/* $NetBSD: integrator_machdep.c,v 1.19 2002/03/25 04:51:20 thorpej Exp $ */ /* * Copyright (c) 2001 ARM Ltd * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The name of the company may not be used to endorse or promote * products derived from this software without specific prior written * permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * Copyright (c) 1997,1998 Mark Brinicombe. * Copyright (c) 1997,1998 Causality Limited. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Mark Brinicombe * for the NetBSD Project. * 4. The name of the company nor the name of the author may be used to * endorse or promote products derived from this software without specific * prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * Machine dependant functions for kernel setup for integrator board * * Created : 24/11/97 */ #include "opt_ddb.h" #include "opt_pmap_debug.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* XXX XXX XXX */ #include #include #include "opt_ipkdb.h" #include "pci.h" void ifpga_reset(void) __attribute__((noreturn)); /* * Address to call from cpu_reset() to reset the machine. * This is machine architecture dependant as it varies depending * on where the ROM appears when you turn the MMU off. */ u_int cpu_reset_address = (u_int) ifpga_reset; /* Define various stack sizes in pages */ #define IRQ_STACK_SIZE 1 #define ABT_STACK_SIZE 1 #ifdef IPKDB #define UND_STACK_SIZE 2 #else #define UND_STACK_SIZE 1 #endif struct intbootinfo intbootinfo; BootConfig bootconfig; /* Boot config storage */ static char bootargs[MAX_BOOT_STRING + 1]; char *boot_args = NULL; char *boot_file = NULL; vm_offset_t physical_start; vm_offset_t physical_freestart; vm_offset_t physical_freeend; vm_offset_t physical_end; u_int free_pages; vm_offset_t pagetables_start; int physmem = 0; /*int debug_flags;*/ #ifndef PMAP_STATIC_L1S int max_processes = 64; /* Default number */ #endif /* !PMAP_STATIC_L1S */ /* Physical and virtual addresses for some global pages */ pv_addr_t systempage; pv_addr_t irqstack; pv_addr_t undstack; pv_addr_t abtstack; pv_addr_t kernelstack; vm_offset_t msgbufphys; extern u_int data_abort_handler_address; extern u_int prefetch_abort_handler_address; extern u_int undefined_handler_address; #ifdef PMAP_DEBUG extern int pmap_debug_level; #endif #define KERNEL_PT_SYS 0 /* Page table for mapping proc0 zero page */ #define KERNEL_PT_KERNEL 1 /* Page table for mapping kernel */ #define KERNEL_PT_VMDATA 2 /* Page tables for mapping kernel VM */ #define KERNEL_PT_VMDATA_NUM 4 /* start with 16MB of KVM */ #define NUM_KERNEL_PTS (KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM) pv_addr_t kernel_pt_table[NUM_KERNEL_PTS]; struct user *proc0paddr; /* Prototypes */ void consinit __P((void)); void process_kernel_args __P((char *)); void data_abort_handler __P((trapframe_t *frame)); void prefetch_abort_handler __P((trapframe_t *frame)); void undefinedinstruction_bounce __P((trapframe_t *frame)); extern void configure __P((void)); extern void parse_mi_bootargs __P((char *args)); extern void dumpsys __P((void)); /* A load of console goo. */ #include "vga.h" #if (NVGA > 0) #include #include #include #include #endif #include "pckbc.h" #if (NPCKBC > 0) #include #include #endif #include "com.h" #if (NCOM > 0) #include #include #ifndef CONCOMADDR #define CONCOMADDR 0x3f8 #endif #endif #define CONSPEED B115200 #ifndef CONSPEED #define CONSPEED B9600 /* TTYDEF_SPEED */ #endif #ifndef CONMODE #define CONMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */ #endif int comcnspeed = CONSPEED; int comcnmode = CONMODE; #include "plcom.h" #if (NPLCOM > 0) #include #include #include #include #include #endif #ifndef CONSDEVNAME #define CONSDEVNAME "plcom" #endif #ifndef PLCONSPEED #define PLCONSPEED B38400 #endif #ifndef PLCONMODE #define PLCONMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */ #endif #ifndef PLCOMCNUNIT #define PLCOMCNUNIT -1 #endif int plcomcnspeed = PLCONSPEED; int plcomcnmode = PLCONMODE; #if 0 extern struct consdev kcomcons; static void kcomcnputc(dev_t, int); #endif /* * void cpu_reboot(int howto, char *bootstr) * * Reboots the system * * Deal with any syncing, unmounting, dumping and shutdown hooks, * then reset the CPU. */ void cpu_reboot(howto, bootstr) int howto; char *bootstr; { #ifdef DIAGNOSTIC /* info */ printf("boot: howto=%08x curproc=%p\n", howto, curproc); #endif /* * If we are still cold then hit the air brakes * and crash to earth fast */ if (cold) { doshutdownhooks(); printf("The operating system has halted.\n"); printf("Please press any key to reboot.\n\n"); cngetc(); printf("rebooting...\n"); ifpga_reset(); /*NOTREACHED*/ } /* Disable console buffering */ /* cnpollc(1);*/ /* * If RB_NOSYNC was not specified sync the discs. * Note: Unless cold is set to 1 here, syslogd will die during the unmount. * It looks like syslogd is getting woken up only to find that it cannot * page part of the binary in as the filesystem has been unmounted. */ if (!(howto & RB_NOSYNC)) bootsync(); /* Say NO to interrupts */ splhigh(); /* Do a dump if requested. */ if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP) dumpsys(); /* Run any shutdown hooks */ doshutdownhooks(); /* Make sure IRQ's are disabled */ IRQdisable; if (howto & RB_HALT) { printf("The operating system has halted.\n"); printf("Please press any key to reboot.\n\n"); cngetc(); } printf("rebooting...\n"); ifpga_reset(); /*NOTREACHED*/ } /* * Mapping table for core kernel memory. This memory is mapped at init * time with section mappings. */ struct l1_sec_map { vm_offset_t va; vm_offset_t pa; vm_size_t size; vm_prot_t prot; int cache; } l1_sec_table[] = { #if NPLCOM > 0 && defined(PLCONSOLE) { UART0_BOOT_BASE, IFPGA_IO_BASE + IFPGA_UART0, 1024 * 1024, VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE }, { UART1_BOOT_BASE, IFPGA_IO_BASE + IFPGA_UART1, 1024 * 1024, VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE }, #endif #if NPCI > 0 { IFPGA_PCI_IO_VBASE, IFPGA_PCI_IO_BASE, IFPGA_PCI_IO_VSIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE }, { IFPGA_PCI_CONF_VBASE, IFPGA_PCI_CONF_BASE, IFPGA_PCI_CONF_VSIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE }, #endif { 0, 0, 0, 0, 0 } }; /* * u_int initarm(struct ebsaboot *bootinfo) * * Initial entry point on startup. This gets called before main() is * entered. * It should be responsible for setting up everything that must be * in place when main is called. * This includes * Taking a copy of the boot configuration structure. * Initialising the physical console so characters can be printed. * Setting up page tables for the kernel * Relocating the kernel to the bottom of physical memory */ u_int initarm(bootinfo) struct intbootinfo *bootinfo; { int loop; int loop1; u_int l1pagetable; extern char page0[], page0_end[]; extern int etext asm ("_etext"); extern int end asm ("_end"); pv_addr_t kernel_l1pt; pv_addr_t kernel_ptpt; #if NPLCOM > 0 && defined(PLCONSOLE) static struct bus_space plcom_bus_space; #endif #if 0 cn_tab = &kcomcons; #endif /* * Heads up ... Setup the CPU / MMU / TLB functions */ if (set_cpufuncs()) panic("cpu not recognized!"); /* - intbootinfo.bt_memstart) / NBPG */; #if NPLCOM > 0 && defined(PLCONSOLE) /* * Initialise the diagnostic serial console * This allows a means of generating output during initarm(). * Once all the memory map changes are complete we can call consinit() * and not have to worry about things moving. */ if (PLCOMCNUNIT == 0) { ifpga_create_io_bs_tag(&plcom_bus_space, (void*)0xfd600000); plcomcnattach(&plcom_bus_space, 0, plcomcnspeed, IFPGA_UART_CLK, plcomcnmode, PLCOMCNUNIT); } else if (PLCOMCNUNIT == 1) { ifpga_create_io_bs_tag(&plcom_bus_space, (void*)0xfd700000); plcomcnattach(&plcom_bus_space, 0, plcomcnspeed, IFPGA_UART_CLK, plcomcnmode, PLCOMCNUNIT); } #endif /* Talk to the user */ printf("\nNetBSD/integrator booting ...\n"); #if 0 if (intbootinfo.bt_magic != BT_MAGIC_NUMBER_EBSA && intbootinfo.bt_magic != BT_MAGIC_NUMBER_CATS) panic("Incompatible magic number passed in boot args\n"); #endif /* { int loop; for (loop = 0; loop < 8; ++loop) { printf("%08x\n", *(((int *)bootinfo)+loop)); } }*/ /* * Ok we have the following memory map * * virtual address == physical address apart from the areas: * 0x00000000 -> 0x000fffff which is mapped to * top 1MB of physical memory * 0x00100000 -> 0x0fffffff which is mapped to * physical addresses 0x00100000 -> 0x0fffffff * 0x10000000 -> 0x1fffffff which is mapped to * physical addresses 0x00000000 -> 0x0fffffff * 0x20000000 -> 0xefffffff which is mapped to * physical addresses 0x20000000 -> 0xefffffff * 0xf0000000 -> 0xf03fffff which is mapped to * physical addresses 0x00000000 -> 0x003fffff * * This means that the kernel is mapped suitably for continuing * execution, all I/O is mapped 1:1 virtual to physical and * physical memory is accessible. * * The initarm() has the responsibility for creating the kernel * page tables. * It must also set up various memory pointers that are used * by pmap etc. */ /* * Examine the boot args string for options we need to know about * now. */ #if 0 process_kernel_args((char *)intbootinfo.bt_args); #endif printf("initarm: Configuring system ...\n"); /* * Set up the variables that define the availablilty of * physical memory */ physical_start = 0 /*intbootinfo.bt_memstart*/; physical_freestart = physical_start; #if 0 physical_end = /*intbootinfo.bt_memend*/ /*intbootinfo.bi_nrpages * NBPG */ 32*1024*1024; #else { volatile unsigned long *cm_sdram = (volatile unsigned long *)0x10000020; switch ((*cm_sdram >> 2) & 0x7) { case 0: physical_end = 16 * 1024 * 1024; break; case 1: physical_end = 32 * 1024 * 1024; break; case 2: physical_end = 64 * 1024 * 1024; break; case 3: physical_end = 128 * 1024 * 1024; break; case 4: physical_end = 256 * 1024 * 1024; break; default: printf("CM_SDRAM retuns unknown value, using 16M\n"); physical_end = 16 * 1024 * 1024; break; } } #endif physical_freeend = physical_end; free_pages = (physical_end - physical_start) / NBPG; /* Set up the bootconfig structure for the benefit of pmap.c */ bootconfig.dramblocks = 1; bootconfig.dram[0].address = physical_start; bootconfig.dram[0].pages = free_pages; physmem = (physical_end - physical_start) / NBPG; /* Tell the user about the memory */ printf("physmemory: %d pages at 0x%08lx -> 0x%08lx\n", physmem, physical_start, physical_end - 1); /* * Ok the kernel occupies the bottom of physical memory. * The first free page after the kernel can be found in * intbootinfo->bt_memavail * We now need to allocate some fixed page tables to get the kernel * going. * We allocate one page directory and a number page tables and store * the physical addresses in the kernel_pt_table array. * * Ok the next bit of physical allocation may look complex but it is * simple really. I have done it like this so that no memory gets * wasted during the allocation of various pages and tables that are * all different sizes. * The start addresses will be page aligned. * We allocate the kernel page directory on the first free 16KB boundry * we find. * We allocate the kernel page tables on the first 4KB boundry we find. * Since we allocate at least 3 L2 pagetables we know that we must * encounter at least one 16KB aligned address. */ #ifdef VERBOSE_INIT_ARM printf("Allocating page tables\n"); #endif /* Update the address of the first free 16KB chunk of physical memory */ physical_freestart = ((uintptr_t) &end - KERNEL_TEXT_BASE + PGOFSET) & ~PGOFSET; #if 0 physical_freestart += (kernexec->a_syms + sizeof(int) + *(u_int *)((int)end + kernexec->a_syms + sizeof(int)) + (NBPG - 1)) & ~(NBPG - 1); #endif free_pages -= (physical_freestart - physical_start) / NBPG; #ifdef VERBOSE_INIT_ARM printf("freestart = %#lx, free_pages = %d (%#x)\n", physical_freestart, free_pages, free_pages); #endif /* Define a macro to simplify memory allocation */ #define valloc_pages(var, np) \ alloc_pages((var).pv_pa, (np)); \ (var).pv_va = KERNEL_TEXT_BASE + (var).pv_pa - physical_start; #define alloc_pages(var, np) \ (var) = physical_freestart; \ physical_freestart += ((np) * NBPG); \ free_pages -= (np); \ memset((char *)(var), 0, ((np) * NBPG)); loop1 = 0; kernel_l1pt.pv_pa = 0; for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) { /* Are we 16KB aligned for an L1 ? */ if ((physical_freestart & (PD_SIZE - 1)) == 0 && kernel_l1pt.pv_pa == 0) { valloc_pages(kernel_l1pt, PD_SIZE / NBPG); } else { alloc_pages(kernel_pt_table[loop1].pv_pa, PT_SIZE / NBPG); ++loop1; kernel_pt_table[loop1].pv_va = kernel_pt_table[loop1].pv_pa; } } /* This should never be able to happen but better confirm that. */ if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (PD_SIZE-1)) != 0) panic("initarm: Failed to align the kernel page directory\n"); /* * Allocate a page for the system page mapped to V0x00000000 * This page will just contain the system vectors and can be * shared by all processes. */ alloc_pages(systempage.pv_pa, 1); /* Allocate a page for the page table to map kernel page tables*/ valloc_pages(kernel_ptpt, PT_SIZE / NBPG); /* Allocate stacks for all modes */ valloc_pages(irqstack, IRQ_STACK_SIZE); valloc_pages(abtstack, ABT_STACK_SIZE); valloc_pages(undstack, UND_STACK_SIZE); valloc_pages(kernelstack, UPAGES); #ifdef VERBOSE_INIT_ARM printf("IRQ stack: p0x%08lx v0x%08lx\n", irqstack.pv_pa, irqstack.pv_va); printf("ABT stack: p0x%08lx v0x%08lx\n", abtstack.pv_pa, abtstack.pv_va); printf("UND stack: p0x%08lx v0x%08lx\n", undstack.pv_pa, undstack.pv_va); printf("SVC stack: p0x%08lx v0x%08lx\n", kernelstack.pv_pa, kernelstack.pv_va); #endif alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / NBPG); /* * Ok we have allocated physical pages for the primary kernel * page tables */ #ifdef VERBOSE_INIT_ARM printf("Creating L1 page table at %#lx\n", kernel_l1pt.pv_pa); #endif /* * Now we start consturction of the L1 page table * We start by mapping the L2 page tables into the L1. * This means that we can replace L1 mappings later on if necessary */ l1pagetable = kernel_l1pt.pv_pa; /* Map the L2 pages tables in the L1 page table */ pmap_link_l2pt(l1pagetable, 0x00000000, &kernel_pt_table[KERNEL_PT_SYS]); pmap_link_l2pt(l1pagetable, KERNEL_BASE, &kernel_pt_table[KERNEL_PT_KERNEL]); for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; ++loop) pmap_link_l2pt(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000, &kernel_pt_table[KERNEL_PT_VMDATA + loop]); pmap_link_l2pt(l1pagetable, PTE_BASE, &kernel_ptpt); /* update the top of the kernel VM */ pmap_curmaxkvaddr = KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000); #ifdef VERBOSE_INIT_ARM printf("Mapping kernel\n"); #endif /* Now we fill in the L2 pagetable for the kernel static code/data */ { u_int logical; size_t textsize = (uintptr_t) &etext - KERNEL_TEXT_BASE; size_t totalsize = (uintptr_t) &end - KERNEL_TEXT_BASE; /* Round down text size and round up total size */ textsize = textsize & ~PGOFSET; totalsize = (totalsize + PGOFSET) & ~PGOFSET; /* logical = pmap_map_chunk(l1pagetable, KERNEL_BASE, physical_start, KERNEL_TEXT_BASE - KERNEL_BASE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); */ logical = pmap_map_chunk(l1pagetable, KERNEL_TEXT_BASE, physical_start, textsize, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); logical += pmap_map_chunk(l1pagetable, KERNEL_TEXT_BASE + logical, physical_start + logical, totalsize - textsize, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); #if 0 logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical, physical_start + logical, kernexec->a_syms + sizeof(int) + *(u_int *)((int)end + kernexec->a_syms + sizeof(int)), VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); #endif } #ifdef VERBOSE_INIT_ARM printf("Constructing L2 page tables\n"); #endif /* Map the boot arguments page */ #if 0 pmap_map_entry(l1pagetable, intbootinfo.bt_vargp, intbootinfo.bt_pargp, VM_PROT_READ, PTE_CACHE); #endif /* Map the stack pages */ pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa, IRQ_STACK_SIZE * NBPG, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa, ABT_STACK_SIZE * NBPG, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa, UND_STACK_SIZE * NBPG, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa, UPAGES * NBPG, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa, PD_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE); /* Map the page table that maps the kernel pages */ pmap_map_entry(l1pagetable, kernel_ptpt.pv_va, kernel_ptpt.pv_pa, VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE); /* * Map entries in the page table used to map PTE's * Basically every kernel page table gets mapped here */ /* The -2 is slightly bogus, it should be -log2(sizeof(pt_entry_t)) */ pmap_map_entry(l1pagetable, PTE_BASE + (KERNEL_BASE >> (PGSHIFT-2)), kernel_pt_table[KERNEL_PT_KERNEL].pv_pa, VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE); pmap_map_entry(l1pagetable, PTE_BASE + (PTE_BASE >> (PGSHIFT-2)), kernel_ptpt.pv_pa, VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE); pmap_map_entry(l1pagetable, PTE_BASE + (0x00000000 >> (PGSHIFT-2)), kernel_pt_table[KERNEL_PT_SYS].pv_pa, VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE); for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; ++loop) pmap_map_entry(l1pagetable, PTE_BASE + ((KERNEL_VM_BASE + (loop * 0x00400000)) >> (PGSHIFT-2)), kernel_pt_table[KERNEL_PT_VMDATA + loop].pv_pa, VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE); /* * Map the system page in the kernel page table for the bottom 1Meg * of the virtual memory map. */ #if 1 /* MULTI-ICE requires that page 0 is NC/NB so that it can download the cache-clean code there. */ pmap_map_entry(l1pagetable, 0x00000000, systempage.pv_pa, VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE); #else pmap_map_entry(l1pagetable, 0x00000000, systempage.pv_pa, VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE); #endif /* Map the core memory needed before autoconfig */ loop = 0; while (l1_sec_table[loop].size) { vm_size_t sz; #ifdef VERBOSE_INIT_ARM printf("%08lx -> %08lx @ %08lx\n", l1_sec_table[loop].pa, l1_sec_table[loop].pa + l1_sec_table[loop].size - 1, l1_sec_table[loop].va); #endif for (sz = 0; sz < l1_sec_table[loop].size; sz += L1_SEC_SIZE) pmap_map_section(l1pagetable, l1_sec_table[loop].va + sz, l1_sec_table[loop].pa + sz, l1_sec_table[loop].prot, l1_sec_table[loop].cache); ++loop; } /* * Now we have the real page tables in place so we can switch to them. * Once this is done we will be running with the REAL kernel page tables. */ /* Switch tables */ #ifdef VERBOSE_INIT_ARM printf("freestart = %#lx, free_pages = %d (%#x)\n", physical_freestart, free_pages, free_pages); printf("switching to new L1 page table @%#lx...", kernel_l1pt.pv_pa); #endif setttb(kernel_l1pt.pv_pa); #ifdef VERBOSE_INIT_ARM printf("done!\n"); #endif #ifdef PLCONSOLE /* * The IFPGA registers have just moved. * Detach the diagnostic serial port and reattach at the new address. */ plcomcndetach(); #endif /* * XXX this should only be done in main() but it useful to * have output earlier ... */ consinit(); #ifdef VERBOSE_INIT_ARM printf("bootstrap done.\n"); #endif /* Right set up the vectors at the bottom of page 0 */ memcpy((char *)0x00000000, page0, page0_end - page0); /* We have modified a text page so sync the icache */ cpu_icache_sync_all(); /* * Pages were allocated during the secondary bootstrap for the * stacks for different CPU modes. * We must now set the r13 registers in the different CPU modes to * point to these stacks. * Since the ARM stacks use STMFD etc. we must set r13 to the top end * of the stack memory. */ printf("init subsystems: stacks "); set_stackptr(PSR_IRQ32_MODE, irqstack.pv_va + IRQ_STACK_SIZE * NBPG); set_stackptr(PSR_ABT32_MODE, abtstack.pv_va + ABT_STACK_SIZE * NBPG); set_stackptr(PSR_UND32_MODE, undstack.pv_va + UND_STACK_SIZE * NBPG); /* * Well we should set a data abort handler. * Once things get going this will change as we will need a proper handler. * Until then we will use a handler that just panics but tells us * why. * Initialisation of the vectors will just panic on a data abort. * This just fills in a slighly better one. */ printf("vectors "); data_abort_handler_address = (u_int)data_abort_handler; prefetch_abort_handler_address = (u_int)prefetch_abort_handler; undefined_handler_address = (u_int)undefinedinstruction_bounce; /* At last ! * We now have the kernel in physical memory from the bottom upwards. * Kernel page tables are physically above this. * The kernel is mapped to KERNEL_TEXT_BASE * The kernel data PTs will handle the mapping of 0xf1000000-0xf3ffffff * The page tables are mapped to 0xefc00000 */ /* Initialise the undefined instruction handlers */ printf("undefined "); undefined_init(); /* Boot strap pmap telling it where the kernel page table is */ printf("pmap "); pmap_bootstrap((pd_entry_t *)kernel_l1pt.pv_va, kernel_ptpt); /* Setup the IRQ system */ printf("irq "); irq_init(); printf("done.\n"); #ifdef IPKDB /* Initialise ipkdb */ ipkdb_init(); if (boothowto & RB_KDB) ipkdb_connect(0); #endif #ifdef DDB db_machine_init(); /* Firmware doesn't load symbols. */ ddb_init(0, NULL, NULL); if (boothowto & RB_KDB) Debugger(); #endif /* We return the new stack pointer address */ return(kernelstack.pv_va + USPACE_SVC_STACK_TOP); } void process_kernel_args(args) char *args; { boothowto = 0; /* Make a local copy of the bootargs */ strncpy(bootargs, args, MAX_BOOT_STRING); args = bootargs; boot_file = bootargs; /* Skip the kernel image filename */ while (*args != ' ' && *args != 0) ++args; if (*args != 0) *args++ = 0; while (*args == ' ') ++args; boot_args = args; printf("bootfile: %s\n", boot_file); printf("bootargs: %s\n", boot_args); parse_mi_bootargs(boot_args); } void consinit(void) { static int consinit_called = 0; #if NPLCOM > 0 && defined(PLCONSOLE) static struct bus_space plcom_bus_space; #endif #if 0 char *console = CONSDEVNAME; #endif if (consinit_called != 0) return; consinit_called = 1; #if NPLCOM > 0 && defined(PLCONSOLE) if (PLCOMCNUNIT == 0) { ifpga_create_io_bs_tag(&plcom_bus_space, (void*)UART0_BOOT_BASE); if (plcomcnattach(&plcom_bus_space, 0, plcomcnspeed, IFPGA_UART_CLK, plcomcnmode, PLCOMCNUNIT)) panic("can't init serial console"); return; } else if (PLCOMCNUNIT == 1) { ifpga_create_io_bs_tag(&plcom_bus_space, (void*)UART0_BOOT_BASE); if (plcomcnattach(&plcom_bus_space, 0, plcomcnspeed, IFPGA_UART_CLK, plcomcnmode, PLCOMCNUNIT)) panic("can't init serial console"); return; } #endif #if (NCOM > 0) if (comcnattach(&isa_io_bs_tag, CONCOMADDR, comcnspeed, COM_FREQ, comcnmode)) panic("can't init serial console @%x", CONCOMADDR); return; #endif panic("No serial console configured"); } #if 0 static bus_space_handle_t kcom_base = (bus_space_handle_t) (DC21285_PCI_IO_VBASE + CONCOMADDR); u_int8_t footbridge_bs_r_1(void *, bus_space_handle_t, bus_size_t); void footbridge_bs_w_1(void *, bus_space_handle_t, bus_size_t, u_int8_t); #define KCOM_GETBYTE(r) footbridge_bs_r_1(0, kcom_base, (r)) #define KCOM_PUTBYTE(r,v) footbridge_bs_w_1(0, kcom_base, (r), (v)) static int kcomcngetc(dev_t dev) { int stat, c; /* block until a character becomes available */ while (!ISSET(stat = KCOM_GETBYTE(com_lsr), LSR_RXRDY)) ; c = KCOM_GETBYTE(com_data); stat = KCOM_GETBYTE(com_iir); return c; } /* * Console kernel output character routine. */ static void kcomcnputc(dev_t dev, int c) { int timo; /* wait for any pending transmission to finish */ timo = 150000; while (!ISSET(KCOM_GETBYTE(com_lsr), LSR_TXRDY) && --timo) continue; KCOM_PUTBYTE(com_data, c); /* wait for this transmission to complete */ timo = 1500000; while (!ISSET(KCOM_GETBYTE(com_lsr), LSR_TXRDY) && --timo) continue; } static void kcomcnpollc(dev_t dev, int on) { } struct consdev kcomcons = { NULL, NULL, kcomcngetc, kcomcnputc, kcomcnpollc, NULL, NODEV, CN_NORMAL }; #endif