/* $NetBSD: nfs_socket.c,v 1.192 2014/08/05 07:55:32 rtr Exp $ */ /* * Copyright (c) 1989, 1991, 1993, 1995 * The Regents of the University of California. All rights reserved. * * This code is derived from software contributed to Berkeley by * Rick Macklem at The University of Guelph. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)nfs_socket.c 8.5 (Berkeley) 3/30/95 */ /* * Socket operations for use by nfs */ #include __KERNEL_RCSID(0, "$NetBSD: nfs_socket.c,v 1.192 2014/08/05 07:55:32 rtr Exp $"); #ifdef _KERNEL_OPT #include "opt_nfs.h" #include "opt_mbuftrace.h" #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef MBUFTRACE struct mowner nfs_mowner = MOWNER_INIT("nfs",""); #endif /* * Estimate rto for an nfs rpc sent via. an unreliable datagram. * Use the mean and mean deviation of rtt for the appropriate type of rpc * for the frequent rpcs and a default for the others. * The justification for doing "other" this way is that these rpcs * happen so infrequently that timer est. would probably be stale. * Also, since many of these rpcs are * non-idempotent, a conservative timeout is desired. * getattr, lookup - A+2D * read, write - A+4D * other - nm_timeo */ #define NFS_RTO(n, t) \ ((t) == 0 ? (n)->nm_timeo : \ ((t) < 3 ? \ (((((n)->nm_srtt[t-1] + 3) >> 2) + (n)->nm_sdrtt[t-1] + 1) >> 1) : \ ((((n)->nm_srtt[t-1] + 7) >> 3) + (n)->nm_sdrtt[t-1] + 1))) #define NFS_SRTT(r) (r)->r_nmp->nm_srtt[nfs_proct[(r)->r_procnum] - 1] #define NFS_SDRTT(r) (r)->r_nmp->nm_sdrtt[nfs_proct[(r)->r_procnum] - 1] /* * Defines which timer to use for the procnum. * 0 - default * 1 - getattr * 2 - lookup * 3 - read * 4 - write */ const int nfs_proct[NFS_NPROCS] = { [NFSPROC_NULL] = 0, [NFSPROC_GETATTR] = 1, [NFSPROC_SETATTR] = 0, [NFSPROC_LOOKUP] = 2, [NFSPROC_ACCESS] = 1, [NFSPROC_READLINK] = 3, [NFSPROC_READ] = 3, [NFSPROC_WRITE] = 4, [NFSPROC_CREATE] = 0, [NFSPROC_MKDIR] = 0, [NFSPROC_SYMLINK] = 0, [NFSPROC_MKNOD] = 0, [NFSPROC_REMOVE] = 0, [NFSPROC_RMDIR] = 0, [NFSPROC_RENAME] = 0, [NFSPROC_LINK] = 0, [NFSPROC_READDIR] = 3, [NFSPROC_READDIRPLUS] = 3, [NFSPROC_FSSTAT] = 0, [NFSPROC_FSINFO] = 0, [NFSPROC_PATHCONF] = 0, [NFSPROC_COMMIT] = 0, [NFSPROC_NOOP] = 0, }; #ifdef DEBUG /* * Avoid spamming the console with debugging messages. We only print * the nfs timer and reply error debugs every 10 seconds. */ const struct timeval nfs_err_interval = { 10, 0 }; struct timeval nfs_reply_last_err_time; struct timeval nfs_timer_last_err_time; #endif /* * There is a congestion window for outstanding rpcs maintained per mount * point. The cwnd size is adjusted in roughly the way that: * Van Jacobson, Congestion avoidance and Control, In "Proceedings of * SIGCOMM '88". ACM, August 1988. * describes for TCP. The cwnd size is chopped in half on a retransmit timeout * and incremented by 1/cwnd when each rpc reply is received and a full cwnd * of rpcs is in progress. * (The sent count and cwnd are scaled for integer arith.) * Variants of "slow start" were tried and were found to be too much of a * performance hit (ave. rtt 3 times larger), * I suspect due to the large rtt that nfs rpcs have. */ int nfsrtton = 0; struct nfsrtt nfsrtt; static const int nfs_backoff[8] = { 2, 4, 8, 16, 32, 64, 128, 256, }; struct nfsreqhead nfs_reqq; static callout_t nfs_timer_ch; static struct evcnt nfs_timer_ev; static struct evcnt nfs_timer_start_ev; static struct evcnt nfs_timer_stop_ev; static kmutex_t nfs_timer_lock; static bool (*nfs_timer_srvvec)(void); /* * Initialize sockets and congestion for a new NFS connection. * We do not free the sockaddr if error. */ int nfs_connect(struct nfsmount *nmp, struct nfsreq *rep, struct lwp *l) { struct socket *so; int error, rcvreserve, sndreserve; struct sockaddr *saddr; struct sockaddr_in *sin; struct sockaddr_in6 *sin6; struct mbuf *m; int val; nmp->nm_so = NULL; saddr = mtod(nmp->nm_nam, struct sockaddr *); error = socreate(saddr->sa_family, &nmp->nm_so, nmp->nm_sotype, nmp->nm_soproto, l, NULL); if (error) goto bad; so = nmp->nm_so; #ifdef MBUFTRACE so->so_mowner = &nfs_mowner; so->so_rcv.sb_mowner = &nfs_mowner; so->so_snd.sb_mowner = &nfs_mowner; #endif nmp->nm_soflags = so->so_proto->pr_flags; /* * Some servers require that the client port be a reserved port number. */ if (saddr->sa_family == AF_INET && (nmp->nm_flag & NFSMNT_RESVPORT)) { val = IP_PORTRANGE_LOW; if ((error = so_setsockopt(NULL, so, IPPROTO_IP, IP_PORTRANGE, &val, sizeof(val)))) goto bad; m = m_get(M_WAIT, MT_SONAME); MCLAIM(m, so->so_mowner); sin = mtod(m, struct sockaddr_in *); sin->sin_len = m->m_len = sizeof (struct sockaddr_in); sin->sin_family = AF_INET; sin->sin_addr.s_addr = INADDR_ANY; sin->sin_port = 0; error = sobind(so, m, &lwp0); m_freem(m); if (error) goto bad; } if (saddr->sa_family == AF_INET6 && (nmp->nm_flag & NFSMNT_RESVPORT)) { val = IPV6_PORTRANGE_LOW; if ((error = so_setsockopt(NULL, so, IPPROTO_IPV6, IPV6_PORTRANGE, &val, sizeof(val)))) goto bad; m = m_get(M_WAIT, MT_SONAME); MCLAIM(m, so->so_mowner); sin6 = mtod(m, struct sockaddr_in6 *); memset(sin6, 0, sizeof(*sin6)); sin6->sin6_len = m->m_len = sizeof (struct sockaddr_in6); sin6->sin6_family = AF_INET6; error = sobind(so, m, &lwp0); m_freem(m); if (error) goto bad; } /* * Protocols that do not require connections may be optionally left * unconnected for servers that reply from a port other than NFS_PORT. */ solock(so); if (nmp->nm_flag & NFSMNT_NOCONN) { if (nmp->nm_soflags & PR_CONNREQUIRED) { sounlock(so); error = ENOTCONN; goto bad; } } else { error = soconnect(so, nmp->nm_nam, l); if (error) { sounlock(so); goto bad; } /* * Wait for the connection to complete. Cribbed from the * connect system call but with the wait timing out so * that interruptible mounts don't hang here for a long time. */ while ((so->so_state & SS_ISCONNECTING) && so->so_error == 0) { (void)sowait(so, false, 2 * hz); if ((so->so_state & SS_ISCONNECTING) && so->so_error == 0 && rep && (error = nfs_sigintr(nmp, rep, rep->r_lwp)) != 0){ so->so_state &= ~SS_ISCONNECTING; sounlock(so); goto bad; } } if (so->so_error) { error = so->so_error; so->so_error = 0; sounlock(so); goto bad; } } if (nmp->nm_flag & (NFSMNT_SOFT | NFSMNT_INT)) { so->so_rcv.sb_timeo = (5 * hz); so->so_snd.sb_timeo = (5 * hz); } else { /* * enable receive timeout to detect server crash and reconnect. * otherwise, we can be stuck in soreceive forever. */ so->so_rcv.sb_timeo = (5 * hz); so->so_snd.sb_timeo = 0; } if (nmp->nm_sotype == SOCK_DGRAM) { sndreserve = (nmp->nm_wsize + NFS_MAXPKTHDR) * 3; rcvreserve = (max(nmp->nm_rsize, nmp->nm_readdirsize) + NFS_MAXPKTHDR) * 2; } else if (nmp->nm_sotype == SOCK_SEQPACKET) { sndreserve = (nmp->nm_wsize + NFS_MAXPKTHDR) * 3; rcvreserve = (max(nmp->nm_rsize, nmp->nm_readdirsize) + NFS_MAXPKTHDR) * 3; } else { sounlock(so); if (nmp->nm_sotype != SOCK_STREAM) panic("nfscon sotype"); if (so->so_proto->pr_flags & PR_CONNREQUIRED) { val = 1; so_setsockopt(NULL, so, SOL_SOCKET, SO_KEEPALIVE, &val, sizeof(val)); } if (so->so_proto->pr_protocol == IPPROTO_TCP) { val = 1; so_setsockopt(NULL, so, IPPROTO_TCP, TCP_NODELAY, &val, sizeof(val)); } sndreserve = (nmp->nm_wsize + NFS_MAXPKTHDR + sizeof (u_int32_t)) * 3; rcvreserve = (nmp->nm_rsize + NFS_MAXPKTHDR + sizeof (u_int32_t)) * 3; solock(so); } error = soreserve(so, sndreserve, rcvreserve); if (error) { sounlock(so); goto bad; } so->so_rcv.sb_flags |= SB_NOINTR; so->so_snd.sb_flags |= SB_NOINTR; sounlock(so); /* Initialize other non-zero congestion variables */ nmp->nm_srtt[0] = nmp->nm_srtt[1] = nmp->nm_srtt[2] = nmp->nm_srtt[3] = NFS_TIMEO << 3; nmp->nm_sdrtt[0] = nmp->nm_sdrtt[1] = nmp->nm_sdrtt[2] = nmp->nm_sdrtt[3] = 0; nmp->nm_cwnd = NFS_MAXCWND / 2; /* Initial send window */ nmp->nm_sent = 0; nmp->nm_timeouts = 0; return (0); bad: nfs_disconnect(nmp); return (error); } /* * Reconnect routine: * Called when a connection is broken on a reliable protocol. * - clean up the old socket * - nfs_connect() again * - set R_MUSTRESEND for all outstanding requests on mount point * If this fails the mount point is DEAD! * nb: Must be called with the nfs_sndlock() set on the mount point. */ int nfs_reconnect(struct nfsreq *rep) { struct nfsreq *rp; struct nfsmount *nmp = rep->r_nmp; int error; nfs_disconnect(nmp); while ((error = nfs_connect(nmp, rep, &lwp0)) != 0) { if (error == EINTR || error == ERESTART) return (EINTR); kpause("nfscn2", false, hz, NULL); } /* * Loop through outstanding request list and fix up all requests * on old socket. */ TAILQ_FOREACH(rp, &nfs_reqq, r_chain) { if (rp->r_nmp == nmp) { if ((rp->r_flags & R_MUSTRESEND) == 0) rp->r_flags |= R_MUSTRESEND | R_REXMITTED; rp->r_rexmit = 0; } } return (0); } /* * NFS disconnect. Clean up and unlink. */ void nfs_disconnect(struct nfsmount *nmp) { struct socket *so; int drain = 0; if (nmp->nm_so) { so = nmp->nm_so; nmp->nm_so = NULL; solock(so); soshutdown(so, SHUT_RDWR); sounlock(so); drain = (nmp->nm_iflag & NFSMNT_DISMNT) != 0; if (drain) { /* * soshutdown() above should wake up the current * listener. * Now wake up those waiting for the receive lock, and * wait for them to go away unhappy, to prevent *nmp * from evaporating while they're sleeping. */ mutex_enter(&nmp->nm_lock); while (nmp->nm_waiters > 0) { cv_broadcast(&nmp->nm_rcvcv); cv_broadcast(&nmp->nm_sndcv); cv_wait(&nmp->nm_disconcv, &nmp->nm_lock); } mutex_exit(&nmp->nm_lock); } soclose(so); } #ifdef DIAGNOSTIC if (drain && (nmp->nm_waiters > 0)) panic("nfs_disconnect: waiters left after drain?"); #endif } void nfs_safedisconnect(struct nfsmount *nmp) { struct nfsreq dummyreq; memset(&dummyreq, 0, sizeof(dummyreq)); dummyreq.r_nmp = nmp; nfs_rcvlock(nmp, &dummyreq); /* XXX ignored error return */ nfs_disconnect(nmp); nfs_rcvunlock(nmp); } /* * This is the nfs send routine. For connection based socket types, it * must be called with an nfs_sndlock() on the socket. * "rep == NULL" indicates that it has been called from a server. * For the client side: * - return EINTR if the RPC is terminated, 0 otherwise * - set R_MUSTRESEND if the send fails for any reason * - do any cleanup required by recoverable socket errors (? ? ?) * For the server side: * - return EINTR or ERESTART if interrupted by a signal * - return EPIPE if a connection is lost for connection based sockets (TCP...) * - do any cleanup required by recoverable socket errors (? ? ?) */ int nfs_send(struct socket *so, struct mbuf *nam, struct mbuf *top, struct nfsreq *rep, struct lwp *l) { struct mbuf *sendnam; int error, soflags, flags; /* XXX nfs_doio()/nfs_request() calls with rep->r_lwp == NULL */ if (l == NULL && rep->r_lwp == NULL) l = curlwp; if (rep) { if (rep->r_flags & R_SOFTTERM) { m_freem(top); return (EINTR); } if ((so = rep->r_nmp->nm_so) == NULL) { rep->r_flags |= R_MUSTRESEND; m_freem(top); return (0); } rep->r_flags &= ~R_MUSTRESEND; soflags = rep->r_nmp->nm_soflags; } else soflags = so->so_proto->pr_flags; if ((soflags & PR_CONNREQUIRED) || (so->so_state & SS_ISCONNECTED)) sendnam = NULL; else sendnam = nam; if (so->so_type == SOCK_SEQPACKET) flags = MSG_EOR; else flags = 0; error = (*so->so_send)(so, sendnam, NULL, top, NULL, flags, l); if (error) { if (rep) { if (error == ENOBUFS && so->so_type == SOCK_DGRAM) { /* * We're too fast for the network/driver, * and UDP isn't flowcontrolled. * We need to resend. This is not fatal, * just try again. * * Could be smarter here by doing some sort * of a backoff, but this is rare. */ rep->r_flags |= R_MUSTRESEND; } else { if (error != EPIPE) log(LOG_INFO, "nfs send error %d for %s\n", error, rep->r_nmp->nm_mountp-> mnt_stat.f_mntfromname); /* * Deal with errors for the client side. */ if (rep->r_flags & R_SOFTTERM) error = EINTR; else if (error != EMSGSIZE) rep->r_flags |= R_MUSTRESEND; } } else { /* * See above. This error can happen under normal * circumstances and the log is too noisy. * The error will still show up in nfsstat. */ if (error != ENOBUFS || so->so_type != SOCK_DGRAM) log(LOG_INFO, "nfsd send error %d\n", error); } /* * Handle any recoverable (soft) socket errors here. (? ? ?) */ if (error != EINTR && error != ERESTART && error != EWOULDBLOCK && error != EPIPE && error != EMSGSIZE) error = 0; } return (error); } /* * Generate the rpc reply header * siz arg. is used to decide if adding a cluster is worthwhile */ int nfs_rephead(int siz, struct nfsrv_descript *nd, struct nfssvc_sock *slp, int err, int cache, u_quad_t *frev, struct mbuf **mrq, struct mbuf **mbp, char **bposp) { u_int32_t *tl; struct mbuf *mreq; char *bpos; struct mbuf *mb; mreq = m_gethdr(M_WAIT, MT_DATA); MCLAIM(mreq, &nfs_mowner); mb = mreq; /* * If this is a big reply, use a cluster else * try and leave leading space for the lower level headers. */ siz += RPC_REPLYSIZ; if (siz >= max_datalen) { m_clget(mreq, M_WAIT); } else mreq->m_data += max_hdr; tl = mtod(mreq, u_int32_t *); mreq->m_len = 6 * NFSX_UNSIGNED; bpos = ((char *)tl) + mreq->m_len; *tl++ = txdr_unsigned(nd->nd_retxid); *tl++ = rpc_reply; if (err == ERPCMISMATCH || (err & NFSERR_AUTHERR)) { *tl++ = rpc_msgdenied; if (err & NFSERR_AUTHERR) { *tl++ = rpc_autherr; *tl = txdr_unsigned(err & ~NFSERR_AUTHERR); mreq->m_len -= NFSX_UNSIGNED; bpos -= NFSX_UNSIGNED; } else { *tl++ = rpc_mismatch; *tl++ = txdr_unsigned(RPC_VER2); *tl = txdr_unsigned(RPC_VER2); } } else { *tl++ = rpc_msgaccepted; /* * For Kerberos authentication, we must send the nickname * verifier back, otherwise just RPCAUTH_NULL. */ if (nd->nd_flag & ND_KERBFULL) { struct nfsuid *nuidp; struct timeval ktvin, ktvout; memset(&ktvout, 0, sizeof ktvout); /* XXX gcc */ LIST_FOREACH(nuidp, NUIDHASH(slp, kauth_cred_geteuid(nd->nd_cr)), nu_hash) { if (kauth_cred_geteuid(nuidp->nu_cr) == kauth_cred_geteuid(nd->nd_cr) && (!nd->nd_nam2 || netaddr_match( NU_NETFAM(nuidp), &nuidp->nu_haddr, nd->nd_nam2))) break; } if (nuidp) { ktvin.tv_sec = txdr_unsigned(nuidp->nu_timestamp.tv_sec - 1); ktvin.tv_usec = txdr_unsigned(nuidp->nu_timestamp.tv_usec); /* * Encrypt the timestamp in ecb mode using the * session key. */ #ifdef NFSKERB XXX #else (void)ktvin.tv_sec; #endif *tl++ = rpc_auth_kerb; *tl++ = txdr_unsigned(3 * NFSX_UNSIGNED); *tl = ktvout.tv_sec; nfsm_build(tl, u_int32_t *, 3 * NFSX_UNSIGNED); *tl++ = ktvout.tv_usec; *tl++ = txdr_unsigned( kauth_cred_geteuid(nuidp->nu_cr)); } else { *tl++ = 0; *tl++ = 0; } } else { *tl++ = 0; *tl++ = 0; } switch (err) { case EPROGUNAVAIL: *tl = txdr_unsigned(RPC_PROGUNAVAIL); break; case EPROGMISMATCH: *tl = txdr_unsigned(RPC_PROGMISMATCH); nfsm_build(tl, u_int32_t *, 2 * NFSX_UNSIGNED); *tl++ = txdr_unsigned(2); *tl = txdr_unsigned(3); break; case EPROCUNAVAIL: *tl = txdr_unsigned(RPC_PROCUNAVAIL); break; case EBADRPC: *tl = txdr_unsigned(RPC_GARBAGE); break; default: *tl = 0; if (err != NFSERR_RETVOID) { nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED); if (err) *tl = txdr_unsigned(nfsrv_errmap(nd, err)); else *tl = 0; } break; }; } if (mrq != NULL) *mrq = mreq; *mbp = mb; *bposp = bpos; if (err != 0 && err != NFSERR_RETVOID) nfsstats.srvrpc_errs++; return (0); } static void nfs_timer_schedule(void) { callout_schedule(&nfs_timer_ch, nfs_ticks); } void nfs_timer_start(void) { if (callout_pending(&nfs_timer_ch)) return; nfs_timer_start_ev.ev_count++; nfs_timer_schedule(); } void nfs_timer_init(void) { mutex_init(&nfs_timer_lock, MUTEX_DEFAULT, IPL_NONE); callout_init(&nfs_timer_ch, 0); callout_setfunc(&nfs_timer_ch, nfs_timer, NULL); evcnt_attach_dynamic(&nfs_timer_ev, EVCNT_TYPE_MISC, NULL, "nfs", "timer"); evcnt_attach_dynamic(&nfs_timer_start_ev, EVCNT_TYPE_MISC, NULL, "nfs", "timer start"); evcnt_attach_dynamic(&nfs_timer_stop_ev, EVCNT_TYPE_MISC, NULL, "nfs", "timer stop"); } void nfs_timer_fini(void) { callout_halt(&nfs_timer_ch, NULL); callout_destroy(&nfs_timer_ch); mutex_destroy(&nfs_timer_lock); evcnt_detach(&nfs_timer_ev); evcnt_detach(&nfs_timer_start_ev); evcnt_detach(&nfs_timer_stop_ev); } void nfs_timer_srvinit(bool (*func)(void)) { nfs_timer_srvvec = func; } void nfs_timer_srvfini(void) { mutex_enter(&nfs_timer_lock); nfs_timer_srvvec = NULL; mutex_exit(&nfs_timer_lock); } /* * Nfs timer routine * Scan the nfsreq list and retranmit any requests that have timed out * To avoid retransmission attempts on STREAM sockets (in the future) make * sure to set the r_retry field to 0 (implies nm_retry == 0). */ void nfs_timer(void *arg) { struct nfsreq *rep; struct mbuf *m; struct socket *so; struct nfsmount *nmp; int timeo; int error; bool more = false; nfs_timer_ev.ev_count++; mutex_enter(softnet_lock); /* XXX PR 40491 */ TAILQ_FOREACH(rep, &nfs_reqq, r_chain) { more = true; nmp = rep->r_nmp; if (rep->r_mrep || (rep->r_flags & R_SOFTTERM)) continue; if (nfs_sigintr(nmp, rep, rep->r_lwp)) { rep->r_flags |= R_SOFTTERM; continue; } if (rep->r_rtt >= 0) { rep->r_rtt++; if (nmp->nm_flag & NFSMNT_DUMBTIMR) timeo = nmp->nm_timeo; else timeo = NFS_RTO(nmp, nfs_proct[rep->r_procnum]); if (nmp->nm_timeouts > 0) timeo *= nfs_backoff[nmp->nm_timeouts - 1]; if (timeo > NFS_MAXTIMEO) timeo = NFS_MAXTIMEO; if (rep->r_rtt <= timeo) continue; if (nmp->nm_timeouts < (sizeof(nfs_backoff) / sizeof(nfs_backoff[0]))) nmp->nm_timeouts++; } /* * Check for server not responding */ if ((rep->r_flags & R_TPRINTFMSG) == 0 && rep->r_rexmit > nmp->nm_deadthresh) { nfs_msg(rep->r_lwp, nmp->nm_mountp->mnt_stat.f_mntfromname, "not responding"); rep->r_flags |= R_TPRINTFMSG; } if (rep->r_rexmit >= rep->r_retry) { /* too many */ nfsstats.rpctimeouts++; rep->r_flags |= R_SOFTTERM; continue; } if (nmp->nm_sotype != SOCK_DGRAM) { if (++rep->r_rexmit > NFS_MAXREXMIT) rep->r_rexmit = NFS_MAXREXMIT; continue; } if ((so = nmp->nm_so) == NULL) continue; /* * If there is enough space and the window allows.. * Resend it * Set r_rtt to -1 in case we fail to send it now. */ /* solock(so); XXX PR 40491 */ rep->r_rtt = -1; if (sbspace(&so->so_snd) >= rep->r_mreq->m_pkthdr.len && ((nmp->nm_flag & NFSMNT_DUMBTIMR) || (rep->r_flags & R_SENT) || nmp->nm_sent < nmp->nm_cwnd) && (m = m_copym(rep->r_mreq, 0, M_COPYALL, M_DONTWAIT))){ if (so->so_state & SS_ISCONNECTED) error = (*so->so_proto->pr_usrreqs->pr_send)(so, m, NULL, NULL, NULL); else error = (*so->so_proto->pr_usrreqs->pr_send)(so, m, nmp->nm_nam, NULL, NULL); if (error) { if (NFSIGNORE_SOERROR(nmp->nm_soflags, error)) { #ifdef DEBUG if (ratecheck(&nfs_timer_last_err_time, &nfs_err_interval)) printf("%s: ignoring error " "%d\n", __func__, error); #endif so->so_error = 0; } } else { /* * Iff first send, start timing * else turn timing off, backoff timer * and divide congestion window by 2. */ if (rep->r_flags & R_SENT) { rep->r_flags &= ~R_TIMING; if (++rep->r_rexmit > NFS_MAXREXMIT) rep->r_rexmit = NFS_MAXREXMIT; nmp->nm_cwnd >>= 1; if (nmp->nm_cwnd < NFS_CWNDSCALE) nmp->nm_cwnd = NFS_CWNDSCALE; nfsstats.rpcretries++; } else { rep->r_flags |= R_SENT; nmp->nm_sent += NFS_CWNDSCALE; } rep->r_rtt = 0; } } /* sounlock(so); XXX PR 40491 */ } mutex_exit(softnet_lock); /* XXX PR 40491 */ mutex_enter(&nfs_timer_lock); if (nfs_timer_srvvec != NULL) { more |= (*nfs_timer_srvvec)(); } mutex_exit(&nfs_timer_lock); if (more) { nfs_timer_schedule(); } else { nfs_timer_stop_ev.ev_count++; } } /* * Test for a termination condition pending on the process. * This is used for NFSMNT_INT mounts. */ int nfs_sigintr(struct nfsmount *nmp, struct nfsreq *rep, struct lwp *l) { sigset_t ss; if (rep && (rep->r_flags & R_SOFTTERM)) return (EINTR); if (!(nmp->nm_flag & NFSMNT_INT)) return (0); if (l) { sigpending1(l, &ss); #if 0 sigminusset(&l->l_proc->p_sigctx.ps_sigignore, &ss); #endif if (sigismember(&ss, SIGINT) || sigismember(&ss, SIGTERM) || sigismember(&ss, SIGKILL) || sigismember(&ss, SIGHUP) || sigismember(&ss, SIGQUIT)) return (EINTR); } return (0); } int nfs_rcvlock(struct nfsmount *nmp, struct nfsreq *rep) { int *flagp = &nmp->nm_iflag; int slptimeo = 0; bool catch; int error = 0; KASSERT(nmp == rep->r_nmp); catch = (nmp->nm_flag & NFSMNT_INT) != 0; mutex_enter(&nmp->nm_lock); while (/* CONSTCOND */ true) { if (*flagp & NFSMNT_DISMNT) { cv_signal(&nmp->nm_disconcv); error = EIO; break; } /* If our reply was received while we were sleeping, * then just return without taking the lock to avoid a * situation where a single iod could 'capture' the * receive lock. */ if (rep->r_mrep != NULL) { cv_signal(&nmp->nm_rcvcv); error = EALREADY; break; } if (nfs_sigintr(rep->r_nmp, rep, rep->r_lwp)) { cv_signal(&nmp->nm_rcvcv); error = EINTR; break; } if ((*flagp & NFSMNT_RCVLOCK) == 0) { *flagp |= NFSMNT_RCVLOCK; break; } if (catch) { cv_timedwait_sig(&nmp->nm_rcvcv, &nmp->nm_lock, slptimeo); } else { cv_timedwait(&nmp->nm_rcvcv, &nmp->nm_lock, slptimeo); } if (catch) { catch = false; slptimeo = 2 * hz; } } mutex_exit(&nmp->nm_lock); return error; } /* * Unlock the stream socket for others. */ void nfs_rcvunlock(struct nfsmount *nmp) { mutex_enter(&nmp->nm_lock); if ((nmp->nm_iflag & NFSMNT_RCVLOCK) == 0) panic("nfs rcvunlock"); nmp->nm_iflag &= ~NFSMNT_RCVLOCK; cv_signal(&nmp->nm_rcvcv); mutex_exit(&nmp->nm_lock); } /* * Parse an RPC request * - verify it * - allocate and fill in the cred. */ int nfs_getreq(struct nfsrv_descript *nd, struct nfsd *nfsd, int has_header) { int len, i; u_int32_t *tl; int32_t t1; struct uio uio; struct iovec iov; char *dpos, *cp2, *cp; u_int32_t nfsvers, auth_type; uid_t nickuid; int error = 0, ticklen; struct mbuf *mrep, *md; struct nfsuid *nuidp; struct timeval tvin, tvout; memset(&tvout, 0, sizeof tvout); /* XXX gcc */ KASSERT(nd->nd_cr == NULL); mrep = nd->nd_mrep; md = nd->nd_md; dpos = nd->nd_dpos; if (has_header) { nfsm_dissect(tl, u_int32_t *, 10 * NFSX_UNSIGNED); nd->nd_retxid = fxdr_unsigned(u_int32_t, *tl++); if (*tl++ != rpc_call) { m_freem(mrep); return (EBADRPC); } } else nfsm_dissect(tl, u_int32_t *, 8 * NFSX_UNSIGNED); nd->nd_repstat = 0; nd->nd_flag = 0; if (*tl++ != rpc_vers) { nd->nd_repstat = ERPCMISMATCH; nd->nd_procnum = NFSPROC_NOOP; return (0); } if (*tl != nfs_prog) { nd->nd_repstat = EPROGUNAVAIL; nd->nd_procnum = NFSPROC_NOOP; return (0); } tl++; nfsvers = fxdr_unsigned(u_int32_t, *tl++); if (nfsvers < NFS_VER2 || nfsvers > NFS_VER3) { nd->nd_repstat = EPROGMISMATCH; nd->nd_procnum = NFSPROC_NOOP; return (0); } if (nfsvers == NFS_VER3) nd->nd_flag = ND_NFSV3; nd->nd_procnum = fxdr_unsigned(u_int32_t, *tl++); if (nd->nd_procnum == NFSPROC_NULL) return (0); if (nd->nd_procnum > NFSPROC_COMMIT || (!nd->nd_flag && nd->nd_procnum > NFSV2PROC_STATFS)) { nd->nd_repstat = EPROCUNAVAIL; nd->nd_procnum = NFSPROC_NOOP; return (0); } if ((nd->nd_flag & ND_NFSV3) == 0) nd->nd_procnum = nfsv3_procid[nd->nd_procnum]; auth_type = *tl++; len = fxdr_unsigned(int, *tl++); if (len < 0 || len > RPCAUTH_MAXSIZ) { m_freem(mrep); return (EBADRPC); } nd->nd_flag &= ~ND_KERBAUTH; /* * Handle auth_unix or auth_kerb. */ if (auth_type == rpc_auth_unix) { uid_t uid; gid_t gid; nd->nd_cr = kauth_cred_alloc(); len = fxdr_unsigned(int, *++tl); if (len < 0 || len > NFS_MAXNAMLEN) { m_freem(mrep); error = EBADRPC; goto errout; } nfsm_adv(nfsm_rndup(len)); nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED); uid = fxdr_unsigned(uid_t, *tl++); gid = fxdr_unsigned(gid_t, *tl++); kauth_cred_setuid(nd->nd_cr, uid); kauth_cred_seteuid(nd->nd_cr, uid); kauth_cred_setsvuid(nd->nd_cr, uid); kauth_cred_setgid(nd->nd_cr, gid); kauth_cred_setegid(nd->nd_cr, gid); kauth_cred_setsvgid(nd->nd_cr, gid); len = fxdr_unsigned(int, *tl); if (len < 0 || len > RPCAUTH_UNIXGIDS) { m_freem(mrep); error = EBADRPC; goto errout; } nfsm_dissect(tl, u_int32_t *, (len + 2) * NFSX_UNSIGNED); if (len > 0) { size_t grbuf_size = min(len, NGROUPS) * sizeof(gid_t); gid_t *grbuf = kmem_alloc(grbuf_size, KM_SLEEP); for (i = 0; i < len; i++) { if (i < NGROUPS) /* XXX elad */ grbuf[i] = fxdr_unsigned(gid_t, *tl++); else tl++; } kauth_cred_setgroups(nd->nd_cr, grbuf, min(len, NGROUPS), -1, UIO_SYSSPACE); kmem_free(grbuf, grbuf_size); } len = fxdr_unsigned(int, *++tl); if (len < 0 || len > RPCAUTH_MAXSIZ) { m_freem(mrep); error = EBADRPC; goto errout; } if (len > 0) nfsm_adv(nfsm_rndup(len)); } else if (auth_type == rpc_auth_kerb) { switch (fxdr_unsigned(int, *tl++)) { case RPCAKN_FULLNAME: ticklen = fxdr_unsigned(int, *tl); *((u_int32_t *)nfsd->nfsd_authstr) = *tl; uio.uio_resid = nfsm_rndup(ticklen) + NFSX_UNSIGNED; nfsd->nfsd_authlen = uio.uio_resid + NFSX_UNSIGNED; if (uio.uio_resid > (len - 2 * NFSX_UNSIGNED)) { m_freem(mrep); error = EBADRPC; goto errout; } uio.uio_offset = 0; uio.uio_iov = &iov; uio.uio_iovcnt = 1; UIO_SETUP_SYSSPACE(&uio); iov.iov_base = (void *)&nfsd->nfsd_authstr[4]; iov.iov_len = RPCAUTH_MAXSIZ - 4; nfsm_mtouio(&uio, uio.uio_resid); nfsm_dissect(tl, u_int32_t *, 2 * NFSX_UNSIGNED); if (*tl++ != rpc_auth_kerb || fxdr_unsigned(int, *tl) != 4 * NFSX_UNSIGNED) { printf("Bad kerb verifier\n"); nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADVERF); nd->nd_procnum = NFSPROC_NOOP; return (0); } nfsm_dissect(cp, void *, 4 * NFSX_UNSIGNED); tl = (u_int32_t *)cp; if (fxdr_unsigned(int, *tl) != RPCAKN_FULLNAME) { printf("Not fullname kerb verifier\n"); nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADVERF); nd->nd_procnum = NFSPROC_NOOP; return (0); } cp += NFSX_UNSIGNED; memcpy(nfsd->nfsd_verfstr, cp, 3 * NFSX_UNSIGNED); nfsd->nfsd_verflen = 3 * NFSX_UNSIGNED; nd->nd_flag |= ND_KERBFULL; nfsd->nfsd_flag |= NFSD_NEEDAUTH; break; case RPCAKN_NICKNAME: if (len != 2 * NFSX_UNSIGNED) { printf("Kerb nickname short\n"); nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADCRED); nd->nd_procnum = NFSPROC_NOOP; return (0); } nickuid = fxdr_unsigned(uid_t, *tl); nfsm_dissect(tl, u_int32_t *, 2 * NFSX_UNSIGNED); if (*tl++ != rpc_auth_kerb || fxdr_unsigned(int, *tl) != 3 * NFSX_UNSIGNED) { printf("Kerb nick verifier bad\n"); nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADVERF); nd->nd_procnum = NFSPROC_NOOP; return (0); } nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED); tvin.tv_sec = *tl++; tvin.tv_usec = *tl; LIST_FOREACH(nuidp, NUIDHASH(nfsd->nfsd_slp, nickuid), nu_hash) { if (kauth_cred_geteuid(nuidp->nu_cr) == nickuid && (!nd->nd_nam2 || netaddr_match(NU_NETFAM(nuidp), &nuidp->nu_haddr, nd->nd_nam2))) break; } if (!nuidp) { nd->nd_repstat = (NFSERR_AUTHERR|AUTH_REJECTCRED); nd->nd_procnum = NFSPROC_NOOP; return (0); } /* * Now, decrypt the timestamp using the session key * and validate it. */ #ifdef NFSKERB XXX #else (void)tvin.tv_sec; #endif tvout.tv_sec = fxdr_unsigned(long, tvout.tv_sec); tvout.tv_usec = fxdr_unsigned(long, tvout.tv_usec); if (nuidp->nu_expire < time_second || nuidp->nu_timestamp.tv_sec > tvout.tv_sec || (nuidp->nu_timestamp.tv_sec == tvout.tv_sec && nuidp->nu_timestamp.tv_usec > tvout.tv_usec)) { nuidp->nu_expire = 0; nd->nd_repstat = (NFSERR_AUTHERR|AUTH_REJECTVERF); nd->nd_procnum = NFSPROC_NOOP; return (0); } kauth_cred_hold(nuidp->nu_cr); nd->nd_cr = nuidp->nu_cr; nd->nd_flag |= ND_KERBNICK; } } else { nd->nd_repstat = (NFSERR_AUTHERR | AUTH_REJECTCRED); nd->nd_procnum = NFSPROC_NOOP; return (0); } nd->nd_md = md; nd->nd_dpos = dpos; KASSERT((nd->nd_cr == NULL && (nfsd->nfsd_flag & NFSD_NEEDAUTH) != 0) || (nd->nd_cr != NULL && (nfsd->nfsd_flag & NFSD_NEEDAUTH) == 0)); return (0); nfsmout: errout: KASSERT(error != 0); if (nd->nd_cr != NULL) { kauth_cred_free(nd->nd_cr); nd->nd_cr = NULL; } return (error); } int nfs_msg(struct lwp *l, const char *server, const char *msg) { tpr_t tpr; #if 0 /* XXX nfs_timer can't block on proc_lock */ if (l) tpr = tprintf_open(l->l_proc); else #endif tpr = NULL; tprintf(tpr, "nfs server %s: %s\n", server, msg); tprintf_close(tpr); return (0); } static struct pool nfs_srvdesc_pool; void nfsdreq_init(void) { pool_init(&nfs_srvdesc_pool, sizeof(struct nfsrv_descript), 0, 0, 0, "nfsrvdescpl", &pool_allocator_nointr, IPL_NONE); } void nfsdreq_fini(void) { pool_destroy(&nfs_srvdesc_pool); } struct nfsrv_descript * nfsdreq_alloc(void) { struct nfsrv_descript *nd; nd = pool_get(&nfs_srvdesc_pool, PR_WAITOK); nd->nd_cr = NULL; return nd; } void nfsdreq_free(struct nfsrv_descript *nd) { kauth_cred_t cr; cr = nd->nd_cr; if (cr != NULL) { kauth_cred_free(cr); } pool_put(&nfs_srvdesc_pool, nd); }