/* $NetBSD: int_bus_dma.c,v 1.6 2002/03/24 03:37:25 thorpej Exp $ */ /*- * Copyright (c) 1996, 1997, 1998 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility, * NASA Ames Research Center. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the NetBSD * Foundation, Inc. and its contributors. * 4. Neither the name of The NetBSD Foundation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * The integrator board has memory steering hardware that means that * the normal physical addresses used by the processor cannot be used * for DMA. Instead we have to use the "core module alias mapping * addresses". We don't use these for normal processor accesses since * they are much slower than the direct addresses when accessing * memory on the local board. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define _ARM32_BUS_DMA_PRIVATE #include #include #include static int integrator_bus_dmamap_load_buffer __P((bus_dma_tag_t, bus_dmamap_t, void *, bus_size_t, struct proc *, int, vm_offset_t *, int *, int)); static int integrator_bus_dma_inrange __P((bus_dma_segment_t *, int, bus_addr_t)); /* * Common function for loading a DMA map with a linear buffer. May * be called by bus-specific DMA map load functions. */ int integrator_bus_dmamap_load(t, map, buf, buflen, p, flags) bus_dma_tag_t t; bus_dmamap_t map; void *buf; bus_size_t buflen; struct proc *p; int flags; { vm_offset_t lastaddr; int seg, error; #ifdef DEBUG_DMA printf("dmamap_load: t=%p map=%p buf=%p len=%lx p=%p f=%d\n", t, map, buf, buflen, p, flags); #endif /* DEBUG_DMA */ /* * Make sure that on error condition we return "no valid mappings". */ map->dm_mapsize = 0; map->dm_nsegs = 0; if (buflen > map->_dm_size) return (EINVAL); seg = 0; error = integrator_bus_dmamap_load_buffer(t, map, buf, buflen, p, flags, &lastaddr, &seg, 1); if (error == 0) { map->dm_mapsize = buflen; map->dm_nsegs = seg + 1; map->_dm_proc = p; } #ifdef DEBUG_DMA printf("dmamap_load: error=%d\n", error); #endif /* DEBUG_DMA */ return (error); } /* * Like _bus_dmamap_load(), but for mbufs. */ int integrator_bus_dmamap_load_mbuf(t, map, m0, flags) bus_dma_tag_t t; bus_dmamap_t map; struct mbuf *m0; int flags; { vm_offset_t lastaddr; int seg, error, first; struct mbuf *m; #ifdef DEBUG_DMA printf("dmamap_load_mbuf: t=%p map=%p m0=%p f=%d\n", t, map, m0, flags); #endif /* DEBUG_DMA */ /* * Make sure that on error condition we return "no valid mappings." */ map->dm_mapsize = 0; map->dm_nsegs = 0; #ifdef DIAGNOSTIC if ((m0->m_flags & M_PKTHDR) == 0) panic("integrator_bus_dmamap_load_mbuf: no packet header"); #endif /* DIAGNOSTIC */ if (m0->m_pkthdr.len > map->_dm_size) return (EINVAL); first = 1; seg = 0; error = 0; for (m = m0; m != NULL && error == 0; m = m->m_next) { error = integrator_bus_dmamap_load_buffer(t, map, m->m_data, m->m_len, NULL, flags, &lastaddr, &seg, first); first = 0; } if (error == 0) { map->dm_mapsize = m0->m_pkthdr.len; map->dm_nsegs = seg + 1; map->_dm_proc = NULL; /* always kernel */ } #ifdef DEBUG_DMA printf("dmamap_load_mbuf: error=%d\n", error); #endif /* DEBUG_DMA */ return (error); } /* * Like _bus_dmamap_load(), but for uios. */ int integrator_bus_dmamap_load_uio(t, map, uio, flags) bus_dma_tag_t t; bus_dmamap_t map; struct uio *uio; int flags; { vm_offset_t lastaddr; int seg, i, error, first; bus_size_t minlen, resid; struct proc *p = NULL; struct iovec *iov; caddr_t addr; /* * Make sure that on error condition we return "no valid mappings." */ map->dm_mapsize = 0; map->dm_nsegs = 0; resid = uio->uio_resid; iov = uio->uio_iov; if (uio->uio_segflg == UIO_USERSPACE) { p = uio->uio_procp; #ifdef DIAGNOSTIC if (p == NULL) panic("integrator_bus_dmamap_load_uio: USERSPACE but no proc"); #endif } first = 1; seg = 0; error = 0; for (i = 0; i < uio->uio_iovcnt && resid != 0 && error == 0; i++) { /* * Now at the first iovec to load. Load each iovec * until we have exhausted the residual count. */ minlen = resid < iov[i].iov_len ? resid : iov[i].iov_len; addr = (caddr_t)iov[i].iov_base; error = integrator_bus_dmamap_load_buffer(t, map, addr, minlen, p, flags, &lastaddr, &seg, first); first = 0; resid -= minlen; } if (error == 0) { map->dm_mapsize = uio->uio_resid; map->dm_nsegs = seg + 1; map->_dm_proc = p; } return (error); } /* * Common function for DMA-safe memory allocation. May be called * by bus-specific DMA memory allocation functions. */ extern vm_offset_t physical_start; extern vm_offset_t physical_freestart; extern vm_offset_t physical_freeend; extern vm_offset_t physical_end; int integrator_bus_dmamem_alloc(t, size, alignment, boundary, segs, nsegs, rsegs, flags) bus_dma_tag_t t; bus_size_t size, alignment, boundary; bus_dma_segment_t *segs; int nsegs; int *rsegs; int flags; { int error; #ifdef DEBUG_DMA printf("dmamem_alloc t=%p size=%lx align=%lx boundary=%lx segs=%p nsegs=%x rsegs=%p flags=%x\n", t, size, alignment, boundary, segs, nsegs, rsegs, flags); #endif /* DEBUG_DMA */ error = (integrator_bus_dmamem_alloc_range(t, size, alignment, boundary, segs, nsegs, rsegs, flags, trunc_page(physical_start), trunc_page(physical_end))); #ifdef DEBUG_DMA printf("dmamem_alloc: =%d\n", error); #endif /* DEBUG_DMA */ return(error); } /* * Common function for freeing DMA-safe memory. May be called by * bus-specific DMA memory free functions. */ void integrator_bus_dmamem_free(t, segs, nsegs) bus_dma_tag_t t; bus_dma_segment_t *segs; int nsegs; { struct vm_page *m; bus_addr_t addr; struct pglist mlist; int curseg; #ifdef DEBUG_DMA printf("dmamem_free: t=%p segs=%p nsegs=%x\n", t, segs, nsegs); #endif /* DEBUG_DMA */ /* * Build a list of pages to free back to the VM system. */ TAILQ_INIT(&mlist); for (curseg = 0; curseg < nsegs; curseg++) { for (addr = segs[curseg].ds_addr; addr < (segs[curseg].ds_addr + segs[curseg].ds_len); addr += PAGE_SIZE) { m = PHYS_TO_VM_PAGE(CM_ALIAS_TO_LOCAL(addr)); TAILQ_INSERT_TAIL(&mlist, m, pageq); } } uvm_pglistfree(&mlist); } /* * Common function for mapping DMA-safe memory. May be called by * bus-specific DMA memory map functions. */ int integrator_bus_dmamem_map(t, segs, nsegs, size, kvap, flags) bus_dma_tag_t t; bus_dma_segment_t *segs; int nsegs; size_t size; caddr_t *kvap; int flags; { vm_offset_t va; bus_addr_t addr; int curseg; pt_entry_t *ptep/*, pte*/; #ifdef DEBUG_DMA printf("dmamem_map: t=%p segs=%p nsegs=%x size=%lx flags=%x\n", t, segs, nsegs, (unsigned long)size, flags); #endif /* DEBUG_DMA */ size = round_page(size); va = uvm_km_valloc(kernel_map, size); if (va == 0) return (ENOMEM); *kvap = (caddr_t)va; for (curseg = 0; curseg < nsegs; curseg++) { for (addr = segs[curseg].ds_addr; addr < (segs[curseg].ds_addr + segs[curseg].ds_len); addr += NBPG, va += NBPG, size -= NBPG) { #ifdef DEBUG_DMA printf("wiring p%lx to v%lx", CM_ALIAS_TO_LOCAL(addr), va); #endif /* DEBUG_DMA */ if (size == 0) panic("integrator_bus_dmamem_map: size botch"); pmap_enter(pmap_kernel(), va, CM_ALIAS_TO_LOCAL(addr), VM_PROT_READ | VM_PROT_WRITE, VM_PROT_READ | VM_PROT_WRITE | PMAP_WIRED); /* * If the memory must remain coherent with the * cache then we must make the memory uncacheable * in order to maintain virtual cache coherency. * We must also guarentee the cache does not already * contain the virtal addresses we are making * uncacheable. */ if (flags & BUS_DMA_COHERENT) { cpu_dcache_wbinv_range(va, NBPG); cpu_drain_writebuf(); ptep = vtopte(va); *ptep = ((*ptep) & (~PT_C | PT_B)); tlb_flush(); } #ifdef DEBUG_DMA ptep = vtopte(va); printf(" pte=v%p *pte=%x\n", ptep, *ptep); #endif /* DEBUG_DMA */ } } pmap_update(pmap_kernel()); #ifdef DEBUG_DMA printf("dmamem_map: =%p\n", *kvap); #endif /* DEBUG_DMA */ return (0); } /* * Common functin for mmap(2)'ing DMA-safe memory. May be called by * bus-specific DMA mmap(2)'ing functions. */ paddr_t integrator_bus_dmamem_mmap(t, segs, nsegs, off, prot, flags) bus_dma_tag_t t; bus_dma_segment_t *segs; int nsegs; off_t off; int prot, flags; { int i; for (i = 0; i < nsegs; i++) { #ifdef DIAGNOSTIC if (off & PGOFSET) panic("integrator_bus_dmamem_mmap: offset unaligned"); if (segs[i].ds_addr & PGOFSET) panic("integrator_bus_dmamem_mmap: segment unaligned"); if (segs[i].ds_len & PGOFSET) panic("integrator_bus_dmamem_mmap: segment size not multiple" " of page size"); #endif /* DIAGNOSTIC */ if (off >= segs[i].ds_len) { off -= segs[i].ds_len; continue; } return arm_btop((u_long)CM_ALIAS_TO_LOCAL(segs[i].ds_addr) + off); } /* Page not found. */ return -1; } /********************************************************************** * DMA utility functions **********************************************************************/ /* * Utility function to load a linear buffer. lastaddrp holds state * between invocations (for multiple-buffer loads). segp contains * the starting segment on entrace, and the ending segment on exit. * first indicates if this is the first invocation of this function. */ static int integrator_bus_dmamap_load_buffer(t, map, buf, buflen, p, flags, lastaddrp, segp, first) bus_dma_tag_t t; bus_dmamap_t map; void *buf; bus_size_t buflen; struct proc *p; int flags; vm_offset_t *lastaddrp; int *segp; int first; { bus_size_t sgsize; bus_addr_t curaddr, lastaddr, baddr, bmask; vm_offset_t vaddr = (vm_offset_t)buf; int seg; pmap_t pmap; #ifdef DEBUG_DMA printf("integrator_bus_dmamem_load_buffer(buf=%p, len=%lx, flags=%d, 1st=%d)\n", buf, buflen, flags, first); #endif /* DEBUG_DMA */ if (p != NULL) pmap = p->p_vmspace->vm_map.pmap; else pmap = pmap_kernel(); lastaddr = *lastaddrp; bmask = ~(map->_dm_boundary - 1); for (seg = *segp; buflen > 0; ) { /* * Get the physical address for this segment. */ (void) pmap_extract(pmap, (vaddr_t)vaddr, &curaddr); /* * Make sure we're in an allowed DMA range. */ if (t->_ranges != NULL && integrator_bus_dma_inrange(t->_ranges, t->_nranges, curaddr) == 0) return (EINVAL); /* * Compute the segment size, and adjust counts. */ sgsize = NBPG - ((u_long)vaddr & PGOFSET); if (buflen < sgsize) sgsize = buflen; /* * Make sure we don't cross any boundaries. */ if (map->_dm_boundary > 0) { baddr = (curaddr + map->_dm_boundary) & bmask; if (sgsize > (baddr - curaddr)) sgsize = (baddr - curaddr); } /* * Insert chunk into a segment, coalescing with * previous segment if possible. */ if (first) { map->dm_segs[seg].ds_addr = LOCAL_TO_CM_ALIAS(curaddr); map->dm_segs[seg].ds_len = sgsize; map->dm_segs[seg]._ds_vaddr = vaddr; first = 0; } else { if (curaddr == lastaddr && (map->dm_segs[seg].ds_len + sgsize) <= map->_dm_maxsegsz && (map->_dm_boundary == 0 || (map->dm_segs[seg].ds_addr & bmask) == (LOCAL_TO_CM_ALIAS(curaddr) & bmask))) map->dm_segs[seg].ds_len += sgsize; else { if (++seg >= map->_dm_segcnt) break; map->dm_segs[seg].ds_addr = LOCAL_TO_CM_ALIAS(curaddr); map->dm_segs[seg].ds_len = sgsize; map->dm_segs[seg]._ds_vaddr = vaddr; } } lastaddr = curaddr + sgsize; vaddr += sgsize; buflen -= sgsize; } *segp = seg; *lastaddrp = lastaddr; /* * Did we fit? */ if (buflen != 0) return (EFBIG); /* XXX better return value here? */ return (0); } /* * Check to see if the specified page is in an allowed DMA range. */ static int integrator_bus_dma_inrange(ranges, nranges, curaddr) bus_dma_segment_t *ranges; int nranges; bus_addr_t curaddr; { bus_dma_segment_t *ds; int i; for (i = 0, ds = ranges; i < nranges; i++, ds++) { if (curaddr >= CM_ALIAS_TO_LOCAL(ds->ds_addr) && round_page(curaddr) <= (CM_ALIAS_TO_LOCAL(ds->ds_addr) + ds->ds_len)) return (1); } return (0); } /* * Allocate physical memory from the given physical address range. * Called by DMA-safe memory allocation methods. */ int integrator_bus_dmamem_alloc_range(t, size, alignment, boundary, segs, nsegs, rsegs, flags, low, high) bus_dma_tag_t t; bus_size_t size, alignment, boundary; bus_dma_segment_t *segs; int nsegs; int *rsegs; int flags; vm_offset_t low; vm_offset_t high; { vm_offset_t curaddr, lastaddr; struct vm_page *m; struct pglist mlist; int curseg, error; #ifdef DEBUG_DMA printf("alloc_range: t=%p size=%lx align=%lx boundary=%lx segs=%p nsegs=%x rsegs=%p flags=%x lo=%lx hi=%lx\n", t, size, alignment, boundary, segs, nsegs, rsegs, flags, low, high); #endif /* DEBUG_DMA */ /* Always round the size. */ size = round_page(size); /* * Allocate pages from the VM system. */ TAILQ_INIT(&mlist); error = uvm_pglistalloc(size, low, high, alignment, boundary, &mlist, nsegs, (flags & BUS_DMA_NOWAIT) == 0); if (error) return (error); /* * Compute the location, size, and number of segments actually * returned by the VM code. */ m = mlist.tqh_first; curseg = 0; lastaddr = VM_PAGE_TO_PHYS(m); segs[curseg].ds_addr = LOCAL_TO_CM_ALIAS(lastaddr); segs[curseg].ds_len = PAGE_SIZE; #ifdef DEBUG_DMA printf("alloc: page %lx\n", lastaddr); #endif /* DEBUG_DMA */ m = m->pageq.tqe_next; for (; m != NULL; m = m->pageq.tqe_next) { curaddr = VM_PAGE_TO_PHYS(m); #ifdef DIAGNOSTIC if (curaddr < low || curaddr >= high) { printf("uvm_pglistalloc returned non-sensical" " address 0x%lx\n", curaddr); panic("integrator_bus_dmamem_alloc_range"); } #endif /* DIAGNOSTIC */ #ifdef DEBUG_DMA printf("alloc: page %lx\n", curaddr); #endif /* DEBUG_DMA */ if (curaddr == (lastaddr + PAGE_SIZE)) segs[curseg].ds_len += PAGE_SIZE; else { curseg++; segs[curseg].ds_addr = LOCAL_TO_CM_ALIAS(curaddr); segs[curseg].ds_len = PAGE_SIZE; } lastaddr = curaddr; } *rsegs = curseg + 1; return (0); }