/* $NetBSD: bt_delete.c,v 1.13 2007/02/03 23:46:09 christos Exp $ */ /*- * Copyright (c) 1990, 1993, 1994 * The Regents of the University of California. All rights reserved. * * This code is derived from software contributed to Berkeley by * Mike Olson. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include #if defined(LIBC_SCCS) && !defined(lint) #if 0 static char sccsid[] = "@(#)bt_delete.c 8.13 (Berkeley) 7/28/94"; #else __RCSID("$NetBSD: bt_delete.c,v 1.13 2007/02/03 23:46:09 christos Exp $"); #endif #endif /* LIBC_SCCS and not lint */ #include "namespace.h" #include #include #include #include #include #include #include "btree.h" static int __bt_bdelete(BTREE *, const DBT *); static int __bt_curdel(BTREE *, const DBT *, PAGE *, u_int); static int __bt_pdelete(BTREE *, PAGE *); static int __bt_relink(BTREE *, PAGE *); static int __bt_stkacq(BTREE *, PAGE **, CURSOR *); /* * __bt_delete * Delete the item(s) referenced by a key. * * Return RET_SPECIAL if the key is not found. */ int __bt_delete(const DB *dbp, const DBT *key, u_int flags) { BTREE *t; CURSOR *c; PAGE *h; int status; t = dbp->internal; /* Toss any page pinned across calls. */ if (t->bt_pinned != NULL) { mpool_put(t->bt_mp, t->bt_pinned, 0); t->bt_pinned = NULL; } /* Check for change to a read-only tree. */ if (F_ISSET(t, B_RDONLY)) { errno = EPERM; return (RET_ERROR); } switch (flags) { case 0: status = __bt_bdelete(t, key); break; case R_CURSOR: /* * If flags is R_CURSOR, delete the cursor. Must already * have started a scan and not have already deleted it. */ c = &t->bt_cursor; if (F_ISSET(c, CURS_INIT)) { if (F_ISSET(c, CURS_ACQUIRE | CURS_AFTER | CURS_BEFORE)) return (RET_SPECIAL); if ((h = mpool_get(t->bt_mp, c->pg.pgno, 0)) == NULL) return (RET_ERROR); /* * If the page is about to be emptied, we'll need to * delete it, which means we have to acquire a stack. */ if (NEXTINDEX(h) == 1) if (__bt_stkacq(t, &h, &t->bt_cursor)) return (RET_ERROR); status = __bt_dleaf(t, NULL, h, (u_int)c->pg.index); if (NEXTINDEX(h) == 0 && status == RET_SUCCESS) { if (__bt_pdelete(t, h)) return (RET_ERROR); } else mpool_put(t->bt_mp, h, (u_int)(status == RET_SUCCESS ? MPOOL_DIRTY : 0)); break; } /* FALLTHROUGH */ default: errno = EINVAL; return (RET_ERROR); } if (status == RET_SUCCESS) F_SET(t, B_MODIFIED); return (status); } /* * __bt_stkacq -- * Acquire a stack so we can delete a cursor entry. * * Parameters: * t: tree * hp: pointer to current, pinned PAGE pointer * c: pointer to the cursor * * Returns: * 0 on success, 1 on failure */ static int __bt_stkacq(BTREE *t, PAGE **hp, CURSOR *c) { BINTERNAL *bi; EPG *e; EPGNO *parent; PAGE *h; indx_t idx = 0; /* Pacify gcc */ pgno_t pgno; recno_t nextpg, prevpg; int exact, level; /* * Find the first occurrence of the key in the tree. Toss the * currently locked page so we don't hit an already-locked page. */ h = *hp; mpool_put(t->bt_mp, h, 0); if ((e = __bt_search(t, &c->key, &exact)) == NULL) return (1); h = e->page; /* See if we got it in one shot. */ if (h->pgno == c->pg.pgno) goto ret; /* * Move right, looking for the page. At each move we have to move * up the stack until we don't have to move to the next page. If * we have to change pages at an internal level, we have to fix the * stack back up. */ while (h->pgno != c->pg.pgno) { if ((nextpg = h->nextpg) == P_INVALID) break; mpool_put(t->bt_mp, h, 0); /* Move up the stack. */ for (level = 0; (parent = BT_POP(t)) != NULL; ++level) { /* Get the parent page. */ if ((h = mpool_get(t->bt_mp, parent->pgno, 0)) == NULL) return (1); /* Move to the next index. */ if (parent->index != NEXTINDEX(h) - 1) { idx = parent->index + 1; BT_PUSH(t, h->pgno, idx); break; } mpool_put(t->bt_mp, h, 0); } /* Restore the stack. */ while (level--) { /* Push the next level down onto the stack. */ bi = GETBINTERNAL(h, idx); pgno = bi->pgno; BT_PUSH(t, pgno, 0); /* Lose the currently pinned page. */ mpool_put(t->bt_mp, h, 0); /* Get the next level down. */ if ((h = mpool_get(t->bt_mp, pgno, 0)) == NULL) return (1); idx = 0; } mpool_put(t->bt_mp, h, 0); if ((h = mpool_get(t->bt_mp, nextpg, 0)) == NULL) return (1); } if (h->pgno == c->pg.pgno) goto ret; /* Reacquire the original stack. */ mpool_put(t->bt_mp, h, 0); if ((e = __bt_search(t, &c->key, &exact)) == NULL) return (1); h = e->page; /* * Move left, looking for the page. At each move we have to move * up the stack until we don't have to change pages to move to the * next page. If we have to change pages at an internal level, we * have to fix the stack back up. */ while (h->pgno != c->pg.pgno) { if ((prevpg = h->prevpg) == P_INVALID) break; mpool_put(t->bt_mp, h, 0); /* Move up the stack. */ for (level = 0; (parent = BT_POP(t)) != NULL; ++level) { /* Get the parent page. */ if ((h = mpool_get(t->bt_mp, parent->pgno, 0)) == NULL) return (1); /* Move to the next index. */ if (parent->index != 0) { idx = parent->index - 1; BT_PUSH(t, h->pgno, idx); break; } mpool_put(t->bt_mp, h, 0); } /* Restore the stack. */ while (level--) { /* Push the next level down onto the stack. */ bi = GETBINTERNAL(h, idx); pgno = bi->pgno; /* Lose the currently pinned page. */ mpool_put(t->bt_mp, h, 0); /* Get the next level down. */ if ((h = mpool_get(t->bt_mp, pgno, 0)) == NULL) return (1); idx = NEXTINDEX(h) - 1; BT_PUSH(t, pgno, idx); } mpool_put(t->bt_mp, h, 0); if ((h = mpool_get(t->bt_mp, prevpg, 0)) == NULL) return (1); } ret: mpool_put(t->bt_mp, h, 0); return ((*hp = mpool_get(t->bt_mp, c->pg.pgno, 0)) == NULL); } /* * __bt_bdelete -- * Delete all key/data pairs matching the specified key. * * Parameters: * t: tree * key: key to delete * * Returns: * RET_ERROR, RET_SUCCESS and RET_SPECIAL if the key not found. */ static int __bt_bdelete(BTREE *t, const DBT *key) { EPG *e; PAGE *h; int deleted, exact, redo; deleted = 0; /* Find any matching record; __bt_search pins the page. */ loop: if ((e = __bt_search(t, key, &exact)) == NULL) return (deleted ? RET_SUCCESS : RET_ERROR); if (!exact) { mpool_put(t->bt_mp, e->page, 0); return (deleted ? RET_SUCCESS : RET_SPECIAL); } /* * Delete forward, then delete backward, from the found key. If * there are duplicates and we reach either side of the page, do * the key search again, so that we get them all. */ redo = 0; h = e->page; do { if (__bt_dleaf(t, key, h, (u_int)e->index)) { mpool_put(t->bt_mp, h, 0); return (RET_ERROR); } if (F_ISSET(t, B_NODUPS)) { if (NEXTINDEX(h) == 0) { if (__bt_pdelete(t, h)) return (RET_ERROR); } else mpool_put(t->bt_mp, h, MPOOL_DIRTY); return (RET_SUCCESS); } deleted = 1; } while (e->index < NEXTINDEX(h) && __bt_cmp(t, key, e) == 0); /* Check for right-hand edge of the page. */ if (e->index == NEXTINDEX(h)) redo = 1; /* Delete from the key to the beginning of the page. */ while (e->index-- > 0) { if (__bt_cmp(t, key, e) != 0) break; if (__bt_dleaf(t, key, h, (u_int)e->index) == RET_ERROR) { mpool_put(t->bt_mp, h, 0); return (RET_ERROR); } if (e->index == 0) redo = 1; } /* Check for an empty page. */ if (NEXTINDEX(h) == 0) { if (__bt_pdelete(t, h)) return (RET_ERROR); goto loop; } /* Put the page. */ mpool_put(t->bt_mp, h, MPOOL_DIRTY); if (redo) goto loop; return (RET_SUCCESS); } /* * __bt_pdelete -- * Delete a single page from the tree. * * Parameters: * t: tree * h: leaf page * * Returns: * RET_SUCCESS, RET_ERROR. * * Side-effects: * mpool_put's the page */ static int __bt_pdelete(BTREE *t, PAGE *h) { BINTERNAL *bi; PAGE *pg; EPGNO *parent; indx_t cnt, idx, *ip, offset; u_int32_t nksize; char *from; /* * Walk the parent page stack -- a LIFO stack of the pages that were * traversed when we searched for the page where the delete occurred. * Each stack entry is a page number and a page index offset. The * offset is for the page traversed on the search. We've just deleted * a page, so we have to delete the key from the parent page. * * If the delete from the parent page makes it empty, this process may * continue all the way up the tree. We stop if we reach the root page * (which is never deleted, it's just not worth the effort) or if the * delete does not empty the page. */ while ((parent = BT_POP(t)) != NULL) { /* Get the parent page. */ if ((pg = mpool_get(t->bt_mp, parent->pgno, 0)) == NULL) return (RET_ERROR); idx = parent->index; bi = GETBINTERNAL(pg, idx); /* Free any overflow pages. */ if (bi->flags & P_BIGKEY && __ovfl_delete(t, bi->bytes) == RET_ERROR) { mpool_put(t->bt_mp, pg, 0); return (RET_ERROR); } /* * Free the parent if it has only the one key and it's not the * root page. If it's the rootpage, turn it back into an empty * leaf page. */ if (NEXTINDEX(pg) == 1) { if (pg->pgno == P_ROOT) { pg->lower = BTDATAOFF; pg->upper = t->bt_psize; pg->flags = P_BLEAF; } else { if (__bt_relink(t, pg) || __bt_free(t, pg)) return (RET_ERROR); continue; } } else { /* Pack remaining key items at the end of the page. */ nksize = NBINTERNAL(bi->ksize); from = (char *)(void *)pg + pg->upper; memmove(from + nksize, from, (size_t)((char *)(void *)bi - from)); pg->upper += nksize; /* Adjust indices' offsets, shift the indices down. */ offset = pg->linp[idx]; for (cnt = idx, ip = &pg->linp[0]; cnt--; ++ip) if (ip[0] < offset) ip[0] += nksize; for (cnt = NEXTINDEX(pg) - idx; --cnt; ++ip) ip[0] = ip[1] < offset ? ip[1] + nksize : ip[1]; pg->lower -= sizeof(indx_t); } mpool_put(t->bt_mp, pg, MPOOL_DIRTY); break; } /* Free the leaf page, as long as it wasn't the root. */ if (h->pgno == P_ROOT) { mpool_put(t->bt_mp, h, MPOOL_DIRTY); return (RET_SUCCESS); } return (__bt_relink(t, h) || __bt_free(t, h)); } /* * __bt_dleaf -- * Delete a single record from a leaf page. * * Parameters: * t: tree * key: referenced key * h: page * idx: index on page to delete * * Returns: * RET_SUCCESS, RET_ERROR. */ int __bt_dleaf(BTREE *t, const DBT *key, PAGE *h, u_int idx) { BLEAF *bl; indx_t cnt, *ip, offset; u_int32_t nbytes; void *to; char *from; /* If this record is referenced by the cursor, delete the cursor. */ if (F_ISSET(&t->bt_cursor, CURS_INIT) && !F_ISSET(&t->bt_cursor, CURS_ACQUIRE) && t->bt_cursor.pg.pgno == h->pgno && t->bt_cursor.pg.index == idx && __bt_curdel(t, key, h, idx)) return (RET_ERROR); /* If the entry uses overflow pages, make them available for reuse. */ to = bl = GETBLEAF(h, idx); if (bl->flags & P_BIGKEY && __ovfl_delete(t, bl->bytes) == RET_ERROR) return (RET_ERROR); if (bl->flags & P_BIGDATA && __ovfl_delete(t, bl->bytes + bl->ksize) == RET_ERROR) return (RET_ERROR); /* Pack the remaining key/data items at the end of the page. */ nbytes = NBLEAF(bl); from = (char *)(void *)h + h->upper; memmove(from + nbytes, from, (size_t)((char *)(void *)to - from)); h->upper += nbytes; /* Adjust the indices' offsets, shift the indices down. */ offset = h->linp[idx]; for (cnt = idx, ip = &h->linp[0]; cnt--; ++ip) if (ip[0] < offset) ip[0] += nbytes; for (cnt = NEXTINDEX(h) - idx; --cnt; ++ip) ip[0] = ip[1] < offset ? ip[1] + nbytes : ip[1]; h->lower -= sizeof(indx_t); /* If the cursor is on this page, adjust it as necessary. */ if (F_ISSET(&t->bt_cursor, CURS_INIT) && !F_ISSET(&t->bt_cursor, CURS_ACQUIRE) && t->bt_cursor.pg.pgno == h->pgno && t->bt_cursor.pg.index > idx) --t->bt_cursor.pg.index; return (RET_SUCCESS); } /* * __bt_curdel -- * Delete the cursor. * * Parameters: * t: tree * key: referenced key (or NULL) * h: page * idx: index on page to delete * * Returns: * RET_SUCCESS, RET_ERROR. */ static int __bt_curdel(BTREE *t, const DBT *key, PAGE *h, u_int idx) { CURSOR *c; EPG e; PAGE *pg; int curcopy, status; /* * If there are duplicates, move forward or backward to one. * Otherwise, copy the key into the cursor area. */ c = &t->bt_cursor; F_CLR(c, CURS_AFTER | CURS_BEFORE | CURS_ACQUIRE); curcopy = 0; if (!F_ISSET(t, B_NODUPS)) { /* * We're going to have to do comparisons. If we weren't * provided a copy of the key, i.e. the user is deleting * the current cursor position, get one. */ if (key == NULL) { e.page = h; e.index = idx; if ((status = __bt_ret(t, &e, &c->key, &c->key, NULL, NULL, 1)) != RET_SUCCESS) return (status); curcopy = 1; key = &c->key; } /* Check previous key, if not at the beginning of the page. */ if (idx > 0) { e.page = h; e.index = idx - 1; if (__bt_cmp(t, key, &e) == 0) { F_SET(c, CURS_BEFORE); goto dup2; } } /* Check next key, if not at the end of the page. */ if (idx < NEXTINDEX(h) - 1) { e.page = h; e.index = idx + 1; if (__bt_cmp(t, key, &e) == 0) { F_SET(c, CURS_AFTER); goto dup2; } } /* Check previous key if at the beginning of the page. */ if (idx == 0 && h->prevpg != P_INVALID) { if ((pg = mpool_get(t->bt_mp, h->prevpg, 0)) == NULL) return (RET_ERROR); e.page = pg; e.index = NEXTINDEX(pg) - 1; if (__bt_cmp(t, key, &e) == 0) { F_SET(c, CURS_BEFORE); goto dup1; } mpool_put(t->bt_mp, pg, 0); } /* Check next key if at the end of the page. */ if (idx == NEXTINDEX(h) - 1 && h->nextpg != P_INVALID) { if ((pg = mpool_get(t->bt_mp, h->nextpg, 0)) == NULL) return (RET_ERROR); e.page = pg; e.index = 0; if (__bt_cmp(t, key, &e) == 0) { F_SET(c, CURS_AFTER); dup1: mpool_put(t->bt_mp, pg, 0); dup2: c->pg.pgno = e.page->pgno; c->pg.index = e.index; return (RET_SUCCESS); } mpool_put(t->bt_mp, pg, 0); } } e.page = h; e.index = idx; if (curcopy || (status = __bt_ret(t, &e, &c->key, &c->key, NULL, NULL, 1)) == RET_SUCCESS) { F_SET(c, CURS_ACQUIRE); return (RET_SUCCESS); } return (status); } /* * __bt_relink -- * Link around a deleted page. * * Parameters: * t: tree * h: page to be deleted */ static int __bt_relink(BTREE *t, PAGE *h) { PAGE *pg; if (h->nextpg != P_INVALID) { if ((pg = mpool_get(t->bt_mp, h->nextpg, 0)) == NULL) return (RET_ERROR); pg->prevpg = h->prevpg; mpool_put(t->bt_mp, pg, MPOOL_DIRTY); } if (h->prevpg != P_INVALID) { if ((pg = mpool_get(t->bt_mp, h->prevpg, 0)) == NULL) return (RET_ERROR); pg->nextpg = h->nextpg; mpool_put(t->bt_mp, pg, MPOOL_DIRTY); } return (0); }