/* $NetBSD: sys_lwp.c,v 1.44 2009/01/11 02:45:52 christos Exp $ */ /*- * Copyright (c) 2001, 2006, 2007, 2008 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Nathan J. Williams, and Andrew Doran. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * Lightweight process (LWP) system calls. See kern_lwp.c for a description * of LWPs. */ #include __KERNEL_RCSID(0, "$NetBSD: sys_lwp.c,v 1.44 2009/01/11 02:45:52 christos Exp $"); #include #include #include #include #include #include #include #include #include #include #include #include "opt_sa.h" #define LWP_UNPARK_MAX 1024 syncobj_t lwp_park_sobj = { SOBJ_SLEEPQ_LIFO, sleepq_unsleep, sleepq_changepri, sleepq_lendpri, syncobj_noowner, }; sleeptab_t lwp_park_tab; void lwp_sys_init(void) { sleeptab_init(&lwp_park_tab); } /* ARGSUSED */ int sys__lwp_create(struct lwp *l, const struct sys__lwp_create_args *uap, register_t *retval) { /* { syscallarg(const ucontext_t *) ucp; syscallarg(u_long) flags; syscallarg(lwpid_t *) new_lwp; } */ struct proc *p = l->l_proc; struct lwp *l2; vaddr_t uaddr; bool inmem; ucontext_t *newuc; int error, lid; #ifdef KERN_SA mutex_enter(p->p_lock); if ((p->p_sflag & (PS_SA | PS_WEXIT)) != 0 || p->p_sa != NULL) { mutex_exit(p->p_lock); return EINVAL; } mutex_exit(p->p_lock); #endif newuc = pool_get(&lwp_uc_pool, PR_WAITOK); error = copyin(SCARG(uap, ucp), newuc, p->p_emul->e_ucsize); if (error) { pool_put(&lwp_uc_pool, newuc); return error; } /* XXX check against resource limits */ inmem = uvm_uarea_alloc(&uaddr); if (__predict_false(uaddr == 0)) { pool_put(&lwp_uc_pool, newuc); return ENOMEM; } error = lwp_create(l, p, uaddr, inmem, SCARG(uap, flags) & LWP_DETACHED, NULL, 0, p->p_emul->e_startlwp, newuc, &l2, l->l_class); if (error) { uvm_uarea_free(uaddr, curcpu()); pool_put(&lwp_uc_pool, newuc); return error; } lid = l2->l_lid; error = copyout(&lid, SCARG(uap, new_lwp), sizeof(lid)); if (error) { lwp_exit(l2); pool_put(&lwp_uc_pool, newuc); return error; } /* * Set the new LWP running, unless the caller has requested that * it be created in suspended state. If the process is stopping, * then the LWP is created stopped. */ mutex_enter(p->p_lock); lwp_lock(l2); if ((SCARG(uap, flags) & LWP_SUSPENDED) == 0 && (l->l_flag & (LW_WREBOOT | LW_WSUSPEND | LW_WEXIT)) == 0) { if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) l2->l_stat = LSSTOP; else { KASSERT(lwp_locked(l2, l2->l_cpu->ci_schedstate.spc_mutex)); p->p_nrlwps++; l2->l_stat = LSRUN; sched_enqueue(l2, false); } lwp_unlock(l2); } else { l2->l_stat = LSSUSPENDED; lwp_unlock_to(l2, l2->l_cpu->ci_schedstate.spc_lwplock); } mutex_exit(p->p_lock); return 0; } int sys__lwp_exit(struct lwp *l, const void *v, register_t *retval) { lwp_exit(l); return 0; } int sys__lwp_self(struct lwp *l, const void *v, register_t *retval) { *retval = l->l_lid; return 0; } int sys__lwp_getprivate(struct lwp *l, const void *v, register_t *retval) { *retval = (uintptr_t)l->l_private; return 0; } int sys__lwp_setprivate(struct lwp *l, const struct sys__lwp_setprivate_args *uap, register_t *retval) { /* { syscallarg(void *) ptr; } */ l->l_private = SCARG(uap, ptr); return 0; } int sys__lwp_suspend(struct lwp *l, const struct sys__lwp_suspend_args *uap, register_t *retval) { /* { syscallarg(lwpid_t) target; } */ struct proc *p = l->l_proc; struct lwp *t; int error; mutex_enter(p->p_lock); #ifdef KERN_SA if ((p->p_sflag & PS_SA) != 0 || p->p_sa != NULL) { mutex_exit(p->p_lock); return EINVAL; } #endif if ((t = lwp_find(p, SCARG(uap, target))) == NULL) { mutex_exit(p->p_lock); return ESRCH; } /* * Check for deadlock, which is only possible when we're suspending * ourself. XXX There is a short race here, as p_nrlwps is only * incremented when an LWP suspends itself on the kernel/user * boundary. It's still possible to kill -9 the process so we * don't bother checking further. */ lwp_lock(t); if ((t == l && p->p_nrlwps == 1) || (l->l_flag & (LW_WCORE | LW_WEXIT)) != 0) { lwp_unlock(t); mutex_exit(p->p_lock); return EDEADLK; } /* * Suspend the LWP. XXX If it's on a different CPU, we should wait * for it to be preempted, where it will put itself to sleep. * * Suspension of the current LWP will happen on return to userspace. */ error = lwp_suspend(l, t); if (error) { mutex_exit(p->p_lock); return error; } /* * Wait for: * o process exiting * o target LWP suspended * o target LWP not suspended and L_WSUSPEND clear * o target LWP exited */ for (;;) { error = cv_wait_sig(&p->p_lwpcv, p->p_lock); if (error) { error = ERESTART; break; } if (lwp_find(p, SCARG(uap, target)) == NULL) { error = ESRCH; break; } if ((l->l_flag | t->l_flag) & (LW_WCORE | LW_WEXIT)) { error = ERESTART; break; } if (t->l_stat == LSSUSPENDED || (t->l_flag & LW_WSUSPEND) == 0) break; } mutex_exit(p->p_lock); return error; } int sys__lwp_continue(struct lwp *l, const struct sys__lwp_continue_args *uap, register_t *retval) { /* { syscallarg(lwpid_t) target; } */ int error; struct proc *p = l->l_proc; struct lwp *t; error = 0; mutex_enter(p->p_lock); if ((t = lwp_find(p, SCARG(uap, target))) == NULL) { mutex_exit(p->p_lock); return ESRCH; } lwp_lock(t); lwp_continue(t); mutex_exit(p->p_lock); return error; } int sys__lwp_wakeup(struct lwp *l, const struct sys__lwp_wakeup_args *uap, register_t *retval) { /* { syscallarg(lwpid_t) target; } */ struct lwp *t; struct proc *p; int error; p = l->l_proc; mutex_enter(p->p_lock); if ((t = lwp_find(p, SCARG(uap, target))) == NULL) { mutex_exit(p->p_lock); return ESRCH; } lwp_lock(t); t->l_flag |= (LW_CANCELLED | LW_UNPARKED); if (t->l_stat != LSSLEEP) { lwp_unlock(t); error = ENODEV; } else if ((t->l_flag & LW_SINTR) == 0) { lwp_unlock(t); error = EBUSY; } else { /* Wake it up. lwp_unsleep() will release the LWP lock. */ (void)lwp_unsleep(t, true); error = 0; } mutex_exit(p->p_lock); return error; } int sys__lwp_wait(struct lwp *l, const struct sys__lwp_wait_args *uap, register_t *retval) { /* { syscallarg(lwpid_t) wait_for; syscallarg(lwpid_t *) departed; } */ struct proc *p = l->l_proc; int error; lwpid_t dep; mutex_enter(p->p_lock); error = lwp_wait1(l, SCARG(uap, wait_for), &dep, 0); mutex_exit(p->p_lock); if (error) return error; if (SCARG(uap, departed)) { error = copyout(&dep, SCARG(uap, departed), sizeof(dep)); if (error) return error; } return 0; } /* ARGSUSED */ int sys__lwp_kill(struct lwp *l, const struct sys__lwp_kill_args *uap, register_t *retval) { /* { syscallarg(lwpid_t) target; syscallarg(int) signo; } */ struct proc *p = l->l_proc; struct lwp *t; ksiginfo_t ksi; int signo = SCARG(uap, signo); int error = 0; if ((u_int)signo >= NSIG) return EINVAL; KSI_INIT(&ksi); ksi.ksi_signo = signo; ksi.ksi_code = SI_LWP; ksi.ksi_pid = p->p_pid; ksi.ksi_uid = kauth_cred_geteuid(l->l_cred); ksi.ksi_lid = SCARG(uap, target); mutex_enter(proc_lock); mutex_enter(p->p_lock); if ((t = lwp_find(p, ksi.ksi_lid)) == NULL) error = ESRCH; else if (signo != 0) kpsignal2(p, &ksi); mutex_exit(p->p_lock); mutex_exit(proc_lock); return error; } int sys__lwp_detach(struct lwp *l, const struct sys__lwp_detach_args *uap, register_t *retval) { /* { syscallarg(lwpid_t) target; } */ struct proc *p; struct lwp *t; lwpid_t target; int error; target = SCARG(uap, target); p = l->l_proc; mutex_enter(p->p_lock); if (l->l_lid == target) t = l; else { /* * We can't use lwp_find() here because the target might * be a zombie. */ LIST_FOREACH(t, &p->p_lwps, l_sibling) if (t->l_lid == target) break; } /* * If the LWP is already detached, there's nothing to do. * If it's a zombie, we need to clean up after it. LSZOMB * is visible with the proc mutex held. * * After we have detached or released the LWP, kick any * other LWPs that may be sitting in _lwp_wait(), waiting * for the target LWP to exit. */ if (t != NULL && t->l_stat != LSIDL) { if ((t->l_prflag & LPR_DETACHED) == 0) { p->p_ndlwps++; t->l_prflag |= LPR_DETACHED; if (t->l_stat == LSZOMB) { /* Releases proc mutex. */ lwp_free(t, false, false); return 0; } error = 0; /* * Have any LWPs sleeping in lwp_wait() recheck * for deadlock. */ cv_broadcast(&p->p_lwpcv); } else error = EINVAL; } else error = ESRCH; mutex_exit(p->p_lock); return error; } static inline wchan_t lwp_park_wchan(struct proc *p, const void *hint) { return (wchan_t)((uintptr_t)p ^ (uintptr_t)hint); } int lwp_unpark(lwpid_t target, const void *hint) { sleepq_t *sq; wchan_t wchan; int swapin; kmutex_t *mp; proc_t *p; lwp_t *t; /* * Easy case: search for the LWP on the sleep queue. If * it's parked, remove it from the queue and set running. */ p = curproc; wchan = lwp_park_wchan(p, hint); sq = sleeptab_lookup(&lwp_park_tab, wchan, &mp); TAILQ_FOREACH(t, sq, l_sleepchain) if (t->l_proc == p && t->l_lid == target) break; if (__predict_true(t != NULL)) { swapin = sleepq_remove(sq, t); mutex_spin_exit(mp); if (swapin) uvm_kick_scheduler(); return 0; } /* * The LWP hasn't parked yet. Take the hit and mark the * operation as pending. */ mutex_spin_exit(mp); mutex_enter(p->p_lock); if ((t = lwp_find(p, target)) == NULL) { mutex_exit(p->p_lock); return ESRCH; } /* * It may not have parked yet, we may have raced, or it * is parked on a different user sync object. */ lwp_lock(t); if (t->l_syncobj == &lwp_park_sobj) { /* Releases the LWP lock. */ (void)lwp_unsleep(t, true); } else { /* * Set the operation pending. The next call to _lwp_park * will return early. */ t->l_flag |= LW_UNPARKED; lwp_unlock(t); } mutex_exit(p->p_lock); return 0; } int lwp_park(struct timespec *ts, const void *hint) { struct timespec tsx; sleepq_t *sq; kmutex_t *mp; wchan_t wchan; int timo, error; lwp_t *l; /* Fix up the given timeout value. */ if (ts != NULL) { getnanotime(&tsx); timespecsub(ts, &tsx, &tsx); if (tsx.tv_sec < 0 || (tsx.tv_sec == 0 && tsx.tv_nsec <= 0)) return ETIMEDOUT; if ((error = itimespecfix(&tsx)) != 0) return error; timo = tstohz(&tsx); KASSERT(timo != 0); } else timo = 0; /* Find and lock the sleep queue. */ l = curlwp; wchan = lwp_park_wchan(l->l_proc, hint); sq = sleeptab_lookup(&lwp_park_tab, wchan, &mp); /* * Before going the full route and blocking, check to see if an * unpark op is pending. */ lwp_lock(l); if ((l->l_flag & (LW_CANCELLED | LW_UNPARKED)) != 0) { l->l_flag &= ~(LW_CANCELLED | LW_UNPARKED); lwp_unlock(l); mutex_spin_exit(mp); return EALREADY; } lwp_unlock_to(l, mp); l->l_biglocks = 0; sleepq_enqueue(sq, wchan, "parked", &lwp_park_sobj); error = sleepq_block(timo, true); switch (error) { case EWOULDBLOCK: error = ETIMEDOUT; break; case ERESTART: error = EINTR; break; default: /* nothing */ break; } return error; } /* * 'park' an LWP waiting on a user-level synchronisation object. The LWP * will remain parked until another LWP in the same process calls in and * requests that it be unparked. */ int sys____lwp_park50(struct lwp *l, const struct sys____lwp_park50_args *uap, register_t *retval) { /* { syscallarg(const struct timespec *) ts; syscallarg(lwpid_t) unpark; syscallarg(const void *) hint; syscallarg(const void *) unparkhint; } */ struct timespec ts, *tsp; int error; if (SCARG(uap, ts) == NULL) tsp = NULL; else { error = copyin(SCARG(uap, ts), &ts, sizeof(ts)); if (error != 0) return error; tsp = &ts; } if (SCARG(uap, unpark) != 0) { error = lwp_unpark(SCARG(uap, unpark), SCARG(uap, unparkhint)); if (error != 0) return error; } return lwp_park(tsp, SCARG(uap, hint)); } int sys__lwp_unpark(struct lwp *l, const struct sys__lwp_unpark_args *uap, register_t *retval) { /* { syscallarg(lwpid_t) target; syscallarg(const void *) hint; } */ return lwp_unpark(SCARG(uap, target), SCARG(uap, hint)); } int sys__lwp_unpark_all(struct lwp *l, const struct sys__lwp_unpark_all_args *uap, register_t *retval) { /* { syscallarg(const lwpid_t *) targets; syscallarg(size_t) ntargets; syscallarg(const void *) hint; } */ struct proc *p; struct lwp *t; sleepq_t *sq; wchan_t wchan; lwpid_t targets[32], *tp, *tpp, *tmax, target; int swapin, error; kmutex_t *mp; u_int ntargets; size_t sz; p = l->l_proc; ntargets = SCARG(uap, ntargets); if (SCARG(uap, targets) == NULL) { /* * Let the caller know how much we are willing to do, and * let it unpark the LWPs in blocks. */ *retval = LWP_UNPARK_MAX; return 0; } if (ntargets > LWP_UNPARK_MAX || ntargets == 0) return EINVAL; /* * Copy in the target array. If it's a small number of LWPs, then * place the numbers on the stack. */ sz = sizeof(target) * ntargets; if (sz <= sizeof(targets)) tp = targets; else { tp = kmem_alloc(sz, KM_SLEEP); if (tp == NULL) return ENOMEM; } error = copyin(SCARG(uap, targets), tp, sz); if (error != 0) { if (tp != targets) { kmem_free(tp, sz); } return error; } swapin = 0; wchan = lwp_park_wchan(p, SCARG(uap, hint)); sq = sleeptab_lookup(&lwp_park_tab, wchan, &mp); for (tmax = tp + ntargets, tpp = tp; tpp < tmax; tpp++) { target = *tpp; /* * Easy case: search for the LWP on the sleep queue. If * it's parked, remove it from the queue and set running. */ TAILQ_FOREACH(t, sq, l_sleepchain) if (t->l_proc == p && t->l_lid == target) break; if (t != NULL) { swapin |= sleepq_remove(sq, t); continue; } /* * The LWP hasn't parked yet. Take the hit and * mark the operation as pending. */ mutex_spin_exit(mp); mutex_enter(p->p_lock); if ((t = lwp_find(p, target)) == NULL) { mutex_exit(p->p_lock); mutex_spin_enter(mp); continue; } lwp_lock(t); /* * It may not have parked yet, we may have raced, or * it is parked on a different user sync object. */ if (t->l_syncobj == &lwp_park_sobj) { /* Releases the LWP lock. */ (void)lwp_unsleep(t, true); } else { /* * Set the operation pending. The next call to * _lwp_park will return early. */ t->l_flag |= LW_UNPARKED; lwp_unlock(t); } mutex_exit(p->p_lock); mutex_spin_enter(mp); } mutex_spin_exit(mp); if (tp != targets) kmem_free(tp, sz); if (swapin) uvm_kick_scheduler(); return 0; } int sys__lwp_setname(struct lwp *l, const struct sys__lwp_setname_args *uap, register_t *retval) { /* { syscallarg(lwpid_t) target; syscallarg(const char *) name; } */ char *name, *oname; lwpid_t target; proc_t *p; lwp_t *t; int error; if ((target = SCARG(uap, target)) == 0) target = l->l_lid; name = kmem_alloc(MAXCOMLEN, KM_SLEEP); if (name == NULL) return ENOMEM; error = copyinstr(SCARG(uap, name), name, MAXCOMLEN, NULL); switch (error) { case ENAMETOOLONG: case 0: name[MAXCOMLEN - 1] = '\0'; break; default: kmem_free(name, MAXCOMLEN); return error; } p = curproc; mutex_enter(p->p_lock); if ((t = lwp_find(p, target)) == NULL) { mutex_exit(p->p_lock); kmem_free(name, MAXCOMLEN); return ESRCH; } lwp_lock(t); oname = t->l_name; t->l_name = name; lwp_unlock(t); mutex_exit(p->p_lock); if (oname != NULL) kmem_free(oname, MAXCOMLEN); return 0; } int sys__lwp_getname(struct lwp *l, const struct sys__lwp_getname_args *uap, register_t *retval) { /* { syscallarg(lwpid_t) target; syscallarg(char *) name; syscallarg(size_t) len; } */ char name[MAXCOMLEN]; lwpid_t target; proc_t *p; lwp_t *t; if ((target = SCARG(uap, target)) == 0) target = l->l_lid; p = curproc; mutex_enter(p->p_lock); if ((t = lwp_find(p, target)) == NULL) { mutex_exit(p->p_lock); return ESRCH; } lwp_lock(t); if (t->l_name == NULL) name[0] = '\0'; else strcpy(name, t->l_name); lwp_unlock(t); mutex_exit(p->p_lock); return copyoutstr(name, SCARG(uap, name), SCARG(uap, len), NULL); } int sys__lwp_ctl(struct lwp *l, const struct sys__lwp_ctl_args *uap, register_t *retval) { /* { syscallarg(int) features; syscallarg(struct lwpctl **) address; } */ int error, features; vaddr_t vaddr; features = SCARG(uap, features); features &= ~(LWPCTL_FEATURE_CURCPU | LWPCTL_FEATURE_PCTR); if (features != 0) return ENODEV; if ((error = lwp_ctl_alloc(&vaddr)) != 0) return error; return copyout(&vaddr, SCARG(uap, address), sizeof(void *)); }