/* $NetBSD: rf_raid1.c,v 1.23 2004/03/05 03:22:05 oster Exp $ */ /* * Copyright (c) 1995 Carnegie-Mellon University. * All rights reserved. * * Author: William V. Courtright II * * Permission to use, copy, modify and distribute this software and * its documentation is hereby granted, provided that both the copyright * notice and this permission notice appear in all copies of the * software, derivative works or modified versions, and any portions * thereof, and that both notices appear in supporting documentation. * * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. * * Carnegie Mellon requests users of this software to return to * * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU * School of Computer Science * Carnegie Mellon University * Pittsburgh PA 15213-3890 * * any improvements or extensions that they make and grant Carnegie the * rights to redistribute these changes. */ /***************************************************************************** * * rf_raid1.c -- implements RAID Level 1 * *****************************************************************************/ #include __KERNEL_RCSID(0, "$NetBSD: rf_raid1.c,v 1.23 2004/03/05 03:22:05 oster Exp $"); #include "rf_raid.h" #include "rf_raid1.h" #include "rf_dag.h" #include "rf_dagffrd.h" #include "rf_dagffwr.h" #include "rf_dagdegrd.h" #include "rf_dagutils.h" #include "rf_dagfuncs.h" #include "rf_diskqueue.h" #include "rf_general.h" #include "rf_utils.h" #include "rf_parityscan.h" #include "rf_mcpair.h" #include "rf_layout.h" #include "rf_map.h" #include "rf_engine.h" #include "rf_reconbuffer.h" typedef struct RF_Raid1ConfigInfo_s { RF_RowCol_t **stripeIdentifier; } RF_Raid1ConfigInfo_t; /* start of day code specific to RAID level 1 */ int rf_ConfigureRAID1(RF_ShutdownList_t **listp, RF_Raid_t *raidPtr, RF_Config_t *cfgPtr) { RF_RaidLayout_t *layoutPtr = &raidPtr->Layout; RF_Raid1ConfigInfo_t *info; RF_RowCol_t i; /* create a RAID level 1 configuration structure */ RF_MallocAndAdd(info, sizeof(RF_Raid1ConfigInfo_t), (RF_Raid1ConfigInfo_t *), raidPtr->cleanupList); if (info == NULL) return (ENOMEM); layoutPtr->layoutSpecificInfo = (void *) info; /* ... and fill it in. */ info->stripeIdentifier = rf_make_2d_array(raidPtr->numCol / 2, 2, raidPtr->cleanupList); if (info->stripeIdentifier == NULL) return (ENOMEM); for (i = 0; i < (raidPtr->numCol / 2); i++) { info->stripeIdentifier[i][0] = (2 * i); info->stripeIdentifier[i][1] = (2 * i) + 1; } /* this implementation of RAID level 1 uses one row of numCol disks * and allows multiple (numCol / 2) stripes per row. A stripe * consists of a single data unit and a single parity (mirror) unit. * stripe id = raidAddr / stripeUnitSize */ raidPtr->totalSectors = layoutPtr->stripeUnitsPerDisk * (raidPtr->numCol / 2) * layoutPtr->sectorsPerStripeUnit; layoutPtr->numStripe = layoutPtr->stripeUnitsPerDisk * (raidPtr->numCol / 2); layoutPtr->dataSectorsPerStripe = layoutPtr->sectorsPerStripeUnit; layoutPtr->numDataCol = 1; layoutPtr->numParityCol = 1; return (0); } /* returns the physical disk location of the primary copy in the mirror pair */ void rf_MapSectorRAID1(RF_Raid_t *raidPtr, RF_RaidAddr_t raidSector, RF_RowCol_t *col, RF_SectorNum_t *diskSector, int remap) { RF_StripeNum_t SUID = raidSector / raidPtr->Layout.sectorsPerStripeUnit; RF_RowCol_t mirrorPair = SUID % (raidPtr->numCol / 2); *col = 2 * mirrorPair; *diskSector = ((SUID / (raidPtr->numCol / 2)) * raidPtr->Layout.sectorsPerStripeUnit) + (raidSector % raidPtr->Layout.sectorsPerStripeUnit); } /* Map Parity * * returns the physical disk location of the secondary copy in the mirror * pair */ void rf_MapParityRAID1(RF_Raid_t *raidPtr, RF_RaidAddr_t raidSector, RF_RowCol_t *col, RF_SectorNum_t *diskSector, int remap) { RF_StripeNum_t SUID = raidSector / raidPtr->Layout.sectorsPerStripeUnit; RF_RowCol_t mirrorPair = SUID % (raidPtr->numCol / 2); *col = (2 * mirrorPair) + 1; *diskSector = ((SUID / (raidPtr->numCol / 2)) * raidPtr->Layout.sectorsPerStripeUnit) + (raidSector % raidPtr->Layout.sectorsPerStripeUnit); } /* IdentifyStripeRAID1 * * returns a list of disks for a given redundancy group */ void rf_IdentifyStripeRAID1(RF_Raid_t *raidPtr, RF_RaidAddr_t addr, RF_RowCol_t **diskids) { RF_StripeNum_t stripeID = rf_RaidAddressToStripeID(&raidPtr->Layout, addr); RF_Raid1ConfigInfo_t *info = raidPtr->Layout.layoutSpecificInfo; RF_ASSERT(stripeID >= 0); RF_ASSERT(addr >= 0); *diskids = info->stripeIdentifier[stripeID % (raidPtr->numCol / 2)]; RF_ASSERT(*diskids); } /* MapSIDToPSIDRAID1 * * maps a logical stripe to a stripe in the redundant array */ void rf_MapSIDToPSIDRAID1(RF_RaidLayout_t *layoutPtr, RF_StripeNum_t stripeID, RF_StripeNum_t *psID, RF_ReconUnitNum_t *which_ru) { *which_ru = 0; *psID = stripeID; } /****************************************************************************** * select a graph to perform a single-stripe access * * Parameters: raidPtr - description of the physical array * type - type of operation (read or write) requested * asmap - logical & physical addresses for this access * createFunc - name of function to use to create the graph *****************************************************************************/ void rf_RAID1DagSelect(RF_Raid_t *raidPtr, RF_IoType_t type, RF_AccessStripeMap_t *asmap, RF_VoidFuncPtr *createFunc) { RF_RowCol_t fcol, oc; RF_PhysDiskAddr_t *failedPDA; int prior_recon; RF_RowStatus_t rstat; RF_SectorNum_t oo; RF_ASSERT(RF_IO_IS_R_OR_W(type)); if (asmap->numDataFailed + asmap->numParityFailed > 1) { #if RF_DEBUG_DAG if (rf_dagDebug) RF_ERRORMSG("Multiple disks failed in a single group! Aborting I/O operation.\n"); #endif *createFunc = NULL; return; } if (asmap->numDataFailed + asmap->numParityFailed) { /* * We've got a fault. Re-map to spare space, iff applicable. * Shouldn't the arch-independent code do this for us? * Anyway, it turns out if we don't do this here, then when * we're reconstructing, writes go only to the surviving * original disk, and aren't reflected on the reconstructed * spare. Oops. --jimz */ failedPDA = asmap->failedPDAs[0]; fcol = failedPDA->col; rstat = raidPtr->status; prior_recon = (rstat == rf_rs_reconfigured) || ( (rstat == rf_rs_reconstructing) ? rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, failedPDA->startSector) : 0 ); if (prior_recon) { oc = fcol; oo = failedPDA->startSector; /* * If we did distributed sparing, we'd monkey with that here. * But we don't, so we'll */ failedPDA->col = raidPtr->Disks[fcol].spareCol; /* * Redirect other components, iff necessary. This looks * pretty suspicious to me, but it's what the raid5 * DAG select does. */ if (asmap->parityInfo->next) { if (failedPDA == asmap->parityInfo) { failedPDA->next->col = failedPDA->col; } else { if (failedPDA == asmap->parityInfo->next) { asmap->parityInfo->col = failedPDA->col; } } } #if RF_DEBUG_DAG > 0 || RF_DEBUG_MAP > 0 if (rf_dagDebug || rf_mapDebug) { printf("raid%d: Redirected type '%c' c %d o %ld -> c %d o %ld\n", raidPtr->raidid, type, oc, (long) oo, failedPDA->col, (long) failedPDA->startSector); } #endif asmap->numDataFailed = asmap->numParityFailed = 0; } } if (type == RF_IO_TYPE_READ) { if (asmap->numDataFailed == 0) *createFunc = (RF_VoidFuncPtr) rf_CreateMirrorIdleReadDAG; else *createFunc = (RF_VoidFuncPtr) rf_CreateRaidOneDegradedReadDAG; } else { *createFunc = (RF_VoidFuncPtr) rf_CreateRaidOneWriteDAG; } } int rf_VerifyParityRAID1(RF_Raid_t *raidPtr, RF_RaidAddr_t raidAddr, RF_PhysDiskAddr_t *parityPDA, int correct_it, RF_RaidAccessFlags_t flags) { int nbytes, bcount, stripeWidth, ret, i, j, nbad, *bbufs; RF_DagNode_t *blockNode, *wrBlock; RF_DagHeader_t *rd_dag_h, *wr_dag_h; RF_AccessStripeMapHeader_t *asm_h; RF_AllocListElem_t *allocList; #if RF_ACC_TRACE > 0 RF_AccTraceEntry_t tracerec; #endif RF_ReconUnitNum_t which_ru; RF_RaidLayout_t *layoutPtr; RF_AccessStripeMap_t *aasm; RF_SectorCount_t nsector; RF_RaidAddr_t startAddr; char *buf, *buf1, *buf2; RF_PhysDiskAddr_t *pda; RF_StripeNum_t psID; RF_MCPair_t *mcpair; layoutPtr = &raidPtr->Layout; startAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, raidAddr); nsector = parityPDA->numSector; nbytes = rf_RaidAddressToByte(raidPtr, nsector); psID = rf_RaidAddressToParityStripeID(layoutPtr, raidAddr, &which_ru); asm_h = NULL; rd_dag_h = wr_dag_h = NULL; mcpair = NULL; ret = RF_PARITY_COULD_NOT_VERIFY; rf_MakeAllocList(allocList); if (allocList == NULL) return (RF_PARITY_COULD_NOT_VERIFY); mcpair = rf_AllocMCPair(); if (mcpair == NULL) goto done; RF_ASSERT(layoutPtr->numDataCol == layoutPtr->numParityCol); stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol; bcount = nbytes * (layoutPtr->numDataCol + layoutPtr->numParityCol); RF_MallocAndAdd(buf, bcount, (char *), allocList); if (buf == NULL) goto done; #if RF_DEBUG_VERIFYPARITY if (rf_verifyParityDebug) { printf("raid%d: RAID1 parity verify: buf=%lx bcount=%d (%lx - %lx)\n", raidPtr->raidid, (long) buf, bcount, (long) buf, (long) buf + bcount); } #endif /* * Generate a DAG which will read the entire stripe- then we can * just compare data chunks versus "parity" chunks. */ rd_dag_h = rf_MakeSimpleDAG(raidPtr, stripeWidth, nbytes, buf, rf_DiskReadFunc, rf_DiskReadUndoFunc, "Rod", allocList, flags, RF_IO_NORMAL_PRIORITY); if (rd_dag_h == NULL) goto done; blockNode = rd_dag_h->succedents[0]; /* * Map the access to physical disk addresses (PDAs)- this will * get us both a list of data addresses, and "parity" addresses * (which are really mirror copies). */ asm_h = rf_MapAccess(raidPtr, startAddr, layoutPtr->dataSectorsPerStripe, buf, RF_DONT_REMAP); aasm = asm_h->stripeMap; buf1 = buf; /* * Loop through the data blocks, setting up read nodes for each. */ for (pda = aasm->physInfo, i = 0; i < layoutPtr->numDataCol; i++, pda = pda->next) { RF_ASSERT(pda); rf_RangeRestrictPDA(raidPtr, parityPDA, pda, 0, 1); RF_ASSERT(pda->numSector != 0); if (rf_TryToRedirectPDA(raidPtr, pda, 0)) { /* cannot verify parity with dead disk */ goto done; } pda->bufPtr = buf1; blockNode->succedents[i]->params[0].p = pda; blockNode->succedents[i]->params[1].p = buf1; blockNode->succedents[i]->params[2].v = psID; blockNode->succedents[i]->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru); buf1 += nbytes; } RF_ASSERT(pda == NULL); /* * keep i, buf1 running * * Loop through parity blocks, setting up read nodes for each. */ for (pda = aasm->parityInfo; i < layoutPtr->numDataCol + layoutPtr->numParityCol; i++, pda = pda->next) { RF_ASSERT(pda); rf_RangeRestrictPDA(raidPtr, parityPDA, pda, 0, 1); RF_ASSERT(pda->numSector != 0); if (rf_TryToRedirectPDA(raidPtr, pda, 0)) { /* cannot verify parity with dead disk */ goto done; } pda->bufPtr = buf1; blockNode->succedents[i]->params[0].p = pda; blockNode->succedents[i]->params[1].p = buf1; blockNode->succedents[i]->params[2].v = psID; blockNode->succedents[i]->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru); buf1 += nbytes; } RF_ASSERT(pda == NULL); #if RF_ACC_TRACE > 0 memset((char *) &tracerec, 0, sizeof(tracerec)); rd_dag_h->tracerec = &tracerec; #endif #if 0 if (rf_verifyParityDebug > 1) { printf("raid%d: RAID1 parity verify read dag:\n", raidPtr->raidid); rf_PrintDAGList(rd_dag_h); } #endif RF_LOCK_MUTEX(mcpair->mutex); mcpair->flag = 0; RF_UNLOCK_MUTEX(mcpair->mutex); rf_DispatchDAG(rd_dag_h, (void (*) (void *)) rf_MCPairWakeupFunc, (void *) mcpair); RF_LOCK_MUTEX(mcpair->mutex); while (mcpair->flag == 0) { RF_WAIT_MCPAIR(mcpair); } RF_UNLOCK_MUTEX(mcpair->mutex); if (rd_dag_h->status != rf_enable) { RF_ERRORMSG("Unable to verify raid1 parity: can't read stripe\n"); ret = RF_PARITY_COULD_NOT_VERIFY; goto done; } /* * buf1 is the beginning of the data blocks chunk * buf2 is the beginning of the parity blocks chunk */ buf1 = buf; buf2 = buf + (nbytes * layoutPtr->numDataCol); ret = RF_PARITY_OKAY; /* * bbufs is "bad bufs"- an array whose entries are the data * column numbers where we had miscompares. (That is, column 0 * and column 1 of the array are mirror copies, and are considered * "data column 0" for this purpose). */ RF_MallocAndAdd(bbufs, layoutPtr->numParityCol * sizeof(int), (int *), allocList); nbad = 0; /* * Check data vs "parity" (mirror copy). */ for (i = 0; i < layoutPtr->numDataCol; i++) { #if RF_DEBUG_VERIFYPARITY if (rf_verifyParityDebug) { printf("raid%d: RAID1 parity verify %d bytes: i=%d buf1=%lx buf2=%lx buf=%lx\n", raidPtr->raidid, nbytes, i, (long) buf1, (long) buf2, (long) buf); } #endif ret = memcmp(buf1, buf2, nbytes); if (ret) { #if RF_DEBUG_VERIFYPARITY if (rf_verifyParityDebug > 1) { for (j = 0; j < nbytes; j++) { if (buf1[j] != buf2[j]) break; } printf("psid=%ld j=%d\n", (long) psID, j); printf("buf1 %02x %02x %02x %02x %02x\n", buf1[0] & 0xff, buf1[1] & 0xff, buf1[2] & 0xff, buf1[3] & 0xff, buf1[4] & 0xff); printf("buf2 %02x %02x %02x %02x %02x\n", buf2[0] & 0xff, buf2[1] & 0xff, buf2[2] & 0xff, buf2[3] & 0xff, buf2[4] & 0xff); } if (rf_verifyParityDebug) { printf("raid%d: RAID1: found bad parity, i=%d\n", raidPtr->raidid, i); } #endif /* * Parity is bad. Keep track of which columns were bad. */ if (bbufs) bbufs[nbad] = i; nbad++; ret = RF_PARITY_BAD; } buf1 += nbytes; buf2 += nbytes; } if ((ret != RF_PARITY_OKAY) && correct_it) { ret = RF_PARITY_COULD_NOT_CORRECT; #if RF_DEBUG_VERIFYPARITY if (rf_verifyParityDebug) { printf("raid%d: RAID1 parity verify: parity not correct\n", raidPtr->raidid); } #endif if (bbufs == NULL) goto done; /* * Make a DAG with one write node for each bad unit. We'll simply * write the contents of the data unit onto the parity unit for * correction. (It's possible that the mirror copy was the correct * copy, and that we're spooging good data by writing bad over it, * but there's no way we can know that. */ wr_dag_h = rf_MakeSimpleDAG(raidPtr, nbad, nbytes, buf, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, "Wnp", allocList, flags, RF_IO_NORMAL_PRIORITY); if (wr_dag_h == NULL) goto done; wrBlock = wr_dag_h->succedents[0]; /* * Fill in a write node for each bad compare. */ for (i = 0; i < nbad; i++) { j = i + layoutPtr->numDataCol; pda = blockNode->succedents[j]->params[0].p; pda->bufPtr = blockNode->succedents[i]->params[1].p; wrBlock->succedents[i]->params[0].p = pda; wrBlock->succedents[i]->params[1].p = pda->bufPtr; wrBlock->succedents[i]->params[2].v = psID; wrBlock->succedents[0]->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru); } #if RF_ACC_TRACE > 0 memset((char *) &tracerec, 0, sizeof(tracerec)); wr_dag_h->tracerec = &tracerec; #endif #if 0 if (rf_verifyParityDebug > 1) { printf("Parity verify write dag:\n"); rf_PrintDAGList(wr_dag_h); } #endif RF_LOCK_MUTEX(mcpair->mutex); mcpair->flag = 0; RF_UNLOCK_MUTEX(mcpair->mutex); /* fire off the write DAG */ rf_DispatchDAG(wr_dag_h, (void (*) (void *)) rf_MCPairWakeupFunc, (void *) mcpair); RF_LOCK_MUTEX(mcpair->mutex); while (!mcpair->flag) { RF_WAIT_COND(mcpair->cond, mcpair->mutex); } RF_UNLOCK_MUTEX(mcpair->mutex); if (wr_dag_h->status != rf_enable) { RF_ERRORMSG("Unable to correct RAID1 parity in VerifyParity\n"); goto done; } ret = RF_PARITY_CORRECTED; } done: /* * All done. We might've gotten here without doing part of the function, * so cleanup what we have to and return our running status. */ if (asm_h) rf_FreeAccessStripeMap(asm_h); if (rd_dag_h) rf_FreeDAG(rd_dag_h); if (wr_dag_h) rf_FreeDAG(wr_dag_h); if (mcpair) rf_FreeMCPair(mcpair); rf_FreeAllocList(allocList); #if RF_DEBUG_VERIFYPARITY if (rf_verifyParityDebug) { printf("raid%d: RAID1 parity verify, returning %d\n", raidPtr->raidid, ret); } #endif return (ret); } /* rbuf - the recon buffer to submit * keep_it - whether we can keep this buffer or we have to return it * use_committed - whether to use a committed or an available recon buffer */ int rf_SubmitReconBufferRAID1(RF_ReconBuffer_t *rbuf, int keep_it, int use_committed) { RF_ReconParityStripeStatus_t *pssPtr; RF_ReconCtrl_t *reconCtrlPtr; int retcode; RF_CallbackDesc_t *cb, *p; RF_ReconBuffer_t *t; RF_Raid_t *raidPtr; caddr_t ta; retcode = 0; raidPtr = rbuf->raidPtr; reconCtrlPtr = raidPtr->reconControl; RF_ASSERT(rbuf); RF_ASSERT(rbuf->col != reconCtrlPtr->fcol); #if RF_DEBUG_RECON if (rf_reconbufferDebug) { printf("raid%d: RAID1 reconbuffer submission c%d psid %ld ru%d (failed offset %ld)\n", raidPtr->raidid, rbuf->col, (long) rbuf->parityStripeID, rbuf->which_ru, (long) rbuf->failedDiskSectorOffset); } #endif if (rf_reconDebug) { printf("RAID1 reconbuffer submit psid %ld buf %lx\n", (long) rbuf->parityStripeID, (long) rbuf->buffer); printf("RAID1 psid %ld %02x %02x %02x %02x %02x\n", (long) rbuf->parityStripeID, rbuf->buffer[0], rbuf->buffer[1], rbuf->buffer[2], rbuf->buffer[3], rbuf->buffer[4]); } RF_LOCK_PSS_MUTEX(raidPtr, rbuf->parityStripeID); RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex); pssPtr = rf_LookupRUStatus(raidPtr, reconCtrlPtr->pssTable, rbuf->parityStripeID, rbuf->which_ru, RF_PSS_NONE, NULL); RF_ASSERT(pssPtr); /* if it didn't exist, we wouldn't have gotten * an rbuf for it */ /* * Since this is simple mirroring, the first submission for a stripe is also * treated as the last. */ t = NULL; if (keep_it) { #if RF_DEBUG_RECON if (rf_reconbufferDebug) { printf("raid%d: RAID1 rbuf submission: keeping rbuf\n", raidPtr->raidid); } #endif t = rbuf; } else { if (use_committed) { #if RF_DEBUG_RECON if (rf_reconbufferDebug) { printf("raid%d: RAID1 rbuf submission: using committed rbuf\n", raidPtr->raidid); } #endif t = reconCtrlPtr->committedRbufs; RF_ASSERT(t); reconCtrlPtr->committedRbufs = t->next; t->next = NULL; } else if (reconCtrlPtr->floatingRbufs) { #if RF_DEBUG_RECON if (rf_reconbufferDebug) { printf("raid%d: RAID1 rbuf submission: using floating rbuf\n", raidPtr->raidid); } #endif t = reconCtrlPtr->floatingRbufs; reconCtrlPtr->floatingRbufs = t->next; t->next = NULL; } } if (t == NULL) { #if RF_DEBUG_RECON if (rf_reconbufferDebug) { printf("raid%d: RAID1 rbuf submission: waiting for rbuf\n", raidPtr->raidid); } #endif RF_ASSERT((keep_it == 0) && (use_committed == 0)); raidPtr->procsInBufWait++; if ((raidPtr->procsInBufWait == (raidPtr->numCol - 1)) && (raidPtr->numFullReconBuffers == 0)) { /* ruh-ro */ RF_ERRORMSG("Buffer wait deadlock\n"); rf_PrintPSStatusTable(raidPtr); RF_PANIC(); } pssPtr->flags |= RF_PSS_BUFFERWAIT; cb = rf_AllocCallbackDesc(); cb->col = rbuf->col; cb->callbackArg.v = rbuf->parityStripeID; cb->next = NULL; if (reconCtrlPtr->bufferWaitList == NULL) { /* we are the wait list- lucky us */ reconCtrlPtr->bufferWaitList = cb; } else { /* append to wait list */ for (p = reconCtrlPtr->bufferWaitList; p->next; p = p->next); p->next = cb; } retcode = 1; goto out; } if (t != rbuf) { t->col = reconCtrlPtr->fcol; t->parityStripeID = rbuf->parityStripeID; t->which_ru = rbuf->which_ru; t->failedDiskSectorOffset = rbuf->failedDiskSectorOffset; t->spCol = rbuf->spCol; t->spOffset = rbuf->spOffset; /* Swap buffers. DANCE! */ ta = t->buffer; t->buffer = rbuf->buffer; rbuf->buffer = ta; } /* * Use the rbuf we've been given as the target. */ RF_ASSERT(pssPtr->rbuf == NULL); pssPtr->rbuf = t; t->count = 1; /* * Below, we use 1 for numDataCol (which is equal to the count in the * previous line), so we'll always be done. */ rf_CheckForFullRbuf(raidPtr, reconCtrlPtr, pssPtr, 1); out: RF_UNLOCK_PSS_MUTEX(raidPtr, rbuf->parityStripeID); RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex); #if RF_DEBUG_RECON if (rf_reconbufferDebug) { printf("raid%d: RAID1 rbuf submission: returning %d\n", raidPtr->raidid, retcode); } #endif return (retcode); }