/* $NetBSD: if_iwi.c,v 1.58 2006/11/16 01:33:08 christos Exp $ */ /*- * Copyright (c) 2004, 2005 * Damien Bergamini . All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice unmodified, this list of conditions, and the following * disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __KERNEL_RCSID(0, "$NetBSD: if_iwi.c,v 1.58 2006/11/16 01:33:08 christos Exp $"); /*- * Intel(R) PRO/Wireless 2200BG/2225BG/2915ABG driver * http://www.intel.com/network/connectivity/products/wireless/prowireless_mobile.htm */ #include "bpfilter.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if NBPFILTER > 0 #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef IWI_DEBUG #define DPRINTF(x) if (iwi_debug > 0) printf x #define DPRINTFN(n, x) if (iwi_debug >= (n)) printf x int iwi_debug = 4; #else #define DPRINTF(x) #define DPRINTFN(n, x) #endif static int iwi_match(struct device *, struct cfdata *, void *); static void iwi_attach(struct device *, struct device *, void *); static int iwi_detach(struct device *, int); static void iwi_shutdown(void *); static int iwi_suspend(struct iwi_softc *); static int iwi_resume(struct iwi_softc *); static void iwi_powerhook(int, void *); static int iwi_alloc_cmd_ring(struct iwi_softc *, struct iwi_cmd_ring *, int); static void iwi_reset_cmd_ring(struct iwi_softc *, struct iwi_cmd_ring *); static void iwi_free_cmd_ring(struct iwi_softc *, struct iwi_cmd_ring *); static int iwi_alloc_tx_ring(struct iwi_softc *, struct iwi_tx_ring *, int, bus_addr_t, bus_addr_t); static void iwi_reset_tx_ring(struct iwi_softc *, struct iwi_tx_ring *); static void iwi_free_tx_ring(struct iwi_softc *, struct iwi_tx_ring *); static struct mbuf * iwi_alloc_rx_buf(struct iwi_softc *sc); static int iwi_alloc_rx_ring(struct iwi_softc *, struct iwi_rx_ring *, int); static void iwi_reset_rx_ring(struct iwi_softc *, struct iwi_rx_ring *); static void iwi_free_rx_ring(struct iwi_softc *, struct iwi_rx_ring *); static struct ieee80211_node *iwi_node_alloc(struct ieee80211_node_table *); static void iwi_node_free(struct ieee80211_node *); static int iwi_media_change(struct ifnet *); static void iwi_media_status(struct ifnet *, struct ifmediareq *); static int iwi_wme_update(struct ieee80211com *); static uint16_t iwi_read_prom_word(struct iwi_softc *, uint8_t); static int iwi_newstate(struct ieee80211com *, enum ieee80211_state, int); static void iwi_fix_channel(struct ieee80211com *, struct mbuf *); static void iwi_frame_intr(struct iwi_softc *, struct iwi_rx_data *, int, struct iwi_frame *); static void iwi_notification_intr(struct iwi_softc *, struct iwi_notif *); static void iwi_cmd_intr(struct iwi_softc *); static void iwi_rx_intr(struct iwi_softc *); static void iwi_tx_intr(struct iwi_softc *, struct iwi_tx_ring *); static int iwi_intr(void *); static int iwi_cmd(struct iwi_softc *, uint8_t, void *, uint8_t, int); static void iwi_write_ibssnode(struct iwi_softc *, const struct iwi_node *); static int iwi_tx_start(struct ifnet *, struct mbuf *, struct ieee80211_node *, int); static void iwi_start(struct ifnet *); static void iwi_watchdog(struct ifnet *); static int iwi_alloc_unr(struct iwi_softc *); static void iwi_free_unr(struct iwi_softc *, int); static int iwi_get_table0(struct iwi_softc *, uint32_t *); static int iwi_ioctl(struct ifnet *, u_long, caddr_t); static void iwi_stop_master(struct iwi_softc *); static int iwi_reset(struct iwi_softc *); static int iwi_load_ucode(struct iwi_softc *, void *, int); static int iwi_load_firmware(struct iwi_softc *, void *, int); static int iwi_cache_firmware(struct iwi_softc *); static void iwi_free_firmware(struct iwi_softc *); static int iwi_config(struct iwi_softc *); static int iwi_set_chan(struct iwi_softc *, struct ieee80211_channel *); static int iwi_scan(struct iwi_softc *); static int iwi_auth_and_assoc(struct iwi_softc *); static int iwi_init(struct ifnet *); static void iwi_stop(struct ifnet *, int); static int iwi_getrfkill(struct iwi_softc *); static void iwi_led_set(struct iwi_softc *, uint32_t, int); static void iwi_sysctlattach(struct iwi_softc *); static void iwi_error_log(struct iwi_softc *); /* * Supported rates for 802.11a/b/g modes (in 500Kbps unit). */ static const struct ieee80211_rateset iwi_rateset_11a = { 8, { 12, 18, 24, 36, 48, 72, 96, 108 } }; static const struct ieee80211_rateset iwi_rateset_11b = { 4, { 2, 4, 11, 22 } }; static const struct ieee80211_rateset iwi_rateset_11g = { 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } }; static inline uint8_t MEM_READ_1(struct iwi_softc *sc, uint32_t addr) { CSR_WRITE_4(sc, IWI_CSR_INDIRECT_ADDR, addr); return CSR_READ_1(sc, IWI_CSR_INDIRECT_DATA); } static inline uint32_t MEM_READ_4(struct iwi_softc *sc, uint32_t addr) { CSR_WRITE_4(sc, IWI_CSR_INDIRECT_ADDR, addr); return CSR_READ_4(sc, IWI_CSR_INDIRECT_DATA); } static void MEM_CPY(struct iwi_softc *sc, void *dst, uint32_t base, size_t sz) { KASSERT(sz % 4 == 0); int j; uint32_t *p = dst; for (j = 0; j < sz / 4; j++) p[j] = MEM_READ_4(sc, base + j * sizeof(uint32_t)); } CFATTACH_DECL(iwi, sizeof (struct iwi_softc), iwi_match, iwi_attach, iwi_detach, NULL); static int iwi_match(struct device *parent, struct cfdata *match, void *aux) { struct pci_attach_args *pa = aux; if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL) return 0; if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_2200BG || PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_2225BG || PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_2915ABG_1 || PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_2915ABG_2) return 1; return 0; } /* Base Address Register */ #define IWI_PCI_BAR0 0x10 static void iwi_attach(struct device *parent, struct device *self, void *aux) { struct iwi_softc *sc = (struct iwi_softc *)self; struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = &sc->sc_if; struct pci_attach_args *pa = aux; const char *intrstr; char devinfo[256]; bus_space_tag_t memt; bus_space_handle_t memh; bus_addr_t base; pci_intr_handle_t ih; pcireg_t data; uint16_t val; int error, revision, i; sc->sc_pct = pa->pa_pc; sc->sc_pcitag = pa->pa_tag; pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo, sizeof devinfo); revision = PCI_REVISION(pa->pa_class); aprint_normal(": %s (rev. 0x%02x)\n", devinfo, revision); /* clear device specific PCI configuration register 0x41 */ data = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40); data &= ~0x0000ff00; pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, data); /* clear unit numbers allocated to IBSS */ sc->sc_unr = 0; /* power up chip */ if ((error = pci_activate(pa->pa_pc, pa->pa_tag, sc, NULL)) && error != EOPNOTSUPP) { aprint_error("%s: cannot activate %d\n", sc->sc_dev.dv_xname, error); return; } /* enable bus-mastering */ data = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG); data |= PCI_COMMAND_MASTER_ENABLE; pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, data); /* map the register window */ error = pci_mapreg_map(pa, IWI_PCI_BAR0, PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT, 0, &memt, &memh, &base, &sc->sc_sz); if (error != 0) { aprint_error("%s: could not map memory space\n", sc->sc_dev.dv_xname); return; } sc->sc_st = memt; sc->sc_sh = memh; sc->sc_dmat = pa->pa_dmat; /* disable interrupts */ CSR_WRITE_4(sc, IWI_CSR_INTR_MASK, 0); if (pci_intr_map(pa, &ih) != 0) { aprint_error("%s: could not map interrupt\n", sc->sc_dev.dv_xname); return; } intrstr = pci_intr_string(sc->sc_pct, ih); sc->sc_ih = pci_intr_establish(sc->sc_pct, ih, IPL_NET, iwi_intr, sc); if (sc->sc_ih == NULL) { aprint_error("%s: could not establish interrupt", sc->sc_dev.dv_xname); if (intrstr != NULL) aprint_error(" at %s", intrstr); aprint_error("\n"); return; } aprint_normal("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr); if (iwi_reset(sc) != 0) { aprint_error("%s: could not reset adapter\n", sc->sc_dev.dv_xname); return; } /* * Allocate rings. */ if (iwi_alloc_cmd_ring(sc, &sc->cmdq, IWI_CMD_RING_COUNT) != 0) { aprint_error("%s: could not allocate command ring\n", sc->sc_dev.dv_xname); goto fail; } error = iwi_alloc_tx_ring(sc, &sc->txq[0], IWI_TX_RING_COUNT, IWI_CSR_TX1_RIDX, IWI_CSR_TX1_WIDX); if (error != 0) { aprint_error("%s: could not allocate Tx ring 1\n", sc->sc_dev.dv_xname); goto fail; } error = iwi_alloc_tx_ring(sc, &sc->txq[1], IWI_TX_RING_COUNT, IWI_CSR_TX2_RIDX, IWI_CSR_TX2_WIDX); if (error != 0) { aprint_error("%s: could not allocate Tx ring 2\n", sc->sc_dev.dv_xname); goto fail; } error = iwi_alloc_tx_ring(sc, &sc->txq[2], IWI_TX_RING_COUNT, IWI_CSR_TX3_RIDX, IWI_CSR_TX3_WIDX); if (error != 0) { aprint_error("%s: could not allocate Tx ring 3\n", sc->sc_dev.dv_xname); goto fail; } error = iwi_alloc_tx_ring(sc, &sc->txq[3], IWI_TX_RING_COUNT, IWI_CSR_TX4_RIDX, IWI_CSR_TX4_WIDX); if (error != 0) { aprint_error("%s: could not allocate Tx ring 4\n", sc->sc_dev.dv_xname); goto fail; } if (iwi_alloc_rx_ring(sc, &sc->rxq, IWI_RX_RING_COUNT) != 0) { aprint_error("%s: could not allocate Rx ring\n", sc->sc_dev.dv_xname); goto fail; } ic->ic_ifp = ifp; ic->ic_wme.wme_update = iwi_wme_update; ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */ ic->ic_state = IEEE80211_S_INIT; sc->sc_fwname = "iwi-bss.fw"; sc->sc_ucname = "iwi-ucode-bss.fw"; /* set device capabilities */ ic->ic_caps = IEEE80211_C_IBSS | /* IBSS mode supported */ IEEE80211_C_MONITOR | /* monitor mode supported */ IEEE80211_C_TXPMGT | /* tx power management */ IEEE80211_C_SHPREAMBLE | /* short preamble supported */ IEEE80211_C_WPA | /* 802.11i */ IEEE80211_C_WME; /* 802.11e */ /* read MAC address from EEPROM */ val = iwi_read_prom_word(sc, IWI_EEPROM_MAC + 0); ic->ic_myaddr[0] = val & 0xff; ic->ic_myaddr[1] = val >> 8; val = iwi_read_prom_word(sc, IWI_EEPROM_MAC + 1); ic->ic_myaddr[2] = val & 0xff; ic->ic_myaddr[3] = val >> 8; val = iwi_read_prom_word(sc, IWI_EEPROM_MAC + 2); ic->ic_myaddr[4] = val & 0xff; ic->ic_myaddr[5] = val >> 8; aprint_normal("%s: 802.11 address %s\n", sc->sc_dev.dv_xname, ether_sprintf(ic->ic_myaddr)); /* read the NIC type from EEPROM */ val = iwi_read_prom_word(sc, IWI_EEPROM_NIC_TYPE); sc->nictype = val & 0xff; DPRINTF(("%s: NIC type %d\n", sc->sc_dev.dv_xname, sc->nictype)); if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_2915ABG_1 || PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_2915ABG_2) { /* set supported .11a rates (2915ABG only) */ ic->ic_sup_rates[IEEE80211_MODE_11A] = iwi_rateset_11a; /* set supported .11a channels */ for (i = 36; i <= 64; i += 4) { ic->ic_channels[i].ic_freq = ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ); ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A; } for (i = 149; i <= 165; i += 4) { ic->ic_channels[i].ic_freq = ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ); ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A; } } /* set supported .11b and .11g rates */ ic->ic_sup_rates[IEEE80211_MODE_11B] = iwi_rateset_11b; ic->ic_sup_rates[IEEE80211_MODE_11G] = iwi_rateset_11g; /* set supported .11b and .11g channels (1 through 14) */ for (i = 1; i <= 14; i++) { ic->ic_channels[i].ic_freq = ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ); ic->ic_channels[i].ic_flags = IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM | IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ; } ifp->if_softc = sc; ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_init = iwi_init; ifp->if_stop = iwi_stop; ifp->if_ioctl = iwi_ioctl; ifp->if_start = iwi_start; ifp->if_watchdog = iwi_watchdog; IFQ_SET_READY(&ifp->if_snd); memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ); if_attach(ifp); ieee80211_ifattach(ic); /* override default methods */ ic->ic_node_alloc = iwi_node_alloc; sc->sc_node_free = ic->ic_node_free; ic->ic_node_free = iwi_node_free; /* override state transition machine */ sc->sc_newstate = ic->ic_newstate; ic->ic_newstate = iwi_newstate; ieee80211_media_init(ic, iwi_media_change, iwi_media_status); #if NBPFILTER > 0 bpfattach2(ifp, DLT_IEEE802_11_RADIO, sizeof (struct ieee80211_frame) + 64, &sc->sc_drvbpf); sc->sc_rxtap_len = sizeof sc->sc_rxtapu; sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len); sc->sc_rxtap.wr_ihdr.it_present = htole32(IWI_RX_RADIOTAP_PRESENT); sc->sc_txtap_len = sizeof sc->sc_txtapu; sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len); sc->sc_txtap.wt_ihdr.it_present = htole32(IWI_TX_RADIOTAP_PRESENT); #endif iwi_sysctlattach(sc); /* * Make sure the interface is shutdown during reboot. */ sc->sc_sdhook = shutdownhook_establish(iwi_shutdown, sc); if (sc->sc_sdhook == NULL) aprint_error("%s: WARNING: unable to establish shutdown hook\n", sc->sc_dev.dv_xname); sc->sc_powerhook = powerhook_establish(sc->sc_dev.dv_xname, iwi_powerhook, sc); if (sc->sc_powerhook == NULL) aprint_error("%s: WARNING: unable to establish power hook\n", sc->sc_dev.dv_xname); ieee80211_announce(ic); return; fail: iwi_detach(self, 0); } static int iwi_detach(struct device* self, int flags) { struct iwi_softc *sc = (struct iwi_softc *)self; struct ifnet *ifp = &sc->sc_if; if (ifp != NULL) iwi_stop(ifp, 1); iwi_free_firmware(sc); #if NBPFILTER > 0 if (ifp != NULL) bpfdetach(ifp); #endif ieee80211_ifdetach(&sc->sc_ic); if (ifp != NULL) if_detach(ifp); iwi_free_cmd_ring(sc, &sc->cmdq); iwi_free_tx_ring(sc, &sc->txq[0]); iwi_free_tx_ring(sc, &sc->txq[1]); iwi_free_tx_ring(sc, &sc->txq[2]); iwi_free_tx_ring(sc, &sc->txq[3]); iwi_free_rx_ring(sc, &sc->rxq); if (sc->sc_ih != NULL) { pci_intr_disestablish(sc->sc_pct, sc->sc_ih); sc->sc_ih = NULL; } bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz); powerhook_disestablish(sc->sc_powerhook); shutdownhook_disestablish(sc->sc_sdhook); return 0; } static int iwi_alloc_cmd_ring(struct iwi_softc *sc, struct iwi_cmd_ring *ring, int count) { int error, nsegs; ring->count = count; ring->queued = 0; ring->cur = ring->next = 0; /* * Allocate and map command ring */ error = bus_dmamap_create(sc->sc_dmat, IWI_CMD_DESC_SIZE * count, 1, IWI_CMD_DESC_SIZE * count, 0, BUS_DMA_NOWAIT, &ring->desc_map); if (error != 0) { aprint_error("%s: could not create command ring DMA map\n", sc->sc_dev.dv_xname); goto fail; } error = bus_dmamem_alloc(sc->sc_dmat, IWI_CMD_DESC_SIZE * count, PAGE_SIZE, 0, &sc->cmdq.desc_seg, 1, &nsegs, BUS_DMA_NOWAIT); if (error != 0) { aprint_error("%s: could not allocate command ring DMA memory\n", sc->sc_dev.dv_xname); goto fail; } error = bus_dmamem_map(sc->sc_dmat, &sc->cmdq.desc_seg, nsegs, IWI_CMD_DESC_SIZE * count, (caddr_t *)&sc->cmdq.desc, BUS_DMA_NOWAIT); if (error != 0) { aprint_error("%s: could not map command ring DMA memory\n", sc->sc_dev.dv_xname); goto fail; } error = bus_dmamap_load(sc->sc_dmat, sc->cmdq.desc_map, sc->cmdq.desc, IWI_CMD_DESC_SIZE * count, NULL, BUS_DMA_NOWAIT); if (error != 0) { aprint_error("%s: could not load command ring DMA map\n", sc->sc_dev.dv_xname); goto fail; } memset(sc->cmdq.desc, 0, IWI_CMD_DESC_SIZE * count); return 0; fail: iwi_free_cmd_ring(sc, ring); return error; } static void iwi_reset_cmd_ring(struct iwi_softc *sc, struct iwi_cmd_ring *ring) { int i; for (i = ring->next; i != ring->cur;) { bus_dmamap_sync(sc->sc_dmat, sc->cmdq.desc_map, i * IWI_CMD_DESC_SIZE, IWI_CMD_DESC_SIZE, BUS_DMASYNC_POSTWRITE); wakeup(&ring->desc[i]); i = (i + 1) % ring->count; } ring->queued = 0; ring->cur = ring->next = 0; } static void iwi_free_cmd_ring(struct iwi_softc *sc, struct iwi_cmd_ring *ring) { if (ring->desc_map != NULL) { if (ring->desc != NULL) { bus_dmamap_unload(sc->sc_dmat, ring->desc_map); bus_dmamem_unmap(sc->sc_dmat, (caddr_t)ring->desc, IWI_CMD_DESC_SIZE * ring->count); bus_dmamem_free(sc->sc_dmat, &ring->desc_seg, 1); } bus_dmamap_destroy(sc->sc_dmat, ring->desc_map); } } static int iwi_alloc_tx_ring(struct iwi_softc *sc, struct iwi_tx_ring *ring, int count, bus_addr_t csr_ridx, bus_addr_t csr_widx) { int i, error, nsegs; ring->count = count; ring->queued = 0; ring->cur = ring->next = 0; ring->csr_ridx = csr_ridx; ring->csr_widx = csr_widx; /* * Allocate and map Tx ring */ error = bus_dmamap_create(sc->sc_dmat, IWI_TX_DESC_SIZE * count, 1, IWI_TX_DESC_SIZE * count, 0, BUS_DMA_NOWAIT, &ring->desc_map); if (error != 0) { aprint_error("%s: could not create tx ring DMA map\n", sc->sc_dev.dv_xname); goto fail; } error = bus_dmamem_alloc(sc->sc_dmat, IWI_TX_DESC_SIZE * count, PAGE_SIZE, 0, &ring->desc_seg, 1, &nsegs, BUS_DMA_NOWAIT); if (error != 0) { aprint_error("%s: could not allocate tx ring DMA memory\n", sc->sc_dev.dv_xname); goto fail; } error = bus_dmamem_map(sc->sc_dmat, &ring->desc_seg, nsegs, IWI_TX_DESC_SIZE * count, (caddr_t *)&ring->desc, BUS_DMA_NOWAIT); if (error != 0) { aprint_error("%s: could not map tx ring DMA memory\n", sc->sc_dev.dv_xname); goto fail; } error = bus_dmamap_load(sc->sc_dmat, ring->desc_map, ring->desc, IWI_TX_DESC_SIZE * count, NULL, BUS_DMA_NOWAIT); if (error != 0) { aprint_error("%s: could not load tx ring DMA map\n", sc->sc_dev.dv_xname); goto fail; } memset(ring->desc, 0, IWI_TX_DESC_SIZE * count); ring->data = malloc(count * sizeof (struct iwi_tx_data), M_DEVBUF, M_NOWAIT | M_ZERO); if (ring->data == NULL) { aprint_error("%s: could not allocate soft data\n", sc->sc_dev.dv_xname); error = ENOMEM; goto fail; } /* * Allocate Tx buffers DMA maps */ for (i = 0; i < count; i++) { error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, IWI_MAX_NSEG, MCLBYTES, 0, BUS_DMA_NOWAIT, &ring->data[i].map); if (error != 0) { aprint_error("%s: could not create tx buf DMA map", sc->sc_dev.dv_xname); goto fail; } } return 0; fail: iwi_free_tx_ring(sc, ring); return error; } static void iwi_reset_tx_ring(struct iwi_softc *sc, struct iwi_tx_ring *ring) { struct iwi_tx_data *data; int i; for (i = 0; i < ring->count; i++) { data = &ring->data[i]; if (data->m != NULL) { bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->sc_dmat, data->map); m_freem(data->m); data->m = NULL; } if (data->ni != NULL) { ieee80211_free_node(data->ni); data->ni = NULL; } } ring->queued = 0; ring->cur = ring->next = 0; } static void iwi_free_tx_ring(struct iwi_softc *sc, struct iwi_tx_ring *ring) { int i; if (ring->desc_map != NULL) { if (ring->desc != NULL) { bus_dmamap_unload(sc->sc_dmat, ring->desc_map); bus_dmamem_unmap(sc->sc_dmat, (caddr_t)ring->desc, IWI_TX_DESC_SIZE * ring->count); bus_dmamem_free(sc->sc_dmat, &ring->desc_seg, 1); } bus_dmamap_destroy(sc->sc_dmat, ring->desc_map); } for (i = 0; i < ring->count; i++) { if (ring->data[i].m != NULL) { bus_dmamap_unload(sc->sc_dmat, ring->data[i].map); m_freem(ring->data[i].m); } bus_dmamap_destroy(sc->sc_dmat, ring->data[i].map); } } static int iwi_alloc_rx_ring(struct iwi_softc *sc, struct iwi_rx_ring *ring, int count) { int i, error; ring->count = count; ring->cur = 0; ring->data = malloc(count * sizeof (struct iwi_rx_data), M_DEVBUF, M_NOWAIT | M_ZERO); if (ring->data == NULL) { aprint_error("%s: could not allocate soft data\n", sc->sc_dev.dv_xname); error = ENOMEM; goto fail; } /* * Allocate and map Rx buffers */ for (i = 0; i < count; i++) { error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0, BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, &ring->data[i].map); if (error != 0) { aprint_error("%s: could not create rx buf DMA map", sc->sc_dev.dv_xname); goto fail; } if ((ring->data[i].m = iwi_alloc_rx_buf(sc)) == NULL) { error = ENOMEM; goto fail; } error = bus_dmamap_load_mbuf(sc->sc_dmat, ring->data[i].map, ring->data[i].m, BUS_DMA_READ | BUS_DMA_NOWAIT); if (error != 0) { aprint_error("%s: could not load rx buffer DMA map\n", sc->sc_dev.dv_xname); goto fail; } bus_dmamap_sync(sc->sc_dmat, ring->data[i].map, 0, ring->data[i].map->dm_mapsize, BUS_DMASYNC_PREREAD); } return 0; fail: iwi_free_rx_ring(sc, ring); return error; } static void iwi_reset_rx_ring(struct iwi_softc *sc, struct iwi_rx_ring *ring) { ring->cur = 0; } static void iwi_free_rx_ring(struct iwi_softc *sc, struct iwi_rx_ring *ring) { int i; for (i = 0; i < ring->count; i++) { if (ring->data[i].m != NULL) { bus_dmamap_unload(sc->sc_dmat, ring->data[i].map); m_freem(ring->data[i].m); } bus_dmamap_destroy(sc->sc_dmat, ring->data[i].map); } } static void iwi_shutdown(void *arg) { struct iwi_softc *sc = (struct iwi_softc *)arg; struct ifnet *ifp = sc->sc_ic.ic_ifp; iwi_stop(ifp, 1); } static int iwi_suspend(struct iwi_softc *sc) { struct ifnet *ifp = sc->sc_ic.ic_ifp; iwi_stop(ifp, 1); return 0; } static int iwi_resume(struct iwi_softc *sc) { struct ifnet *ifp = sc->sc_ic.ic_ifp; pcireg_t data; /* clear device specific PCI configuration register 0x41 */ data = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40); data &= ~0x0000ff00; pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, data); if (ifp->if_flags & IFF_UP) { iwi_init(ifp); if (ifp->if_flags & IFF_RUNNING) iwi_start(ifp); } return 0; } static void iwi_powerhook(int why, void *arg) { struct iwi_softc *sc = arg; pci_chipset_tag_t pc = sc->sc_pct; pcitag_t tag = sc->sc_pcitag; int s; s = splnet(); switch (why) { case PWR_SUSPEND: case PWR_STANDBY: pci_conf_capture(pc, tag, &sc->sc_pciconf); break; case PWR_RESUME: pci_conf_restore(pc, tag, &sc->sc_pciconf); break; case PWR_SOFTSUSPEND: case PWR_SOFTSTANDBY: iwi_suspend(sc); break; case PWR_SOFTRESUME: iwi_resume(sc); break; } splx(s); } static struct ieee80211_node * iwi_node_alloc(struct ieee80211_node_table *nt) { struct iwi_node *in; in = malloc(sizeof (struct iwi_node), M_80211_NODE, M_NOWAIT | M_ZERO); if (in == NULL) return NULL; in->in_station = -1; return &in->in_node; } static int iwi_alloc_unr(struct iwi_softc *sc) { int i; for (i = 0; i < IWI_MAX_IBSSNODE - 1; i++) if ((sc->sc_unr & (1 << i)) == 0) { sc->sc_unr |= 1 << i; return i; } return -1; } static void iwi_free_unr(struct iwi_softc *sc, int r) { sc->sc_unr &= 1 << r; } static void iwi_node_free(struct ieee80211_node *ni) { struct ieee80211com *ic = ni->ni_ic; struct iwi_softc *sc = ic->ic_ifp->if_softc; struct iwi_node *in = (struct iwi_node *)ni; if (in->in_station != -1) iwi_free_unr(sc, in->in_station); sc->sc_node_free(ni); } static int iwi_media_change(struct ifnet *ifp) { int error; error = ieee80211_media_change(ifp); if (error != ENETRESET) return error; if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING)) iwi_init(ifp); return 0; } /* * The firmware automatically adapts the transmit speed. We report its current * value here. */ static void iwi_media_status(struct ifnet *ifp, struct ifmediareq *imr) { struct iwi_softc *sc = ifp->if_softc; struct ieee80211com *ic = &sc->sc_ic; #define N(a) (sizeof (a) / sizeof (a[0])) static const struct { uint32_t val; int rate; } rates[] = { { IWI_RATE_DS1, 2 }, { IWI_RATE_DS2, 4 }, { IWI_RATE_DS5, 11 }, { IWI_RATE_DS11, 22 }, { IWI_RATE_OFDM6, 12 }, { IWI_RATE_OFDM9, 18 }, { IWI_RATE_OFDM12, 24 }, { IWI_RATE_OFDM18, 36 }, { IWI_RATE_OFDM24, 48 }, { IWI_RATE_OFDM36, 72 }, { IWI_RATE_OFDM48, 96 }, { IWI_RATE_OFDM54, 108 }, }; uint32_t val; int rate, i; imr->ifm_status = IFM_AVALID; imr->ifm_active = IFM_IEEE80211; if (ic->ic_state == IEEE80211_S_RUN) imr->ifm_status |= IFM_ACTIVE; /* read current transmission rate from adapter */ val = CSR_READ_4(sc, IWI_CSR_CURRENT_TX_RATE); /* convert rate to 802.11 rate */ for (i = 0; i < N(rates) && rates[i].val != val; i++); rate = (i < N(rates)) ? rates[i].rate : 0; imr->ifm_active |= ieee80211_rate2media(ic, rate, ic->ic_curmode); switch (ic->ic_opmode) { case IEEE80211_M_STA: break; case IEEE80211_M_IBSS: imr->ifm_active |= IFM_IEEE80211_ADHOC; break; case IEEE80211_M_MONITOR: imr->ifm_active |= IFM_IEEE80211_MONITOR; break; case IEEE80211_M_AHDEMO: case IEEE80211_M_HOSTAP: /* should not get there */ break; } #undef N } static int iwi_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg) { struct iwi_softc *sc = ic->ic_ifp->if_softc; switch (nstate) { case IEEE80211_S_SCAN: if (sc->flags & IWI_FLAG_SCANNING) break; ieee80211_node_table_reset(&ic->ic_scan); ic->ic_flags |= IEEE80211_F_SCAN | IEEE80211_F_ASCAN; sc->flags |= IWI_FLAG_SCANNING; /* blink the led while scanning */ iwi_led_set(sc, IWI_LED_ASSOCIATED, 1); iwi_scan(sc); break; case IEEE80211_S_AUTH: iwi_auth_and_assoc(sc); break; case IEEE80211_S_RUN: if (ic->ic_opmode == IEEE80211_M_IBSS) ieee80211_new_state(ic, IEEE80211_S_AUTH, -1); else if (ic->ic_opmode == IEEE80211_M_MONITOR) iwi_set_chan(sc, ic->ic_ibss_chan); return (*sc->sc_newstate)(ic, nstate, IEEE80211_FC0_SUBTYPE_ASSOC_RESP); case IEEE80211_S_ASSOC: iwi_led_set(sc, IWI_LED_ASSOCIATED, 0); break; case IEEE80211_S_INIT: sc->flags &= ~IWI_FLAG_SCANNING; return (*sc->sc_newstate)(ic, nstate, arg); } ic->ic_state = nstate; return 0; } /* * WME parameters coming from IEEE 802.11e specification. These values are * already declared in ieee80211_proto.c, but they are static so they can't * be reused here. */ static const struct wmeParams iwi_wme_cck_params[WME_NUM_AC] = { { 0, 3, 5, 7, 0, 0, }, /* WME_AC_BE */ { 0, 3, 5, 10, 0, 0, }, /* WME_AC_BK */ { 0, 2, 4, 5, 188, 0, }, /* WME_AC_VI */ { 0, 2, 3, 4, 102, 0, }, /* WME_AC_VO */ }; static const struct wmeParams iwi_wme_ofdm_params[WME_NUM_AC] = { { 0, 3, 4, 6, 0, 0, }, /* WME_AC_BE */ { 0, 3, 4, 10, 0, 0, }, /* WME_AC_BK */ { 0, 2, 3, 4, 94, 0, }, /* WME_AC_VI */ { 0, 2, 2, 3, 47, 0, }, /* WME_AC_VO */ }; static int iwi_wme_update(struct ieee80211com *ic) { #define IWI_EXP2(v) htole16((1 << (v)) - 1) #define IWI_USEC(v) htole16(IEEE80211_TXOP_TO_US(v)) struct iwi_softc *sc = ic->ic_ifp->if_softc; struct iwi_wme_params wme[3]; const struct wmeParams *wmep; int ac; /* * We shall not override firmware default WME values if WME is not * actually enabled. */ if (!(ic->ic_flags & IEEE80211_F_WME)) return 0; for (ac = 0; ac < WME_NUM_AC; ac++) { /* set WME values for current operating mode */ wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac]; wme[0].aifsn[ac] = wmep->wmep_aifsn; wme[0].cwmin[ac] = IWI_EXP2(wmep->wmep_logcwmin); wme[0].cwmax[ac] = IWI_EXP2(wmep->wmep_logcwmax); wme[0].burst[ac] = IWI_USEC(wmep->wmep_txopLimit); wme[0].acm[ac] = wmep->wmep_acm; /* set WME values for CCK modulation */ wmep = &iwi_wme_cck_params[ac]; wme[1].aifsn[ac] = wmep->wmep_aifsn; wme[1].cwmin[ac] = IWI_EXP2(wmep->wmep_logcwmin); wme[1].cwmax[ac] = IWI_EXP2(wmep->wmep_logcwmax); wme[1].burst[ac] = IWI_USEC(wmep->wmep_txopLimit); wme[1].acm[ac] = wmep->wmep_acm; /* set WME values for OFDM modulation */ wmep = &iwi_wme_ofdm_params[ac]; wme[2].aifsn[ac] = wmep->wmep_aifsn; wme[2].cwmin[ac] = IWI_EXP2(wmep->wmep_logcwmin); wme[2].cwmax[ac] = IWI_EXP2(wmep->wmep_logcwmax); wme[2].burst[ac] = IWI_USEC(wmep->wmep_txopLimit); wme[2].acm[ac] = wmep->wmep_acm; } DPRINTF(("Setting WME parameters\n")); return iwi_cmd(sc, IWI_CMD_SET_WME_PARAMS, wme, sizeof wme, 1); #undef IWI_USEC #undef IWI_EXP2 } /* * Read 16 bits at address 'addr' from the serial EEPROM. */ static uint16_t iwi_read_prom_word(struct iwi_softc *sc, uint8_t addr) { uint32_t tmp; uint16_t val; int n; /* Clock C once before the first command */ IWI_EEPROM_CTL(sc, 0); IWI_EEPROM_CTL(sc, IWI_EEPROM_S); IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_C); IWI_EEPROM_CTL(sc, IWI_EEPROM_S); /* Write start bit (1) */ IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D); IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D | IWI_EEPROM_C); /* Write READ opcode (10) */ IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D); IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D | IWI_EEPROM_C); IWI_EEPROM_CTL(sc, IWI_EEPROM_S); IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_C); /* Write address A7-A0 */ for (n = 7; n >= 0; n--) { IWI_EEPROM_CTL(sc, IWI_EEPROM_S | (((addr >> n) & 1) << IWI_EEPROM_SHIFT_D)); IWI_EEPROM_CTL(sc, IWI_EEPROM_S | (((addr >> n) & 1) << IWI_EEPROM_SHIFT_D) | IWI_EEPROM_C); } IWI_EEPROM_CTL(sc, IWI_EEPROM_S); /* Read data Q15-Q0 */ val = 0; for (n = 15; n >= 0; n--) { IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_C); IWI_EEPROM_CTL(sc, IWI_EEPROM_S); tmp = MEM_READ_4(sc, IWI_MEM_EEPROM_CTL); val |= ((tmp & IWI_EEPROM_Q) >> IWI_EEPROM_SHIFT_Q) << n; } IWI_EEPROM_CTL(sc, 0); /* Clear Chip Select and clock C */ IWI_EEPROM_CTL(sc, IWI_EEPROM_S); IWI_EEPROM_CTL(sc, 0); IWI_EEPROM_CTL(sc, IWI_EEPROM_C); return val; } /* * XXX: Hack to set the current channel to the value advertised in beacons or * probe responses. Only used during AP detection. */ static void iwi_fix_channel(struct ieee80211com *ic, struct mbuf *m) { struct ieee80211_frame *wh; uint8_t subtype; uint8_t *frm, *efrm; wh = mtod(m, struct ieee80211_frame *); if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_MGT) return; subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; if (subtype != IEEE80211_FC0_SUBTYPE_BEACON && subtype != IEEE80211_FC0_SUBTYPE_PROBE_RESP) return; frm = (uint8_t *)(wh + 1); efrm = mtod(m, uint8_t *) + m->m_len; frm += 12; /* skip tstamp, bintval and capinfo fields */ while (frm < efrm) { if (*frm == IEEE80211_ELEMID_DSPARMS) #if IEEE80211_CHAN_MAX < 255 if (frm[2] <= IEEE80211_CHAN_MAX) #endif ic->ic_curchan = &ic->ic_channels[frm[2]]; frm += frm[1] + 2; } } static struct mbuf * iwi_alloc_rx_buf(struct iwi_softc *sc) { struct mbuf *m; MGETHDR(m, M_DONTWAIT, MT_DATA); if (m == NULL) { aprint_error("%s: could not allocate rx mbuf\n", sc->sc_dev.dv_xname); return NULL; } MCLGET(m, M_DONTWAIT); if (!(m->m_flags & M_EXT)) { aprint_error("%s: could not allocate rx mbuf cluster\n", sc->sc_dev.dv_xname); m_freem(m); return NULL; } m->m_pkthdr.len = m->m_len = m->m_ext.ext_size; return m; } static void iwi_frame_intr(struct iwi_softc *sc, struct iwi_rx_data *data, int i, struct iwi_frame *frame) { struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = ic->ic_ifp; struct mbuf *m, *m_new; struct ieee80211_frame *wh; struct ieee80211_node *ni; int error; DPRINTFN(5, ("received frame len=%u chan=%u rssi=%u\n", le16toh(frame->len), frame->chan, frame->rssi_dbm)); if (le16toh(frame->len) < sizeof (struct ieee80211_frame) || le16toh(frame->len) > MCLBYTES) { DPRINTF(("%s: bad frame length\n", sc->sc_dev.dv_xname)); ifp->if_ierrors++; return; } /* * Try to allocate a new mbuf for this ring element and * load it before processing the current mbuf. If the ring * element cannot be reloaded, drop the received packet * and reuse the old mbuf. In the unlikely case that * the old mbuf can't be reloaded either, explicitly panic. * * XXX Reorganize buffer by moving elements from the logical * end of the ring to the front instead of dropping. */ if ((m_new = iwi_alloc_rx_buf(sc)) == NULL) { ifp->if_ierrors++; return; } bus_dmamap_unload(sc->sc_dmat, data->map); error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m_new, BUS_DMA_READ | BUS_DMA_NOWAIT); if (error != 0) { aprint_error("%s: could not load rx buf DMA map\n", sc->sc_dev.dv_xname); m_freem(m_new); ifp->if_ierrors++; error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, data->m, BUS_DMA_READ | BUS_DMA_NOWAIT); if (error) panic("%s: unable to remap rx buf", sc->sc_dev.dv_xname); return; } /* * New mbuf successfully loaded, update RX ring and continue * processing. */ m = data->m; data->m = m_new; CSR_WRITE_4(sc, IWI_CSR_RX_BASE + i * 4, data->map->dm_segs[0].ds_addr); /* Finalize mbuf */ m->m_pkthdr.rcvif = ifp; m->m_pkthdr.len = m->m_len = sizeof (struct iwi_hdr) + sizeof (struct iwi_frame) + le16toh(frame->len); m_adj(m, sizeof (struct iwi_hdr) + sizeof (struct iwi_frame)); if (ic->ic_state == IEEE80211_S_SCAN) iwi_fix_channel(ic, m); #if NBPFILTER > 0 if (sc->sc_drvbpf != NULL) { struct iwi_rx_radiotap_header *tap = &sc->sc_rxtap; tap->wr_flags = 0; tap->wr_rate = frame->rate; tap->wr_chan_freq = htole16(ic->ic_channels[frame->chan].ic_freq); tap->wr_chan_flags = htole16(ic->ic_channels[frame->chan].ic_flags); tap->wr_antsignal = frame->signal; tap->wr_antenna = frame->antenna; bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m); } #endif wh = mtod(m, struct ieee80211_frame *); ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh); /* Send the frame to the upper layer */ ieee80211_input(ic, m, ni, frame->rssi_dbm, 0); /* node is no longer needed */ ieee80211_free_node(ni); } static void iwi_notification_intr(struct iwi_softc *sc, struct iwi_notif *notif) { struct ieee80211com *ic = &sc->sc_ic; struct iwi_notif_scan_channel *chan; struct iwi_notif_scan_complete *scan; struct iwi_notif_authentication *auth; struct iwi_notif_association *assoc; switch (notif->type) { case IWI_NOTIF_TYPE_SCAN_CHANNEL: chan = (struct iwi_notif_scan_channel *)(notif + 1); DPRINTFN(2, ("Finished scanning channel (%u)\n", chan->nchan)); break; case IWI_NOTIF_TYPE_SCAN_COMPLETE: scan = (struct iwi_notif_scan_complete *)(notif + 1); DPRINTFN(2, ("Scan completed (%u, %u)\n", scan->nchan, scan->status)); /* monitor mode uses scan to set the channel ... */ if (ic->ic_opmode != IEEE80211_M_MONITOR) { sc->flags &= ~IWI_FLAG_SCANNING; ieee80211_end_scan(ic); } else iwi_set_chan(sc, ic->ic_ibss_chan); break; case IWI_NOTIF_TYPE_AUTHENTICATION: auth = (struct iwi_notif_authentication *)(notif + 1); DPRINTFN(2, ("Authentication (%u)\n", auth->state)); switch (auth->state) { case IWI_AUTHENTICATED: ieee80211_node_authorize(ic->ic_bss); ieee80211_new_state(ic, IEEE80211_S_ASSOC, -1); break; case IWI_DEAUTHENTICATED: break; default: aprint_error("%s: unknown authentication state %u\n", sc->sc_dev.dv_xname, auth->state); } break; case IWI_NOTIF_TYPE_ASSOCIATION: assoc = (struct iwi_notif_association *)(notif + 1); DPRINTFN(2, ("Association (%u, %u)\n", assoc->state, assoc->status)); switch (assoc->state) { case IWI_AUTHENTICATED: /* re-association, do nothing */ break; case IWI_ASSOCIATED: ieee80211_new_state(ic, IEEE80211_S_RUN, -1); break; case IWI_DEASSOCIATED: ieee80211_begin_scan(ic, 1); break; default: aprint_error("%s: unknown association state %u\n", sc->sc_dev.dv_xname, assoc->state); } break; case IWI_NOTIF_TYPE_CALIBRATION: case IWI_NOTIF_TYPE_BEACON: case IWI_NOTIF_TYPE_NOISE: DPRINTFN(5, ("Notification (%u)\n", notif->type)); break; default: aprint_error("%s: unknown notification type %u\n", sc->sc_dev.dv_xname, notif->type); } } static void iwi_cmd_intr(struct iwi_softc *sc) { uint32_t hw; hw = CSR_READ_4(sc, IWI_CSR_CMD_RIDX); for (; sc->cmdq.next != hw;) { bus_dmamap_sync(sc->sc_dmat, sc->cmdq.desc_map, sc->cmdq.next * IWI_CMD_DESC_SIZE, IWI_CMD_DESC_SIZE, BUS_DMASYNC_POSTWRITE); wakeup(&sc->cmdq.desc[sc->cmdq.next]); sc->cmdq.next = (sc->cmdq.next + 1) % sc->cmdq.count; } } static void iwi_rx_intr(struct iwi_softc *sc) { struct iwi_rx_data *data; struct iwi_hdr *hdr; uint32_t hw; hw = CSR_READ_4(sc, IWI_CSR_RX_RIDX); for (; sc->rxq.cur != hw;) { data = &sc->rxq.data[sc->rxq.cur]; bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize, BUS_DMASYNC_POSTREAD); hdr = mtod(data->m, struct iwi_hdr *); switch (hdr->type) { case IWI_HDR_TYPE_FRAME: iwi_frame_intr(sc, data, sc->rxq.cur, (struct iwi_frame *)(hdr + 1)); break; case IWI_HDR_TYPE_NOTIF: iwi_notification_intr(sc, (struct iwi_notif *)(hdr + 1)); break; default: aprint_error("%s: unknown hdr type %u\n", sc->sc_dev.dv_xname, hdr->type); } bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize, BUS_DMASYNC_PREREAD); DPRINTFN(15, ("rx done idx=%u\n", sc->rxq.cur)); sc->rxq.cur = (sc->rxq.cur + 1) % sc->rxq.count; } /* Tell the firmware what we have processed */ hw = (hw == 0) ? sc->rxq.count - 1 : hw - 1; CSR_WRITE_4(sc, IWI_CSR_RX_WIDX, hw); } static void iwi_tx_intr(struct iwi_softc *sc, struct iwi_tx_ring *txq) { struct ifnet *ifp = &sc->sc_if; struct iwi_tx_data *data; uint32_t hw; hw = CSR_READ_4(sc, txq->csr_ridx); for (; txq->next != hw;) { data = &txq->data[txq->next]; bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->sc_dmat, data->map); m_freem(data->m); data->m = NULL; ieee80211_free_node(data->ni); data->ni = NULL; DPRINTFN(15, ("tx done idx=%u\n", txq->next)); ifp->if_opackets++; txq->queued--; txq->next = (txq->next + 1) % txq->count; } sc->sc_tx_timer = 0; ifp->if_flags &= ~IFF_OACTIVE; /* Call start() since some buffer descriptors have been released */ (*ifp->if_start)(ifp); } static int iwi_intr(void *arg) { struct iwi_softc *sc = arg; uint32_t r; if ((r = CSR_READ_4(sc, IWI_CSR_INTR)) == 0 || r == 0xffffffff) return 0; /* Acknowledge interrupts */ CSR_WRITE_4(sc, IWI_CSR_INTR, r); if (r & (IWI_INTR_FATAL_ERROR | IWI_INTR_PARITY_ERROR)) { aprint_error("%s: fatal error\n", sc->sc_dev.dv_xname); if (r & IWI_INTR_FATAL_ERROR) iwi_error_log(sc); sc->sc_ic.ic_ifp->if_flags &= ~IFF_UP; iwi_stop(&sc->sc_if, 1); return (1); } if (r & IWI_INTR_FW_INITED) { if (!(r & (IWI_INTR_FATAL_ERROR | IWI_INTR_PARITY_ERROR))) wakeup(sc); } if (r & IWI_INTR_RADIO_OFF) { DPRINTF(("radio transmitter off\n")); sc->sc_ic.ic_ifp->if_flags &= ~IFF_UP; iwi_stop(&sc->sc_if, 1); return (1); } if (r & IWI_INTR_CMD_DONE) iwi_cmd_intr(sc); if (r & IWI_INTR_TX1_DONE) iwi_tx_intr(sc, &sc->txq[0]); if (r & IWI_INTR_TX2_DONE) iwi_tx_intr(sc, &sc->txq[1]); if (r & IWI_INTR_TX3_DONE) iwi_tx_intr(sc, &sc->txq[2]); if (r & IWI_INTR_TX4_DONE) iwi_tx_intr(sc, &sc->txq[3]); if (r & IWI_INTR_RX_DONE) iwi_rx_intr(sc); return 1; } static int iwi_cmd(struct iwi_softc *sc, uint8_t type, void *data, uint8_t len, int async) { struct iwi_cmd_desc *desc; desc = &sc->cmdq.desc[sc->cmdq.cur]; desc->hdr.type = IWI_HDR_TYPE_COMMAND; desc->hdr.flags = IWI_HDR_FLAG_IRQ; desc->type = type; desc->len = len; memcpy(desc->data, data, len); bus_dmamap_sync(sc->sc_dmat, sc->cmdq.desc_map, sc->cmdq.cur * IWI_CMD_DESC_SIZE, IWI_CMD_DESC_SIZE, BUS_DMASYNC_PREWRITE); DPRINTFN(2, ("sending command idx=%u type=%u len=%u\n", sc->cmdq.cur, type, len)); sc->cmdq.cur = (sc->cmdq.cur + 1) % sc->cmdq.count; CSR_WRITE_4(sc, IWI_CSR_CMD_WIDX, sc->cmdq.cur); return async ? 0 : tsleep(desc, 0, "iwicmd", hz); } static void iwi_write_ibssnode(struct iwi_softc *sc, const struct iwi_node *in) { struct iwi_ibssnode node; /* write node information into NIC memory */ memset(&node, 0, sizeof node); IEEE80211_ADDR_COPY(node.bssid, in->in_node.ni_macaddr); CSR_WRITE_REGION_1(sc, IWI_CSR_NODE_BASE + in->in_station * sizeof node, (uint8_t *)&node, sizeof node); } static int iwi_tx_start(struct ifnet *ifp, struct mbuf *m0, struct ieee80211_node *ni, int ac) { struct iwi_softc *sc = ifp->if_softc; struct ieee80211com *ic = &sc->sc_ic; struct iwi_node *in = (struct iwi_node *)ni; struct ieee80211_frame *wh; struct ieee80211_key *k; const struct chanAccParams *cap; struct iwi_tx_ring *txq = &sc->txq[ac]; struct iwi_tx_data *data; struct iwi_tx_desc *desc; struct mbuf *mnew; int error, hdrlen, i, noack = 0; wh = mtod(m0, struct ieee80211_frame *); if (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_QOS) { hdrlen = sizeof (struct ieee80211_qosframe); cap = &ic->ic_wme.wme_chanParams; noack = cap->cap_wmeParams[ac].wmep_noackPolicy; } else hdrlen = sizeof (struct ieee80211_frame); /* * This is only used in IBSS mode where the firmware expect an index * in a h/w table instead of a destination address. */ if (ic->ic_opmode == IEEE80211_M_IBSS && in->in_station == -1) { in->in_station = iwi_alloc_unr(sc); if (in->in_station == -1) { /* h/w table is full */ m_freem(m0); ieee80211_free_node(ni); ifp->if_oerrors++; return 0; } iwi_write_ibssnode(sc, in); } if (wh->i_fc[1] & IEEE80211_FC1_WEP) { k = ieee80211_crypto_encap(ic, ni, m0); if (k == NULL) { m_freem(m0); return ENOBUFS; } /* packet header may have moved, reset our local pointer */ wh = mtod(m0, struct ieee80211_frame *); } #if NBPFILTER > 0 if (sc->sc_drvbpf != NULL) { struct iwi_tx_radiotap_header *tap = &sc->sc_txtap; tap->wt_flags = 0; tap->wt_chan_freq = htole16(ic->ic_ibss_chan->ic_freq); tap->wt_chan_flags = htole16(ic->ic_ibss_chan->ic_flags); bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0); } #endif data = &txq->data[txq->cur]; desc = &txq->desc[txq->cur]; /* save and trim IEEE802.11 header */ m_copydata(m0, 0, hdrlen, (caddr_t)&desc->wh); m_adj(m0, hdrlen); error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0, BUS_DMA_WRITE | BUS_DMA_NOWAIT); if (error != 0 && error != EFBIG) { aprint_error("%s: could not map mbuf (error %d)\n", sc->sc_dev.dv_xname, error); m_freem(m0); return error; } if (error != 0) { /* too many fragments, linearize */ MGETHDR(mnew, M_DONTWAIT, MT_DATA); if (mnew == NULL) { m_freem(m0); return ENOMEM; } M_COPY_PKTHDR(mnew, m0); /* If the data won't fit in the header, get a cluster */ if (m0->m_pkthdr.len > MHLEN) { MCLGET(mnew, M_DONTWAIT); if (!(mnew->m_flags & M_EXT)) { m_freem(m0); m_freem(mnew); return ENOMEM; } } m_copydata(m0, 0, m0->m_pkthdr.len, mtod(mnew, caddr_t)); m_freem(m0); mnew->m_len = mnew->m_pkthdr.len; m0 = mnew; error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0, BUS_DMA_WRITE | BUS_DMA_NOWAIT); if (error != 0) { aprint_error("%s: could not map mbuf (error %d)\n", sc->sc_dev.dv_xname, error); m_freem(m0); return error; } } data->m = m0; data->ni = ni; desc->hdr.type = IWI_HDR_TYPE_DATA; desc->hdr.flags = IWI_HDR_FLAG_IRQ; desc->station = (ic->ic_opmode == IEEE80211_M_IBSS) ? in->in_station : 0; desc->cmd = IWI_DATA_CMD_TX; desc->len = htole16(m0->m_pkthdr.len); desc->flags = 0; desc->xflags = 0; if (!noack && !IEEE80211_IS_MULTICAST(desc->wh.i_addr1)) desc->flags |= IWI_DATA_FLAG_NEED_ACK; #if 0 if (ic->ic_flags & IEEE80211_F_PRIVACY) { desc->wh.i_fc[1] |= IEEE80211_FC1_WEP; desc->wep_txkey = ic->ic_crypto.cs_def_txkey; } else #endif desc->flags |= IWI_DATA_FLAG_NO_WEP; if (ic->ic_flags & IEEE80211_F_SHPREAMBLE) desc->flags |= IWI_DATA_FLAG_SHPREAMBLE; if (desc->wh.i_fc[0] & IEEE80211_FC0_SUBTYPE_QOS) desc->xflags |= IWI_DATA_XFLAG_QOS; desc->nseg = htole32(data->map->dm_nsegs); for (i = 0; i < data->map->dm_nsegs; i++) { desc->seg_addr[i] = htole32(data->map->dm_segs[i].ds_addr); desc->seg_len[i] = htole16(data->map->dm_segs[i].ds_len); } bus_dmamap_sync(sc->sc_dmat, txq->desc_map, txq->cur * IWI_TX_DESC_SIZE, IWI_TX_DESC_SIZE, BUS_DMASYNC_PREWRITE); bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize, BUS_DMASYNC_PREWRITE); DPRINTFN(5, ("sending data frame txq=%u idx=%u len=%u nseg=%u\n", ac, txq->cur, le16toh(desc->len), le32toh(desc->nseg))); /* Inform firmware about this new packet */ txq->queued++; txq->cur = (txq->cur + 1) % txq->count; CSR_WRITE_4(sc, txq->csr_widx, txq->cur); return 0; } static void iwi_start(struct ifnet *ifp) { struct iwi_softc *sc = ifp->if_softc; struct ieee80211com *ic = &sc->sc_ic; struct mbuf *m0; struct ether_header *eh; struct ieee80211_node *ni; int ac; if (ic->ic_state != IEEE80211_S_RUN) return; for (;;) { IF_DEQUEUE(&ifp->if_snd, m0); if (m0 == NULL) break; if (m0->m_len < sizeof (struct ether_header) && (m0 = m_pullup(m0, sizeof (struct ether_header))) == NULL) { ifp->if_oerrors++; continue; } eh = mtod(m0, struct ether_header *); ni = ieee80211_find_txnode(ic, eh->ether_dhost); if (ni == NULL) { m_freem(m0); ifp->if_oerrors++; continue; } /* classify mbuf so we can find which tx ring to use */ if (ieee80211_classify(ic, m0, ni) != 0) { m_freem(m0); ieee80211_free_node(ni); ifp->if_oerrors++; continue; } /* no QoS encapsulation for EAPOL frames */ ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ? M_WME_GETAC(m0) : WME_AC_BE; if (sc->txq[ac].queued > sc->txq[ac].count - 8) { /* there is no place left in this ring */ IF_PREPEND(&ifp->if_snd, m0); ifp->if_flags |= IFF_OACTIVE; break; } #if NBPFILTER > 0 if (ifp->if_bpf != NULL) bpf_mtap(ifp->if_bpf, m0); #endif m0 = ieee80211_encap(ic, m0, ni); if (m0 == NULL) { ieee80211_free_node(ni); ifp->if_oerrors++; continue; } #if NBPFILTER > 0 if (ic->ic_rawbpf != NULL) bpf_mtap(ic->ic_rawbpf, m0); #endif if (iwi_tx_start(ifp, m0, ni, ac) != 0) { ieee80211_free_node(ni); ifp->if_oerrors++; break; } /* start watchdog timer */ sc->sc_tx_timer = 5; ifp->if_timer = 1; } } static void iwi_watchdog(struct ifnet *ifp) { struct iwi_softc *sc = ifp->if_softc; ifp->if_timer = 0; if (sc->sc_tx_timer > 0) { if (--sc->sc_tx_timer == 0) { aprint_error("%s: device timeout\n", sc->sc_dev.dv_xname); ifp->if_oerrors++; ifp->if_flags &= ~IFF_UP; iwi_stop(ifp, 1); return; } ifp->if_timer = 1; } ieee80211_watchdog(&sc->sc_ic); } static int iwi_get_table0(struct iwi_softc *sc, uint32_t *tbl) { uint32_t size, buf[128]; if (!(sc->flags & IWI_FLAG_FW_INITED)) { memset(buf, 0, sizeof buf); return copyout(buf, tbl, sizeof buf); } size = min(CSR_READ_4(sc, IWI_CSR_TABLE0_SIZE), 128 - 1); CSR_READ_REGION_4(sc, IWI_CSR_TABLE0_BASE, &buf[1], size); return copyout(buf, tbl, sizeof buf); } static int iwi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) { #define IS_RUNNING(ifp) \ ((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING)) struct iwi_softc *sc = ifp->if_softc; struct ieee80211com *ic = &sc->sc_ic; struct ifreq *ifr = (struct ifreq *)data; int s, error = 0; int val; s = splnet(); switch (cmd) { case SIOCSIFFLAGS: if (ifp->if_flags & IFF_UP) { if (!(ifp->if_flags & IFF_RUNNING)) iwi_init(ifp); } else { if (ifp->if_flags & IFF_RUNNING) iwi_stop(ifp, 1); } break; case SIOCADDMULTI: case SIOCDELMULTI: error = (cmd == SIOCADDMULTI) ? ether_addmulti(ifr, &sc->sc_ec) : ether_delmulti(ifr, &sc->sc_ec); if (error == ENETRESET) { /* setup multicast filter, etc */ error = 0; } break; case SIOCGTABLE0: error = iwi_get_table0(sc, (uint32_t *)ifr->ifr_data); break; case SIOCGRADIO: val = !iwi_getrfkill(sc); error = copyout(&val, (int *)ifr->ifr_data, sizeof val); break; case SIOCSIFMEDIA: if (ifr->ifr_media & IFM_IEEE80211_ADHOC) { sc->sc_fwname = "iwi-ibss.fw"; sc->sc_ucname = "iwi-ucode-ibss.fw"; } else if (ifr->ifr_media & IFM_IEEE80211_MONITOR) { sc->sc_fwname = "iwi-sniffer.fw"; sc->sc_ucname = "iwi-ucode-sniffer.fw"; } else { sc->sc_fwname = "iwi-bss.fw"; sc->sc_ucname = "iwi-ucode-bss.fw"; } error = iwi_cache_firmware(sc); if (error) break; /* FALLTRHOUGH */ default: error = ieee80211_ioctl(&sc->sc_ic, cmd, data); if (error == ENETRESET) { if (IS_RUNNING(ifp) && (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)) iwi_init(ifp); error = 0; } } splx(s); return error; #undef IS_RUNNING } static void iwi_stop_master(struct iwi_softc *sc) { int ntries; /* Disable interrupts */ CSR_WRITE_4(sc, IWI_CSR_INTR_MASK, 0); CSR_WRITE_4(sc, IWI_CSR_RST, IWI_RST_STOP_MASTER); for (ntries = 0; ntries < 5; ntries++) { if (CSR_READ_4(sc, IWI_CSR_RST) & IWI_RST_MASTER_DISABLED) break; DELAY(10); } if (ntries == 5) aprint_error("%s: timeout waiting for master\n", sc->sc_dev.dv_xname); CSR_WRITE_4(sc, IWI_CSR_RST, CSR_READ_4(sc, IWI_CSR_RST) | IWI_RST_PRINCETON_RESET); sc->flags &= ~IWI_FLAG_FW_INITED; } static int iwi_reset(struct iwi_softc *sc) { int i, ntries; iwi_stop_master(sc); /* Move adapter to D0 state */ CSR_WRITE_4(sc, IWI_CSR_CTL, CSR_READ_4(sc, IWI_CSR_CTL) | IWI_CTL_INIT); /* Initialize Phase-Locked Level (PLL) */ CSR_WRITE_4(sc, IWI_CSR_READ_INT, IWI_READ_INT_INIT_HOST); /* Wait for clock stabilization */ for (ntries = 0; ntries < 1000; ntries++) { if (CSR_READ_4(sc, IWI_CSR_CTL) & IWI_CTL_CLOCK_READY) break; DELAY(200); } if (ntries == 1000) { aprint_error("%s: timeout waiting for clock stabilization\n", sc->sc_dev.dv_xname); return EIO; } CSR_WRITE_4(sc, IWI_CSR_RST, CSR_READ_4(sc, IWI_CSR_RST) | IWI_RST_SW_RESET); DELAY(10); CSR_WRITE_4(sc, IWI_CSR_CTL, CSR_READ_4(sc, IWI_CSR_CTL) | IWI_CTL_INIT); /* Clear NIC memory */ CSR_WRITE_4(sc, IWI_CSR_AUTOINC_ADDR, 0); for (i = 0; i < 0xc000; i++) CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, 0); return 0; } static int iwi_load_ucode(struct iwi_softc *sc, void *uc, int size) { uint16_t *w; int ntries, i; CSR_WRITE_4(sc, IWI_CSR_RST, CSR_READ_4(sc, IWI_CSR_RST) | IWI_RST_STOP_MASTER); for (ntries = 0; ntries < 5; ntries++) { if (CSR_READ_4(sc, IWI_CSR_RST) & IWI_RST_MASTER_DISABLED) break; DELAY(10); } if (ntries == 5) { aprint_error("%s: timeout waiting for master\n", sc->sc_dev.dv_xname); return EIO; } MEM_WRITE_4(sc, 0x3000e0, 0x80000000); DELAY(5000); CSR_WRITE_4(sc, IWI_CSR_RST, CSR_READ_4(sc, IWI_CSR_RST) & ~IWI_RST_PRINCETON_RESET); DELAY(5000); MEM_WRITE_4(sc, 0x3000e0, 0); DELAY(1000); MEM_WRITE_4(sc, 0x300004, 1); DELAY(1000); MEM_WRITE_4(sc, 0x300004, 0); DELAY(1000); MEM_WRITE_1(sc, 0x200000, 0x00); MEM_WRITE_1(sc, 0x200000, 0x40); DELAY(1000); /* Adapter is buggy, we must set the address for each word */ for (w = uc; size > 0; w++, size -= 2) MEM_WRITE_2(sc, 0x200010, htole16(*w)); MEM_WRITE_1(sc, 0x200000, 0x00); MEM_WRITE_1(sc, 0x200000, 0x80); /* Wait until we get a response in the uc queue */ for (ntries = 0; ntries < 100; ntries++) { if (MEM_READ_1(sc, 0x200000) & 1) break; DELAY(100); } if (ntries == 100) { aprint_error("%s: timeout waiting for ucode to initialize\n", sc->sc_dev.dv_xname); return EIO; } /* Empty the uc queue or the firmware will not initialize properly */ for (i = 0; i < 7; i++) MEM_READ_4(sc, 0x200004); MEM_WRITE_1(sc, 0x200000, 0x00); return 0; } /* macro to handle unaligned little endian data in firmware image */ #define GETLE32(p) ((p)[0] | (p)[1] << 8 | (p)[2] << 16 | (p)[3] << 24) static int iwi_load_firmware(struct iwi_softc *sc, void *fw, int size) { bus_dmamap_t map; u_char *p, *end; uint32_t sentinel, ctl, sum; uint32_t cs, sl, cd, cl; int ntries, nsegs, error; int sn; nsegs = (size + PAGE_SIZE - 1) / PAGE_SIZE; /* Create a DMA map for the firmware image */ error = bus_dmamap_create(sc->sc_dmat, size, nsegs, size, 0, BUS_DMA_NOWAIT, &map); if (error != 0) { aprint_error("%s: could not create firmware DMA map\n", sc->sc_dev.dv_xname); goto fail1; } error = bus_dmamap_load(sc->sc_dmat, map, fw, size, NULL, BUS_DMA_NOWAIT | BUS_DMA_WRITE); if (error != 0) { aprint_error("%s: could not load fw dma map(%d)\n", sc->sc_dev.dv_xname, error); goto fail2; } /* Make sure the adapter will get up-to-date values */ bus_dmamap_sync(sc->sc_dmat, map, 0, size, BUS_DMASYNC_PREWRITE); /* Tell the adapter where the command blocks are stored */ MEM_WRITE_4(sc, 0x3000a0, 0x27000); /* * Store command blocks into adapter's internal memory using register * indirections. The adapter will read the firmware image through DMA * using information stored in command blocks. */ p = fw; end = p + size; CSR_WRITE_4(sc, IWI_CSR_AUTOINC_ADDR, 0x27000); sn = 0; sl = cl = 0; cs = cd = 0; while (p < end) { if (sl == 0) { cs = map->dm_segs[sn].ds_addr; sl = map->dm_segs[sn].ds_len; sn++; } if (cl == 0) { cd = GETLE32(p); p += 4; cs += 4; sl -= 4; cl = GETLE32(p); p += 4; cs += 4; sl -= 4; } while (sl > 0 && cl > 0) { int len = min(cl, sl); sl -= len; cl -= len; p += len; while (len > 0) { int mlen = min(len, IWI_CB_MAXDATALEN); ctl = IWI_CB_DEFAULT_CTL | mlen; sum = ctl ^ cs ^ cd; /* Write a command block */ CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, ctl); CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, cs); CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, cd); CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, sum); cs += mlen; cd += mlen; len -= mlen; } } } /* Write a fictive final command block (sentinel) */ sentinel = CSR_READ_4(sc, IWI_CSR_AUTOINC_ADDR); CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, 0); CSR_WRITE_4(sc, IWI_CSR_RST, CSR_READ_4(sc, IWI_CSR_RST) & ~(IWI_RST_MASTER_DISABLED | IWI_RST_STOP_MASTER)); /* Tell the adapter to start processing command blocks */ MEM_WRITE_4(sc, 0x3000a4, 0x540100); /* Wait until the adapter has processed all command blocks */ for (ntries = 0; ntries < 400; ntries++) { if (MEM_READ_4(sc, 0x3000d0) >= sentinel) break; DELAY(100); } if (ntries == 400) { aprint_error("%s: timeout processing cb\n", sc->sc_dev.dv_xname); error = EIO; goto fail3; } /* We're done with command blocks processing */ MEM_WRITE_4(sc, 0x3000a4, 0x540c00); /* Allow interrupts so we know when the firmware is inited */ CSR_WRITE_4(sc, IWI_CSR_INTR_MASK, IWI_INTR_MASK); /* Tell the adapter to initialize the firmware */ CSR_WRITE_4(sc, IWI_CSR_RST, 0); CSR_WRITE_4(sc, IWI_CSR_CTL, CSR_READ_4(sc, IWI_CSR_CTL) | IWI_CTL_ALLOW_STANDBY); /* Wait at most one second for firmware initialization to complete */ if ((error = tsleep(sc, 0, "iwiinit", hz)) != 0) { aprint_error("%s: timeout waiting for firmware initialization " "to complete\n", sc->sc_dev.dv_xname); goto fail3; } fail3: bus_dmamap_sync(sc->sc_dmat, map, 0, size, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->sc_dmat, map); fail2: bus_dmamap_destroy(sc->sc_dmat, map); fail1: return error; } /* * Store firmware into kernel memory so we can download it when we need to, * e.g when the adapter wakes up from suspend mode. */ static int iwi_cache_firmware(struct iwi_softc *sc) { struct iwi_firmware *kfw = &sc->fw; firmware_handle_t fwh; int error; iwi_free_firmware(sc); error = firmware_open("if_iwi", "iwi-boot.fw", &fwh); if (error != 0) goto fail1; kfw->boot_size = firmware_get_size(fwh); kfw->boot = firmware_malloc(kfw->boot_size); if (kfw->boot == NULL) { error = ENOMEM; firmware_close(fwh); goto fail1; } error = firmware_read(fwh, sizeof(struct iwi_firmware_hdr), kfw->boot, kfw->boot_size - sizeof(struct iwi_firmware_hdr)); firmware_close(fwh); if (error != 0) goto fail2; error = firmware_open("if_iwi", sc->sc_ucname, &fwh); if (error != 0) goto fail2; kfw->ucode_size = firmware_get_size(fwh); kfw->ucode = firmware_malloc(kfw->ucode_size); if (kfw->ucode == NULL) { error = ENOMEM; firmware_close(fwh); goto fail2; } error = firmware_read(fwh, sizeof(struct iwi_firmware_hdr), kfw->ucode, kfw->ucode_size - sizeof(struct iwi_firmware_hdr)); firmware_close(fwh); if (error != 0) goto fail3; error = firmware_open("if_iwi", sc->sc_fwname, &fwh); if (error != 0) goto fail3; kfw->main_size = firmware_get_size(fwh); kfw->main = firmware_malloc(kfw->main_size); if (kfw->main == NULL) { error = ENOMEM; goto fail3; } error = firmware_read(fwh, sizeof(struct iwi_firmware_hdr), kfw->main, kfw->main_size - sizeof(struct iwi_firmware_hdr)); firmware_close(fwh); if (error != 0) goto fail4; DPRINTF(("Firmware cached: boot %u, ucode %u, main %u\n", kfw->boot_size, kfw->ucode_size, kfw->main_size)); sc->flags |= IWI_FLAG_FW_CACHED; return 0; fail4: firmware_free(kfw->main, 0); fail3: firmware_free(kfw->ucode, 0); fail2: firmware_free(kfw->boot, 0); fail1: return error; } static void iwi_free_firmware(struct iwi_softc *sc) { struct iwi_firmware *kfw = &sc->fw; if (!(sc->flags & IWI_FLAG_FW_CACHED)) return; firmware_free(kfw->main, 0); firmware_free(kfw->ucode, 0); firmware_free(kfw->boot, 0); sc->flags &= ~IWI_FLAG_FW_CACHED; } static int iwi_config(struct iwi_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = &sc->sc_if; struct iwi_configuration config; struct iwi_rateset rs; struct iwi_txpower power; struct ieee80211_key *wk; struct iwi_wep_key wepkey; uint32_t data; int error, i; IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(ifp->if_sadl)); DPRINTF(("Setting MAC address to %s\n", ether_sprintf(ic->ic_myaddr))); error = iwi_cmd(sc, IWI_CMD_SET_MAC_ADDRESS, ic->ic_myaddr, IEEE80211_ADDR_LEN, 0); if (error != 0) return error; memset(&config, 0, sizeof config); config.bluetooth_coexistence = sc->bluetooth; config.antenna = sc->antenna; config.multicast_enabled = 1; config.answer_pbreq = (ic->ic_opmode == IEEE80211_M_IBSS) ? 1 : 0; config.disable_unicast_decryption = 1; config.disable_multicast_decryption = 1; DPRINTF(("Configuring adapter\n")); error = iwi_cmd(sc, IWI_CMD_SET_CONFIGURATION, &config, sizeof config, 0); if (error != 0) return error; data = htole32(IWI_POWER_MODE_CAM); DPRINTF(("Setting power mode to %u\n", le32toh(data))); error = iwi_cmd(sc, IWI_CMD_SET_POWER_MODE, &data, sizeof data, 0); if (error != 0) return error; data = htole32(ic->ic_rtsthreshold); DPRINTF(("Setting RTS threshold to %u\n", le32toh(data))); error = iwi_cmd(sc, IWI_CMD_SET_RTS_THRESHOLD, &data, sizeof data, 0); if (error != 0) return error; data = htole32(ic->ic_fragthreshold); DPRINTF(("Setting fragmentation threshold to %u\n", le32toh(data))); error = iwi_cmd(sc, IWI_CMD_SET_FRAG_THRESHOLD, &data, sizeof data, 0); if (error != 0) return error; if (ic->ic_opmode == IEEE80211_M_IBSS) { power.mode = IWI_MODE_11B; power.nchan = 11; for (i = 0; i < 11; i++) { power.chan[i].chan = i + 1; power.chan[i].power = IWI_TXPOWER_MAX; } DPRINTF(("Setting .11b channels tx power\n")); error = iwi_cmd(sc, IWI_CMD_SET_TX_POWER, &power, sizeof power, 0); if (error != 0) return error; power.mode = IWI_MODE_11G; DPRINTF(("Setting .11g channels tx power\n")); error = iwi_cmd(sc, IWI_CMD_SET_TX_POWER, &power, sizeof power, 0); if (error != 0) return error; } rs.mode = IWI_MODE_11G; rs.type = IWI_RATESET_TYPE_SUPPORTED; rs.nrates = ic->ic_sup_rates[IEEE80211_MODE_11G].rs_nrates; memcpy(rs.rates, ic->ic_sup_rates[IEEE80211_MODE_11G].rs_rates, rs.nrates); DPRINTF(("Setting .11bg supported rates (%u)\n", rs.nrates)); error = iwi_cmd(sc, IWI_CMD_SET_RATES, &rs, sizeof rs, 0); if (error != 0) return error; rs.mode = IWI_MODE_11A; rs.type = IWI_RATESET_TYPE_SUPPORTED; rs.nrates = ic->ic_sup_rates[IEEE80211_MODE_11A].rs_nrates; memcpy(rs.rates, ic->ic_sup_rates[IEEE80211_MODE_11A].rs_rates, rs.nrates); DPRINTF(("Setting .11a supported rates (%u)\n", rs.nrates)); error = iwi_cmd(sc, IWI_CMD_SET_RATES, &rs, sizeof rs, 0); if (error != 0) return error; /* if we have a desired ESSID, set it now */ if (ic->ic_des_esslen != 0) { #ifdef IWI_DEBUG if (iwi_debug > 0) { printf("Setting desired ESSID to "); ieee80211_print_essid(ic->ic_des_essid, ic->ic_des_esslen); printf("\n"); } #endif error = iwi_cmd(sc, IWI_CMD_SET_ESSID, ic->ic_des_essid, ic->ic_des_esslen, 0); if (error != 0) return error; } data = htole32(arc4random()); DPRINTF(("Setting initialization vector to %u\n", le32toh(data))); error = iwi_cmd(sc, IWI_CMD_SET_IV, &data, sizeof data, 0); if (error != 0) return error; for (i = 0; i < IEEE80211_WEP_NKID; i++) { wk = &ic->ic_crypto.cs_nw_keys[i]; wepkey.cmd = IWI_WEP_KEY_CMD_SETKEY; wepkey.idx = i; wepkey.len = wk->wk_keylen; memset(wepkey.key, 0, sizeof wepkey.key); memcpy(wepkey.key, wk->wk_key, wk->wk_keylen); DPRINTF(("Setting wep key index %u len %u\n", wepkey.idx, wepkey.len)); error = iwi_cmd(sc, IWI_CMD_SET_WEP_KEY, &wepkey, sizeof wepkey, 0); if (error != 0) return error; } /* Enable adapter */ DPRINTF(("Enabling adapter\n")); return iwi_cmd(sc, IWI_CMD_ENABLE, NULL, 0, 0); } static int iwi_set_chan(struct iwi_softc *sc, struct ieee80211_channel *chan) { struct ieee80211com *ic = &sc->sc_ic; struct iwi_scan_v2 scan; (void)memset(&scan, 0, sizeof scan); scan.dwelltime[IWI_SCAN_TYPE_PASSIVE] = htole16(2000); scan.channels[0] = 1 | (IEEE80211_IS_CHAN_5GHZ(chan) ? IWI_CHAN_5GHZ : IWI_CHAN_2GHZ); scan.channels[1] = ieee80211_chan2ieee(ic, chan); iwi_scan_type_set(scan, 1, IWI_SCAN_TYPE_PASSIVE); DPRINTF(("Setting channel to %u\n", ieee80211_chan2ieee(ic, chan))); return iwi_cmd(sc, IWI_CMD_SCAN_V2, &scan, sizeof scan, 1); } static int iwi_scan(struct iwi_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; struct iwi_scan_v2 scan; uint32_t type; uint8_t *p; int i, count, idx; (void)memset(&scan, 0, sizeof scan); scan.dwelltime[IWI_SCAN_TYPE_ACTIVE_BROADCAST] = htole16(sc->dwelltime); scan.dwelltime[IWI_SCAN_TYPE_ACTIVE_BDIRECT] = htole16(sc->dwelltime); /* tell the firmware about the desired essid */ if (ic->ic_des_esslen) { int error; DPRINTF(("%s: Setting adapter desired ESSID to %s\n", __func__, ic->ic_des_essid)); error = iwi_cmd(sc, IWI_CMD_SET_ESSID, ic->ic_des_essid, ic->ic_des_esslen, 1); if (error) return error; type = IWI_SCAN_TYPE_ACTIVE_BDIRECT; } else { type = IWI_SCAN_TYPE_ACTIVE_BROADCAST; } p = &scan.channels[0]; count = idx = 0; for (i = 0; i <= IEEE80211_CHAN_MAX; i++) { if (IEEE80211_IS_CHAN_5GHZ(&ic->ic_channels[i]) && isset(ic->ic_chan_active, i)) { *++p = i; count++; idx++; iwi_scan_type_set(scan, idx, type); } } if (count) { *(p - count) = IWI_CHAN_5GHZ | count; p++; } count = 0; for (i = 0; i <= IEEE80211_CHAN_MAX; i++) { if (IEEE80211_IS_CHAN_2GHZ(&ic->ic_channels[i]) && isset(ic->ic_chan_active, i)) { *++p = i; count++; idx++; iwi_scan_type_set(scan, idx, type); } } *(p - count) = IWI_CHAN_2GHZ | count; DPRINTF(("Start scanning\n")); return iwi_cmd(sc, IWI_CMD_SCAN_V2, &scan, sizeof scan, 1); } static int iwi_auth_and_assoc(struct iwi_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; struct ieee80211_node *ni = ic->ic_bss; struct ifnet *ifp = &sc->sc_if; struct ieee80211_wme_info wme; struct iwi_configuration config; struct iwi_associate assoc; struct iwi_rateset rs; uint16_t capinfo; uint32_t data; int error; if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) { memset(&config, 0, sizeof config); config.bluetooth_coexistence = sc->bluetooth; config.antenna = sc->antenna; config.multicast_enabled = 1; config.use_protection = 1; config.answer_pbreq = (ic->ic_opmode == IEEE80211_M_IBSS) ? 1 : 0; config.disable_unicast_decryption = 1; config.disable_multicast_decryption = 1; DPRINTF(("Configuring adapter\n")); error = iwi_cmd(sc, IWI_CMD_SET_CONFIGURATION, &config, sizeof config, 1); if (error != 0) return error; } #ifdef IWI_DEBUG if (iwi_debug > 0) { printf("Setting ESSID to "); ieee80211_print_essid(ni->ni_essid, ni->ni_esslen); printf("\n"); } #endif error = iwi_cmd(sc, IWI_CMD_SET_ESSID, ni->ni_essid, ni->ni_esslen, 1); if (error != 0) return error; /* the rate set has already been "negotiated" */ rs.mode = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? IWI_MODE_11A : IWI_MODE_11G; rs.type = IWI_RATESET_TYPE_NEGOTIATED; rs.nrates = ni->ni_rates.rs_nrates; memcpy(rs.rates, ni->ni_rates.rs_rates, rs.nrates); DPRINTF(("Setting negotiated rates (%u)\n", rs.nrates)); error = iwi_cmd(sc, IWI_CMD_SET_RATES, &rs, sizeof rs, 1); if (error != 0) return error; if ((ic->ic_flags & IEEE80211_F_WME) && ni->ni_wme_ie != NULL) { wme.wme_id = IEEE80211_ELEMID_VENDOR; wme.wme_len = sizeof (struct ieee80211_wme_info) - 2; wme.wme_oui[0] = 0x00; wme.wme_oui[1] = 0x50; wme.wme_oui[2] = 0xf2; wme.wme_type = WME_OUI_TYPE; wme.wme_subtype = WME_INFO_OUI_SUBTYPE; wme.wme_version = WME_VERSION; wme.wme_info = 0; DPRINTF(("Setting WME IE (len=%u)\n", wme.wme_len)); error = iwi_cmd(sc, IWI_CMD_SET_WMEIE, &wme, sizeof wme, 1); if (error != 0) return error; } if (ic->ic_opt_ie != NULL) { DPRINTF(("Setting optional IE (len=%u)\n", ic->ic_opt_ie_len)); error = iwi_cmd(sc, IWI_CMD_SET_OPTIE, ic->ic_opt_ie, ic->ic_opt_ie_len, 1); if (error != 0) return error; } data = htole32(ni->ni_rssi); DPRINTF(("Setting sensitivity to %d\n", (int8_t)ni->ni_rssi)); error = iwi_cmd(sc, IWI_CMD_SET_SENSITIVITY, &data, sizeof data, 1); if (error != 0) return error; memset(&assoc, 0, sizeof assoc); assoc.mode = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? IWI_MODE_11A : IWI_MODE_11G; assoc.chan = ieee80211_chan2ieee(ic, ni->ni_chan); if (ni->ni_authmode == IEEE80211_AUTH_SHARED) assoc.auth = (ic->ic_crypto.cs_def_txkey << 4) | IWI_AUTH_SHARED; if ((ic->ic_flags & IEEE80211_F_WME) && ni->ni_wme_ie != NULL) assoc.policy |= htole16(IWI_POLICY_WME); if (ic->ic_flags & IEEE80211_F_WPA) assoc.policy |= htole16(IWI_POLICY_WPA); memcpy(assoc.tstamp, ni->ni_tstamp.data, 8); if (ic->ic_opmode == IEEE80211_M_IBSS) capinfo = IEEE80211_CAPINFO_IBSS; else capinfo = IEEE80211_CAPINFO_ESS; if (ic->ic_flags & IEEE80211_F_PRIVACY) capinfo |= IEEE80211_CAPINFO_PRIVACY; if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE; if (ic->ic_flags & IEEE80211_F_SHSLOT) capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME; assoc.capinfo = htole16(capinfo); assoc.lintval = htole16(ic->ic_lintval); assoc.intval = htole16(ni->ni_intval); IEEE80211_ADDR_COPY(assoc.bssid, ni->ni_bssid); if (ic->ic_opmode == IEEE80211_M_IBSS) IEEE80211_ADDR_COPY(assoc.dst, ifp->if_broadcastaddr); else IEEE80211_ADDR_COPY(assoc.dst, ni->ni_bssid); DPRINTF(("Trying to associate to %s channel %u auth %u\n", ether_sprintf(assoc.bssid), assoc.chan, assoc.auth)); return iwi_cmd(sc, IWI_CMD_ASSOCIATE, &assoc, sizeof assoc, 1); } static int iwi_init(struct ifnet *ifp) { struct iwi_softc *sc = ifp->if_softc; struct ieee80211com *ic = &sc->sc_ic; struct iwi_firmware *fw = &sc->fw; int i, error; /* exit immediately if firmware has not been ioctl'd */ if (!(sc->flags & IWI_FLAG_FW_CACHED)) { if ((error = iwi_cache_firmware(sc)) != 0) { aprint_error("%s: could not cache the firmware\n", sc->sc_dev.dv_xname); goto fail; } } iwi_stop(ifp, 0); if ((error = iwi_reset(sc)) != 0) { aprint_error("%s: could not reset adapter\n", sc->sc_dev.dv_xname); goto fail; } if ((error = iwi_load_firmware(sc, fw->boot, fw->boot_size)) != 0) { aprint_error("%s: could not load boot firmware\n", sc->sc_dev.dv_xname); goto fail; } if ((error = iwi_load_ucode(sc, fw->ucode, fw->ucode_size)) != 0) { aprint_error("%s: could not load microcode\n", sc->sc_dev.dv_xname); goto fail; } iwi_stop_master(sc); CSR_WRITE_4(sc, IWI_CSR_CMD_BASE, sc->cmdq.desc_map->dm_segs[0].ds_addr); CSR_WRITE_4(sc, IWI_CSR_CMD_SIZE, sc->cmdq.count); CSR_WRITE_4(sc, IWI_CSR_CMD_WIDX, sc->cmdq.cur); CSR_WRITE_4(sc, IWI_CSR_TX1_BASE, sc->txq[0].desc_map->dm_segs[0].ds_addr); CSR_WRITE_4(sc, IWI_CSR_TX1_SIZE, sc->txq[0].count); CSR_WRITE_4(sc, IWI_CSR_TX1_WIDX, sc->txq[0].cur); CSR_WRITE_4(sc, IWI_CSR_TX2_BASE, sc->txq[1].desc_map->dm_segs[0].ds_addr); CSR_WRITE_4(sc, IWI_CSR_TX2_SIZE, sc->txq[1].count); CSR_WRITE_4(sc, IWI_CSR_TX2_WIDX, sc->txq[1].cur); CSR_WRITE_4(sc, IWI_CSR_TX3_BASE, sc->txq[2].desc_map->dm_segs[0].ds_addr); CSR_WRITE_4(sc, IWI_CSR_TX3_SIZE, sc->txq[2].count); CSR_WRITE_4(sc, IWI_CSR_TX3_WIDX, sc->txq[2].cur); CSR_WRITE_4(sc, IWI_CSR_TX4_BASE, sc->txq[3].desc_map->dm_segs[0].ds_addr); CSR_WRITE_4(sc, IWI_CSR_TX4_SIZE, sc->txq[3].count); CSR_WRITE_4(sc, IWI_CSR_TX4_WIDX, sc->txq[3].cur); for (i = 0; i < sc->rxq.count; i++) CSR_WRITE_4(sc, IWI_CSR_RX_BASE + i * 4, sc->rxq.data[i].map->dm_segs[0].ds_addr); CSR_WRITE_4(sc, IWI_CSR_RX_WIDX, sc->rxq.count -1); if ((error = iwi_load_firmware(sc, fw->main, fw->main_size)) != 0) { aprint_error("%s: could not load main firmware\n", sc->sc_dev.dv_xname); goto fail; } sc->flags |= IWI_FLAG_FW_INITED; if ((error = iwi_config(sc)) != 0) { aprint_error("%s: device configuration failed\n", sc->sc_dev.dv_xname); goto fail; } ic->ic_state = IEEE80211_S_INIT; ifp->if_flags &= ~IFF_OACTIVE; ifp->if_flags |= IFF_RUNNING; if (ic->ic_opmode != IEEE80211_M_MONITOR) { if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL) ieee80211_new_state(ic, IEEE80211_S_SCAN, -1); } else ieee80211_new_state(ic, IEEE80211_S_RUN, -1); return 0; fail: ifp->if_flags &= ~IFF_UP; iwi_stop(ifp, 0); return error; } /* * Return whether or not the radio is enabled in hardware * (i.e. the rfkill switch is "off"). */ static int iwi_getrfkill(struct iwi_softc *sc) { return (CSR_READ_4(sc, IWI_CSR_IO) & IWI_IO_RADIO_ENABLED) == 0; } static int iwi_sysctl_radio(SYSCTLFN_ARGS) { struct sysctlnode node; struct iwi_softc *sc; int val, error; node = *rnode; sc = (struct iwi_softc *)node.sysctl_data; val = !iwi_getrfkill(sc); node.sysctl_data = &val; error = sysctl_lookup(SYSCTLFN_CALL(&node)); if (error || newp == NULL) return error; return 0; } #ifdef IWI_DEBUG SYSCTL_SETUP(sysctl_iwi, "sysctl iwi(4) subtree setup") { int rc; const struct sysctlnode *rnode; const struct sysctlnode *cnode; if ((rc = sysctl_createv(clog, 0, NULL, &rnode, CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", NULL, NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) goto err; if ((rc = sysctl_createv(clog, 0, &rnode, &rnode, CTLFLAG_PERMANENT, CTLTYPE_NODE, "iwi", SYSCTL_DESCR("iwi global controls"), NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL)) != 0) goto err; /* control debugging printfs */ if ((rc = sysctl_createv(clog, 0, &rnode, &cnode, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "debug", SYSCTL_DESCR("Enable debugging output"), NULL, 0, &iwi_debug, 0, CTL_CREATE, CTL_EOL)) != 0) goto err; return; err: aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc); } #endif /* IWI_DEBUG */ /* * Add sysctl knobs. */ static void iwi_sysctlattach(struct iwi_softc *sc) { int rc; const struct sysctlnode *rnode; const struct sysctlnode *cnode; struct sysctllog **clog = &sc->sc_sysctllog; if ((rc = sysctl_createv(clog, 0, NULL, &rnode, CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", NULL, NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) goto err; if ((rc = sysctl_createv(clog, 0, &rnode, &rnode, CTLFLAG_PERMANENT, CTLTYPE_NODE, sc->sc_dev.dv_xname, SYSCTL_DESCR("iwi controls and statistics"), NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL)) != 0) goto err; if ((rc = sysctl_createv(clog, 0, &rnode, &cnode, CTLFLAG_PERMANENT, CTLTYPE_INT, "radio", SYSCTL_DESCR("radio transmitter switch state (0=off, 1=on)"), iwi_sysctl_radio, 0, sc, 0, CTL_CREATE, CTL_EOL)) != 0) goto err; sc->dwelltime = 100; if ((rc = sysctl_createv(clog, 0, &rnode, &cnode, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "dwell", SYSCTL_DESCR("channel dwell time (ms) for AP/station scanning"), NULL, 0, &sc->dwelltime, 0, CTL_CREATE, CTL_EOL)) != 0) goto err; sc->bluetooth = 1; if ((rc = sysctl_createv(clog, 0, &rnode, &cnode, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "bluetooth", SYSCTL_DESCR("bluetooth coexistence"), NULL, 0, &sc->bluetooth, 0, CTL_CREATE, CTL_EOL)) != 0) goto err; sc->antenna = 0; if ((rc = sysctl_createv(clog, 0, &rnode, &cnode, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "antenna", SYSCTL_DESCR("antenna (0=auto)"), NULL, 0, &sc->antenna, 0, CTL_CREATE, CTL_EOL)) != 0) goto err; return; err: aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc); } static void iwi_stop(struct ifnet *ifp, int disable) { struct iwi_softc *sc = ifp->if_softc; struct ieee80211com *ic = &sc->sc_ic; IWI_LED_OFF(sc); iwi_stop_master(sc); CSR_WRITE_4(sc, IWI_CSR_RST, IWI_RST_SW_RESET); /* reset rings */ iwi_reset_cmd_ring(sc, &sc->cmdq); iwi_reset_tx_ring(sc, &sc->txq[0]); iwi_reset_tx_ring(sc, &sc->txq[1]); iwi_reset_tx_ring(sc, &sc->txq[2]); iwi_reset_tx_ring(sc, &sc->txq[3]); iwi_reset_rx_ring(sc, &sc->rxq); ifp->if_timer = 0; ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); ieee80211_new_state(ic, IEEE80211_S_INIT, -1); } static void iwi_led_set(struct iwi_softc *sc, uint32_t state, int toggle) { uint32_t val; val = MEM_READ_4(sc, IWI_MEM_EVENT_CTL); switch (sc->nictype) { case 1: /* special NIC type: reversed leds */ if (state == IWI_LED_ACTIVITY) { state &= ~IWI_LED_ACTIVITY; state |= IWI_LED_ASSOCIATED; } else if (state == IWI_LED_ASSOCIATED) { state &= ~IWI_LED_ASSOCIATED; state |= IWI_LED_ACTIVITY; } /* and ignore toggle effect */ val |= state; break; case 0: case 2: case 3: case 4: val = (toggle && (val & state)) ? val & ~state : val | state; break; default: aprint_normal("%s: unknown NIC type %d\n", sc->sc_dev.dv_xname, sc->nictype); return; break; } MEM_WRITE_4(sc, IWI_MEM_EVENT_CTL, val); return; } static void iwi_error_log(struct iwi_softc *sc) { uint32_t b, n; int i; static const char *const msg[] = { "no error", "failed", "memory range low", "memory range high", "bad parameter", "checksum", "NMI", "bad database", "allocation failed", "DMA underrun", "DMA status", "DINO", "EEPROM", "device assert", "fatal" }; b = CSR_READ_4(sc, IWI_CSR_ERRORLOG); n = MEM_READ_4(sc, b); b += 4; for (i = 0; i < n ; i++) { struct iwi_error fw_error; MEM_CPY(sc, &fw_error, b, sizeof(fw_error)); printf("%s: %s\n", sc->sc_dev.dv_xname, msg[fw_error.type]); b += sizeof(fw_error); } }