? */ int i; int stport = port + G2STAT; #define NO_NO 1 #ifdef NO_NO /* * reset board, If it doesn't respond, assume * that it's not there.. good for the probe */ outb(port + EBCTRL,CDEN); /* enable full card */ outb(port + PORTADDR,PORTADDR_ENHANCED); outb(port + G2CNTRL,G2CNTRL_HARD_RESET); spinwait(1); outb(port + G2CNTRL,0); spinwait(10); while( (inb(stport) & G2STAT_BUSY ) && spincount--) ; if(spincount == -1) { if (ahb_debug & AHB_SHOWMISC) printf("ahb_init: No answer from bt742a board\n"); return(ENXIO); } i = inb(port + MBOXIN0) & 0xff; if(i) { printf("self test failed, val = 0x%x\n",i); return(EIO); } #endif while( inb(stport) & G2STAT_INT_PEND) { printf("."); outb(port + G2CNTRL, G2CNTRL_CLEAR_EISA_INT); spinwait(10); } outb(port + EBCTRL,CDEN); /* enable full card */ outb(port + PORTADDR,PORTADDR_ENHANCED); /* * Assume we have a board at this stage * setup dma channel from jumpers and save int * level */ intdef = inb(port + INTDEF); switch(intdef & 0x07) { case INT9: ahb_data[unit].vect = 9; break; case INT10: ahb_data[unit].vect = 10; break; case INT11: ahb_data[unit].vect = 11; break; case INT12: ahb_data[unit].vect = 12; break; case INT14: ahb_data[unit].vect = 14; break; case INT15: ahb_data[unit].vect = 15; break; default: ahb_data[unit].vect = -1; printf("ahb%d: illegal irq setting\n", unit); return(EIO); } outb(port + INTDEF, intdef|INTEN); /* make sure we can interrupt */ ahb_data[unit].our_id = (inb(port + SCSIDEF) & HSCSIID); /* * link up all our ECBs into a free list */ for (i=0; i < NUM_CONCURRENT; i++) { ahb_data[unit].ecbs[i].next = ahb_data[unit].free_ecb; ahb_data[unit].free_ecb = &ahb_data[unit].ecbs[i]; ahb_data[unit].free_ecb->flags = ECB_FREE; } /* * Note that we are going and return (to probe) */ ahb_data[unit].flags |= AHB_INIT; return 0; } void ahbminphys(struct buf *bp) { if(bp->b_bcount > ((AHB_NSEG-1) * PAGESIZ)) bp->b_bcount = ((AHB_NSEG-1) * PAGESIZ); } /* * start a scsi operation given the command and * the data address. Also needs the unit, target * and lu */ int ahb_scsi_cmd(struct scsi_xfer *xs) { struct scsi_sense_data *s1,*s2; struct ecb *ecb; struct ahb_dma_seg *sg; int seg; /* scatter gather seg being worked on */ int i = 0; int rc = 0; int thiskv; physaddr thisphys,nextphys; int unit =xs->adapter; int bytes_this_seg,bytes_this_page,datalen,flags; struct iovec *iovp; int s; if(scsi_debug & PRINTROUTINES) printf("ahb_scsi_cmd "); /* * get a ecb (mbox-out) to use. If the transfer * is from a buf (possibly from interrupt time) * then we can't allow it to sleep */ flags = xs->flags; if(xs->bp) flags |= (SCSI_NOSLEEP); /* just to be sure */ if(flags & ITSDONE) { printf("Already done?"); xs->flags &= ~ITSDONE; } if( !(flags & INUSE) ) { printf("Not in use?"); xs->flags |= INUSE; } if (!(ecb = ahb_get_ecb(unit,flags))) { xs->error = XS_DRIVER_STUFFUP; return(TRY_AGAIN_LATER); } cheat = ecb; if(ahb_debug & AHB_SHOWECBS) printf("",ecb); if(scsi_debug & SHOWCOMMANDS) ahb_show_scsi_cmd(xs); ecb->xs = xs; /* * If it's a reset, we need to do an 'immediate' * command, and store it's ccb for later * if there is already an immediate waiting, * then WE must wait */ if(flags & SCSI_RESET) { ecb->flags |= ECB_IMMED; if(ahb_data[unit].immed_ecb) return(TRY_AGAIN_LATER); ahb_data[unit].immed_ecb = ecb; if (!(flags & SCSI_NOMASK)) { s = splbio(); ahb_send_immed(unit,xs->targ,AHB_TARG_RESET); ahb_add_timeout(ecb,xs->timeout); splx(s); return(SUCCESSFULLY_QUEUED); } else { ahb_send_immed(unit,xs->targ,AHB_TARG_RESET); /* * If we can't use interrupts, poll on completion* */ if(scsi_debug & TRACEINTERRUPTS) printf("wait "); if( ahb_poll(unit,xs->timeout)) { ahb_free_ecb(unit,ecb,flags); xs->error = XS_TIMEOUT; return(HAD_ERROR); } return(COMPLETE); } } /* * Put all the arguments for the xfer in the ecb */ ecb->opcode = ECB_SCSI_OP; ecb->opt1 = ECB_SES|ECB_DSB|ECB_ARS; if(xs->datalen) ecb->opt1 |= ECB_S_G; ecb->opt2 = xs->lu | ECB_NRB; ecb->cdblen = xs->cmdlen; ecb->sense = KVTOPHYS(&(ecb->ecb_sense)); ecb->senselen = sizeof(ecb->ecb_sense); ecb->status = KVTOPHYS(&(ecb->ecb_status)); if(xs->datalen) { /* should use S/G only if not zero length */ ecb->data = KVTOPHYS(ecb->ahb_dma); sg = ecb->ahb_dma ; seg = 0; if(flags & SCSI_DATA_UIO) { iovp = ((struct uio *)xs->data)->uio_iov; datalen = ((struct uio *)xs->data)->uio_iovcnt; xs->datalen = 0; while ((datalen) && (seg < AHB_NSEG)) { sg->addr = (physaddr)iovp->iov_base; xs->datalen += sg->len = iovp->iov_len; if(scsi_debug & SHOWSCATGATH) printf("(0x%x@0x%x)", iovp->iov_len, iovp->iov_base); sg++; iovp++; seg++; datalen--; } } else { /* Set up the scatter gather block */ if(scsi_debug & SHOWSCATGATH) printf("%d @0x%x:- ", xs->datalen, xs->data); datalen = xs->datalen; thiskv = (int)xs->data; thisphys = KVTOPHYS(thiskv); while ((datalen) && (seg < AHB_NSEG)) { bytes_this_seg = 0; /* put in the base address */ sg->addr = thisphys; if(scsi_debug & SHOWSCATGATH) printf("0x%x",thisphys); /* do it at least once */ nextphys = thisphys; while ((datalen) && (thisphys == nextphys)) { /* * This page is contiguous (physically) with * * the the last, just extend the length * */ nextphys= (thisphys & (~(PAGESIZ - 1))) + PAGESIZ; bytes_this_page = min(nextphys - thisphys, datalen); bytes_this_seg += bytes_this_page; datalen -= bytes_this_page; /* get more ready for the next page */ thiskv = (thiskv & (~(PAGESIZ - 1))) + PAGESIZ; if(datalen) thisphys = KVTOPHYS(thiskv); } /* * next page isn't contiguous, finish the seg * */ if(scsi_debug & SHOWSCATGATH) printf("(0x%x)",bytes_this_seg); sg->len = bytes_this_seg; sg++; seg++; } } ecb->datalen = seg * sizeof(struct ahb_dma_seg); if(scsi_debug & SHOWSCATGATH) printf("\n"); if (datalen) { /* there's still data, must have run out of segs! */ printf("ahb_scsi_cmd%d: more than %d DMA segs\n", unit, AHB_NSEG); xs->error = XS_DRIVER_STUFFUP; ahb_free_ecb(unit,ecb,flags); return(HAD_ERROR); } } else { /* No data xfer, use non S/G values */ ecb->data = (physaddr)0; ecb->datalen = 0; } ecb->chain = (physaddr)0; /* * Put the scsi command in the ecb and start it */ bcopy(xs->cmd, ecb->cdb, xs->cmdlen); /* Usually return SUCCESSFULLY QUEUED */ if( !(flags & SCSI_NOMASK) ) { s = splbio(); ahb_send_mbox(unit,OP_START_ECB,xs->targ,ecb); ahb_add_timeout(ecb,xs->timeout); splx(s); if(scsi_debug & TRACEINTERRUPTS) printf("cmd_sent "); return(SUCCESSFULLY_QUEUED); } /* If we can't use interrupts, poll on completion */ ahb_send_mbox(unit,OP_START_ECB,xs->targ,ecb); if(scsi_debug & TRACEINTERRUPTS) printf("cmd_wait "); do { if(ahb_poll(unit,xs->timeout)) { if (!(xs->flags & SCSI_SILENT)) printf("cmd fail\n"); ahb_send_mbox(unit,OP_ABORT_ECB,xs->targ,ecb); if(ahb_poll(unit, 2000)) { printf("abort failed in wait\n"); ahb_free_ecb(unit,ecb,flags); } xs->error = XS_DRIVER_STUFFUP; return(HAD_ERROR); } } while (!(xs->flags & ITSDONE)); scsi_debug = 0; ahb_debug = 0; if(xs->error) return HAD_ERROR; return COMPLETE; } /* * +----------+ +----------+ +----------+ * ahb_soonest--->| later |--->| later|--->| later|--->0 * | [Delta] | | [Delta] | | [Delta] | * 0<---|sooner |<---|sooner |<---|sooner |<---ahb_latest * +----------+ +----------+ +----------+ * * ahb_furtherest = sum(Delta[1..n]) */ void ahb_add_timeout(struct ecb *ecb, int time) { int timeprev; struct ecb *prev; int s = splbio(); prev = ahb_latest; if(prev) timeprev = ahb_furtherest; else timeprev = 0; while(prev && (timeprev > time)) { timeprev -= prev->delta; prev = prev->sooner; } if(prev) { ecb->delta = time - timeprev; ecb->later = prev->later; if(ecb->later) { ecb->later->sooner = ecb; ecb->later->delta -= ecb->delta; } else { ahb_furtherest = time; ahb_latest = ecb; } ecb->sooner = prev; prev->later = ecb; } else { ecb->later = ahb_soonest; if(ahb_soonest) { ecb->later->sooner = ecb; ecb->later->delta -= time; } else { ahb_furtherest = time; ahb_latest = ecb; } ecb->delta = time; ecb->sooner = (struct ecb *)0; ahb_soonest = ecb; } splx(s); } void ahb_remove_timeout(struct ecb *ecb) { int s = splbio(); if(ecb->sooner) ecb->sooner->later = ecb->later; else ahb_soonest = ecb->later; if(ecb->later) { ecb->later->sooner = ecb->sooner; ecb->later->delta += ecb->delta; } else { ahb_latest = ecb->sooner; ahb_furtherest -= ecb->delta; } ecb->sooner = ecb->later = (struct ecb *)0; splx(s); } extern int hz; #define ONETICK 500 /* milliseconds */ #define SLEEPTIME ((hz * 1000) / ONETICK) void ahb_timeout(int arg) { struct ecb *ecb; int unit; int s = splbio(); while( ecb = ahb_soonest ) { if(ecb->delta <= ONETICK) { /* It has timed out, we need to do some work */ unit = ecb->xs->adapter; printf("ahb%d targ %d: device timed out\n", unit, ecb->xs->targ); if(ahb_debug & AHB_SHOWECBS) ahb_print_active_ecb(); /* Unlink it from the queue */ ahb_remove_timeout(ecb); /* * If it's immediate, don't try abort it * */ if(ecb->flags & ECB_IMMED) { ecb->xs->retries = 0; /* I MEAN IT ! */ ecb->flags |= ECB_IMMED_FAIL; ahb_done(unit,ecb,FAIL); continue; } /* * If it has been through before, then * a previous abort has failed, don't * try abort again */ if(ecb->flags == ECB_ABORTED) { printf("AGAIN"); ecb->xs->retries = 0; /* I MEAN IT ! */ ecb->ecb_status.ha_status = HS_CMD_ABORTED_HOST; ahb_done(unit,ecb,FAIL); } else { printf("\n"); ahb_send_mbox(unit,OP_ABORT_ECB,ecb->xs->targ,ecb); /* 2 secs for the abort */ ahb_add_timeout(ecb,2000 + ONETICK); ecb->flags = ECB_ABORTED; } } else { ecb->delta -= ONETICK; ahb_furtherest -= ONETICK; break; } } splx(s); timeout((timeout_t)ahb_timeout,(caddr_t)arg,SLEEPTIME); } void ahb_show_scsi_cmd(struct scsi_xfer *xs) { u_char *b = (u_char *)xs->cmd; int i = 0; if( !(xs->flags & SCSI_RESET) ) { printf("ahb%d targ %d lun %d:", xs->adapter, xs->targ, xs->lu); while(i < xs->cmdlen ) { if(i) printf(","); printf("%x", b[i++]); } printf("\n"); } else { printf("ahb%d targ %d lun%d: RESET\n", xs->adapter, xs->targ, xs->lu); } } void ahb_print_ecb(struct ecb *ecb) { printf("ecb:%x op:%x cmdlen:%d senlen:%d\n", ecb, ecb->opcode, ecb->cdblen, ecb->senselen); printf(" datlen:%d hstat:%x tstat:%x delta:%d flags:%x\n", ecb->datalen, ecb->ecb_status.ha_status, ecb->ecb_status.targ_status, ecb->delta, ecb->flags); ahb_show_scsi_cmd(ecb->xs); } void ahb_print_active_ecb(void) { struct ecb *ecb; ecb = ahb_soonest; while(ecb) { ahb_print_ecb(ecb); ecb = ecb->later; } printf("Furtherest = %d\n", ahb_furtherest); }