.\" $NetBSD: EVP_DigestInit.3,v 1.5 2001/04/12 10:45:37 itojun Exp $ .\" .\" Automatically generated by Pod::Man version 1.02 .\" Thu Apr 12 19:26:59 2001 .\" .\" Standard preamble: .\" ====================================================================== .de Sh \" Subsection heading .br .if t .Sp .ne 5 .PP \fB\\$1\fR .PP .. .de Sp \" Vertical space (when we can't use .PP) .if t .sp .5v .if n .sp .. .de Ip \" List item .br .ie \\n(.$>=3 .ne \\$3 .el .ne 3 .IP "\\$1" \\$2 .. .de Vb \" Begin verbatim text .ft CW .nf .ne \\$1 .. .de Ve \" End verbatim text .ft R .fi .. .\" Set up some character translations and predefined strings. \*(-- will .\" give an unbreakable dash, \*(PI will give pi, \*(L" will give a left .\" double quote, and \*(R" will give a right double quote. | will give a .\" real vertical bar. \*(C+ will give a nicer C++. Capital omega is used .\" to do unbreakable dashes and therefore won't be available. \*(C` and .\" \*(C' expand to `' in nroff, nothing in troff, for use with C<> .tr \(*W-|\(bv\*(Tr .ds C+ C\v'-.1v'\h'-1p'\s-2+\h'-1p'+\s0\v'.1v'\h'-1p' .ie n \{\ . ds -- \(*W- . ds PI pi . if (\n(.H=4u)&(1m=24u) .ds -- \(*W\h'-12u'\(*W\h'-12u'-\" diablo 10 pitch . if (\n(.H=4u)&(1m=20u) .ds -- \(*W\h'-12u'\(*W\h'-8u'-\" diablo 12 pitch . ds L" "" . ds R" "" . ds C` ` . ds C' ' 'br\} .el\{\ . ds -- \|\(em\| . ds PI \(*p . ds L" `` . ds R" '' 'br\} .\" .\" If the F register is turned on, we'll generate index entries on stderr .\" for titles (.TH), headers (.SH), subsections (.Sh), items (.Ip), and .\" index entries marked with X<> in POD. Of course, you'll have to process .\" the output yourself in some meaningful fashion. .if \nF \{\ . de IX . tm Index:\\$1\t\\n%\t"\\$2" . . . nr % 0 . rr F .\} .\" .\" For nroff, turn off justification. Always turn off hyphenation; it .\" makes way too many mistakes in technical documents. .hy 0 .if n .na .\" .\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2). .\" Fear. Run. Save yourself. No user-serviceable parts. .bd B 3 . \" fudge factors for nroff and troff .if n \{\ . ds #H 0 . ds #V .8m . ds #F .3m . ds #[ \f1 . ds #] \fP .\} .if t \{\ . ds #H ((1u-(\\\\n(.fu%2u))*.13m) . ds #V .6m . ds #F 0 . ds #[ \& . ds #] \& .\} . \" simple accents for nroff and troff .if n \{\ . ds ' \& . ds ` \& . ds ^ \& . ds , \& . ds ~ ~ . ds / .\} .if t \{\ . ds ' \\k:\h'-(\\n(.wu*8/10-\*(#H)'\'\h"|\\n:u" . ds ` \\k:\h'-(\\n(.wu*8/10-\*(#H)'\`\h'|\\n:u' . ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'^\h'|\\n:u' . ds , \\k:\h'-(\\n(.wu*8/10)',\h'|\\n:u' . ds ~ \\k:\h'-(\\n(.wu-\*(#H-.1m)'~\h'|\\n:u' . ds / \\k:\h'-(\\n(.wu*8/10-\*(#H)'\z\(sl\h'|\\n:u' .\} . \" troff and (daisy-wheel) nroff accents .ds : \\k:\h'-(\\n(.wu*8/10-\*(#H+.1m+\*(#F)'\v'-\*(#V'\z.\h'.2m+\*(#F'.\h'|\\n:u'\v'\*(#V' .ds 8 \h'\*(#H'\(*b\h'-\*(#H' .ds o \\k:\h'-(\\n(.wu+\w'\(de'u-\*(#H)/2u'\v'-.3n'\*(#[\z\(de\v'.3n'\h'|\\n:u'\*(#] .ds d- \h'\*(#H'\(pd\h'-\w'~'u'\v'-.25m'\f2\(hy\fP\v'.25m'\h'-\*(#H' .ds D- D\\k:\h'-\w'D'u'\v'-.11m'\z\(hy\v'.11m'\h'|\\n:u' .ds th \*(#[\v'.3m'\s+1I\s-1\v'-.3m'\h'-(\w'I'u*2/3)'\s-1o\s+1\*(#] .ds Th \*(#[\s+2I\s-2\h'-\w'I'u*3/5'\v'-.3m'o\v'.3m'\*(#] .ds ae a\h'-(\w'a'u*4/10)'e .ds Ae A\h'-(\w'A'u*4/10)'E . \" corrections for vroff .if v .ds ~ \\k:\h'-(\\n(.wu*9/10-\*(#H)'\s-2\u~\d\s+2\h'|\\n:u' .if v .ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'\v'-.4m'^\v'.4m'\h'|\\n:u' . \" for low resolution devices (crt and lpr) .if \n(.H>23 .if \n(.V>19 \ \{\ . ds : e . ds 8 ss . ds o a . ds d- d\h'-1'\(ga . ds D- D\h'-1'\(hy . ds th \o'bp' . ds Th \o'LP' . ds ae ae . ds Ae AE .\} .rm #[ #] #H #V #F C .\" ====================================================================== .\" .IX Title "EVP_DigestInit 3" .TH EVP_DigestInit 3 "0.9.6a" "2001-04-12" "OpenSSL" .UC .SH "NAME" EVP_DigestInit, EVP_DigestUpdate, EVP_DigestFinal, \s-1EVP_MAX_MD_SIZE\s0, EVP_MD_CTX_copy, EVP_MD_type, EVP_MD_pkey_type, EVP_MD_size, EVP_MD_block_size, EVP_MD_CTX_md, EVP_MD_CTX_size, EVP_MD_CTX_block_size, EVP_MD_CTX_type, EVP_md_null, EVP_md2, EVP_md5, EVP_sha, EVP_sha1, EVP_dss, EVP_dss1, EVP_mdc2, EVP_ripemd160, EVP_get_digestbyname, EVP_get_digestbynid, EVP_get_digestbyobj \- \&\s-1EVP\s0 digest routines .SH "LIBRARY" libcrypto, -lcrypto .SH "SYNOPSIS" .IX Header "SYNOPSIS" .Vb 1 \& #include .Ve .Vb 4 \& void EVP_DigestInit(EVP_MD_CTX *ctx, const EVP_MD *type); \& void EVP_DigestUpdate(EVP_MD_CTX *ctx, const void *d, unsigned int cnt); \& void EVP_DigestFinal(EVP_MD_CTX *ctx, unsigned char *md, \& unsigned int *s); .Ve .Vb 1 \& #define EVP_MAX_MD_SIZE (16+20) /* The SSLv3 md5+sha1 type */ .Ve .Vb 1 \& int EVP_MD_CTX_copy(EVP_MD_CTX *out,EVP_MD_CTX *in); .Ve .Vb 4 \& #define EVP_MD_type(e) ((e)->type) \& #define EVP_MD_pkey_type(e) ((e)->pkey_type) \& #define EVP_MD_size(e) ((e)->md_size) \& #define EVP_MD_block_size(e) ((e)->block_size) .Ve .Vb 4 \& #define EVP_MD_CTX_md(e) (e)->digest) \& #define EVP_MD_CTX_size(e) EVP_MD_size((e)->digest) \& #define EVP_MD_CTX_block_size(e) EVP_MD_block_size((e)->digest) \& #define EVP_MD_CTX_type(e) EVP_MD_type((e)->digest) .Ve .Vb 9 \& EVP_MD *EVP_md_null(void); \& EVP_MD *EVP_md2(void); \& EVP_MD *EVP_md5(void); \& EVP_MD *EVP_sha(void); \& EVP_MD *EVP_sha1(void); \& EVP_MD *EVP_dss(void); \& EVP_MD *EVP_dss1(void); \& EVP_MD *EVP_mdc2(void); \& EVP_MD *EVP_ripemd160(void); .Ve .Vb 3 \& const EVP_MD *EVP_get_digestbyname(const char *name); \& #define EVP_get_digestbynid(a) EVP_get_digestbyname(OBJ_nid2sn(a)) \& #define EVP_get_digestbyobj(a) EVP_get_digestbynid(OBJ_obj2nid(a)) .Ve .SH "DESCRIPTION" .IX Header "DESCRIPTION" The \s-1EVP\s0 digest routines are a high level interface to message digests. .PP \&\fIEVP_DigestInit()\fR initializes a digest context \fBctx\fR to use a digest \&\fBtype\fR: this will typically be supplied by a function such as \&\fIEVP_sha1()\fR. .PP \&\fIEVP_DigestUpdate()\fR hashes \fBcnt\fR bytes of data at \fBd\fR into the digest context \fBctx\fR. This function can be called several times on the same \fBctx\fR to hash additional data. .PP \&\fIEVP_DigestFinal()\fR retrieves the digest value from \fBctx\fR and places it in \fBmd\fR. If the \fBs\fR parameter is not \s-1NULL\s0 then the number of bytes of data written (i.e. the length of the digest) will be written to the integer at \fBs\fR, at most \fB\s-1EVP_MAX_MD_SIZE\s0\fR bytes will be written. After calling \fIEVP_DigestFinal()\fR no additional calls to \fIEVP_DigestUpdate()\fR can be made, but \fIEVP_DigestInit()\fR can be called to initialize a new digest operation. .PP \&\fIEVP_MD_CTX_copy()\fR can be used to copy the message digest state from \&\fBin\fR to \fBout\fR. This is useful if large amounts of data are to be hashed which only differ in the last few bytes. .PP \&\fIEVP_MD_size()\fR and \fIEVP_MD_CTX_size()\fR return the size of the message digest when passed an \fB\s-1EVP_MD\s0\fR or an \fB\s-1EVP_MD_CTX\s0\fR structure, i.e. the size of the hash. .PP \&\fIEVP_MD_block_size()\fR and \fIEVP_MD_CTX_block_size()\fR return the block size of the message digest when passed an \fB\s-1EVP_MD\s0\fR or an \fB\s-1EVP_MD_CTX\s0\fR structure. .PP \&\fIEVP_MD_type()\fR and \fIEVP_MD_CTX_type()\fR return the \s-1NID\s0 of the \s-1OBJECT\s0 \s-1IDENTIFIER\s0 representing the given message digest when passed an \fB\s-1EVP_MD\s0\fR structure. For example EVP_MD_type(\fIEVP_sha1()\fR) returns \fBNID_sha1\fR. This function is normally used when setting \s-1ASN1\s0 OIDs. .PP \&\fIEVP_MD_CTX_md()\fR returns the \fB\s-1EVP_MD\s0\fR structure corresponding to the passed \&\fB\s-1EVP_MD_CTX\s0\fR. .PP \&\fIEVP_MD_pkey_type()\fR returns the \s-1NID\s0 of the public key signing algorithm associated with this digest. For example \fIEVP_sha1()\fR is associated with \s-1RSA\s0 so this will return \fBNID_sha1WithRSAEncryption\fR. This \*(L"link\*(R" between digests and signature algorithms may not be retained in future versions of OpenSSL. .PP \&\fIEVP_md2()\fR, \fIEVP_md5()\fR, \fIEVP_sha()\fR, \fIEVP_sha1()\fR, \fIEVP_mdc2()\fR and \fIEVP_ripemd160()\fR return \fB\s-1EVP_MD\s0\fR structures for the \s-1MD2\s0, \s-1MD5\s0, \s-1SHA\s0, \s-1SHA1\s0, \s-1MDC2\s0 and \s-1RIPEMD160\s0 digest algorithms respectively. The associated signature algorithm is \s-1RSA\s0 in each case. .PP \&\fIEVP_dss()\fR and \fIEVP_dss1()\fR return \fB\s-1EVP_MD\s0\fR structures for \s-1SHA\s0 and \s-1SHA1\s0 digest algorithms but using \s-1DSS\s0 (\s-1DSA\s0) for the signature algorithm. .PP \&\fIEVP_md_null()\fR is a \*(L"null\*(R" message digest that does nothing: i.e. the hash it returns is of zero length. .PP \&\fIEVP_get_digestbyname()\fR, \fIEVP_get_digestbynid()\fR and \fIEVP_get_digestbyobj()\fR return an \fB\s-1EVP_MD\s0\fR structure when passed a digest name, a digest \s-1NID\s0 or an \s-1ASN1_OBJECT\s0 structure respectively. The digest table must be initialized using, for example, \fIOpenSSL_add_all_digests()\fR for these functions to work. .SH "RETURN VALUES" .IX Header "RETURN VALUES" \&\fIEVP_DigestInit()\fR, \fIEVP_DigestUpdate()\fR and \fIEVP_DigestFinal()\fR do not return values. .PP \&\fIEVP_MD_CTX_copy()\fR returns 1 if successful or 0 for failure. .PP \&\fIEVP_MD_type()\fR, \fIEVP_MD_pkey_type()\fR and \fIEVP_MD_type()\fR return the \s-1NID\s0 of the corresponding \s-1OBJECT\s0 \s-1IDENTIFIER\s0 or NID_undef if none exists. .PP \&\fIEVP_MD_size()\fR, \fIEVP_MD_block_size()\fR, \fIEVP_MD_CTX_size\fR\|(e), \fIEVP_MD_size()\fR, \&\fIEVP_MD_CTX_block_size()\fR and \fIEVP_MD_block_size()\fR return the digest or block size in bytes. .PP \&\fIEVP_md_null()\fR, \fIEVP_md2()\fR, \fIEVP_md5()\fR, \fIEVP_sha()\fR, \fIEVP_sha1()\fR, \fIEVP_dss()\fR, \&\fIEVP_dss1()\fR, \fIEVP_mdc2()\fR and \fIEVP_ripemd160()\fR return pointers to the corresponding \s-1EVP_MD\s0 structures. .PP \&\fIEVP_get_digestbyname()\fR, \fIEVP_get_digestbynid()\fR and \fIEVP_get_digestbyobj()\fR return either an \fB\s-1EVP_MD\s0\fR structure or \s-1NULL\s0 if an error occurs. .SH "NOTES" .IX Header "NOTES" The \fB\s-1EVP\s0\fR interface to message digests should almost always be used in preference to the low level interfaces. This is because the code then becomes transparent to the digest used and much more flexible. .PP \&\s-1SHA1\s0 is the digest of choice for new applications. The other digest algorithms are still in common use. .SH "EXAMPLE" .IX Header "EXAMPLE" This example digests the data \*(L"Test Message\en\*(R" and \*(L"Hello World\en\*(R", using the digest name passed on the command line. .PP .Vb 2 \& #include \& #include .Ve .Vb 8 \& main(int argc, char *argv[]) \& { \& EVP_MD_CTX mdctx; \& const EVP_MD *md; \& char mess1[] = "Test Message\en"; \& char mess2[] = "Hello World\en"; \& unsigned char md_value[EVP_MAX_MD_SIZE]; \& int md_len, i; .Ve .Vb 1 \& OpenSSL_add_all_digests(); .Ve .Vb 4 \& if(!argv[1]) { \& printf("Usage: mdtest digestname\en"); \& exit(1); \& } .Ve .Vb 1 \& md = EVP_get_digestbyname(argv[1]); .Ve .Vb 4 \& if(!md) { \& printf("Unknown message digest %s\en", argv[1]); \& exit(1); \& } .Ve .Vb 4 \& EVP_DigestInit(&mdctx, md); \& EVP_DigestUpdate(&mdctx, mess1, strlen(mess1)); \& EVP_DigestUpdate(&mdctx, mess2, strlen(mess2)); \& EVP_DigestFinal(&mdctx, md_value, &md_len); .Ve .Vb 4 \& printf("Digest is: "); \& for(i = 0; i < md_len; i++) printf("%02x", md_value[i]); \& printf("\en"); \& } .Ve .SH "BUGS" .IX Header "BUGS" Several of the functions do not return values: maybe they should. Although the internal digest operations will never fail some future hardware based operations might. .PP The link between digests and signing algorithms results in a situation where \&\fIEVP_sha1()\fR must be used with \s-1RSA\s0 and \fIEVP_dss1()\fR must be used with \s-1DSS\s0 even though they are identical digests. .PP The size of an \fB\s-1EVP_MD_CTX\s0\fR structure is determined at compile time: this results in code that must be recompiled if the size of \fB\s-1EVP_MD_CTX\s0\fR increases. .SH "SEE ALSO" .IX Header "SEE ALSO" openssl_evp(3), openssl_hmac(3), md2(3), openssl_md5(3), openssl_mdc2(3), openssl_ripemd(3), openssl_sha(3), digest(1) .SH "HISTORY" .IX Header "HISTORY" \&\fIEVP_DigestInit()\fR, \fIEVP_DigestUpdate()\fR and \fIEVP_DigestFinal()\fR are available in all versions of SSLeay and OpenSSL.