* MOTOROLA MICROPROCESSOR & MEMORY TECHNOLOGY GROUP * M68000 Hi-Performance Microprocessor Division * M68040 Software Package * * M68040 Software Package Copyright (c) 1993, 1994 Motorola Inc. * All rights reserved. * * THE SOFTWARE is provided on an "AS IS" basis and without warranty. * To the maximum extent permitted by applicable law, * MOTOROLA DISCLAIMS ALL WARRANTIES WHETHER EXPRESS OR IMPLIED, * INCLUDING IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A * PARTICULAR PURPOSE and any warranty against infringement with * regard to the SOFTWARE (INCLUDING ANY MODIFIED VERSIONS THEREOF) * and any accompanying written materials. * * To the maximum extent permitted by applicable law, * IN NO EVENT SHALL MOTOROLA BE LIABLE FOR ANY DAMAGES WHATSOEVER * (INCLUDING WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS * PROFITS, BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR * OTHER PECUNIARY LOSS) ARISING OF THE USE OR INABILITY TO USE THE * SOFTWARE. Motorola assumes no responsibility for the maintenance * and support of the SOFTWARE. * * You are hereby granted a copyright license to use, modify, and * distribute the SOFTWARE so long as this entire notice is retained * without alteration in any modified and/or redistributed versions, * and that such modified versions are clearly identified as such. * No licenses are granted by implication, estoppel or otherwise * under any patents or trademarks of Motorola, Inc. * * decbin.sa 3.3 12/19/90 * * Description: Converts normalized packed bcd value pointed to by * register A6 to extended-precision value in FP0. * * Input: Normalized packed bcd value in ETEMP(a6). * * Output: Exact floating-point representation of the packed bcd value. * * Saves and Modifies: D2-D5 * * Speed: The program decbin takes ??? cycles to execute. * * Object Size: * * External Reference(s): None. * * Algorithm: * Expected is a normal bcd (i.e. non-exceptional; all inf, zero, * and NaN operands are dispatched without entering this routine) * value in 68881/882 format at location ETEMP(A6). * * A1. Convert the bcd exponent to binary by successive adds and muls. * Set the sign according to SE. Subtract 16 to compensate * for the mantissa which is to be interpreted as 17 integer * digits, rather than 1 integer and 16 fraction digits. * Note: this operation can never overflow. * * A2. Convert the bcd mantissa to binary by successive * adds and muls in FP0. Set the sign according to SM. * The mantissa digits will be converted with the decimal point * assumed following the least-significant digit. * Note: this operation can never overflow. * * A3. Count the number of leading/trailing zeros in the * bcd string. If SE is positive, count the leading zeros; * if negative, count the trailing zeros. Set the adjusted * exponent equal to the exponent from A1 and the zero count * added if SM = 1 and subtracted if SM = 0. Scale the * mantissa the equivalent of forcing in the bcd value: * * SM = 0 a non-zero digit in the integer position * SM = 1 a non-zero digit in Mant0, lsd of the fraction * * this will insure that any value, regardless of its * representation (ex. 0.1E2, 1E1, 10E0, 100E-1), is converted * consistently. * * A4. Calculate the factor 10^exp in FP1 using a table of * 10^(2^n) values. To reduce the error in forming factors * greater than 10^27, a directed rounding scheme is used with * tables rounded to RN, RM, and RP, according to the table * in the comments of the pwrten section. * * A5. Form the final binary number by scaling the mantissa by * the exponent factor. This is done by multiplying the * mantissa in FP0 by the factor in FP1 if the adjusted * exponent sign is positive, and dividing FP0 by FP1 if * it is negative. * * Clean up and return. Check if the final mul or div resulted * in an inex2 exception. If so, set inex1 in the fpsr and * check if the inex1 exception is enabled. If so, set d7 upper * word to $0100. This will signal unimp.sa that an enabled inex1 * exception occured. Unimp will fix the stack. * DECBIN IDNT 2,1 Motorola 040 Floating Point Software Package section 8 include fpsp.h * * PTENRN, PTENRM, and PTENRP are arrays of powers of 10 rounded * to nearest, minus, and plus, respectively. The tables include * 10**{1,2,4,8,16,32,64,128,256,512,1024,2048,4096}. No rounding * is required until the power is greater than 27, however, all * tables include the first 5 for ease of indexing. * xref PTENRN xref PTENRM xref PTENRP RTABLE dc.b 0,0,0,0 dc.b 2,3,2,3 dc.b 2,3,3,2 dc.b 3,2,2,3 xdef decbin xdef calc_e xdef pwrten xdef calc_m xdef norm xdef ap_st_z xdef ap_st_n * FNIBS equ 7 FSTRT equ 0 * ESTRT equ 4 EDIGITS equ 2 * * Constants in single precision FZERO dc.l $00000000 FONE dc.l $3F800000 FTEN dc.l $41200000 TEN equ 10 * decbin: fmove.l #0,FPCR ;clr real fpcr movem.l d2-d5,-(a7) * * Calculate exponent: * 1. Copy bcd value in memory for use as a working copy. * 2. Calculate absolute value of exponent in d1 by mul and add. * 3. Correct for exponent sign. * 4. Subtract 16 to compensate for interpreting the mant as all integer digits. * (i.e., all digits assumed left of the decimal point.) * * Register usage: * * calc_e: * (*) d0: temp digit storage * (*) d1: accumulator for binary exponent * (*) d2: digit count * (*) d3: offset pointer * ( ) d4: first word of bcd * ( ) a0: pointer to working bcd value * ( ) a6: pointer to original bcd value * (*) FP_SCR1: working copy of original bcd value * (*) L_SCR1: copy of original exponent word * calc_e: move.l #EDIGITS,d2 ;# of nibbles (digits) in fraction part moveq.l #ESTRT,d3 ;counter to pick up digits lea.l FP_SCR1(a6),a0 ;load tmp bcd storage address move.l ETEMP(a6),(a0) ;save input bcd value move.l ETEMP_HI(a6),4(a0) ;save words 2 and 3 move.l ETEMP_LO(a6),8(a0) ;and work with these move.l (a0),d4 ;get first word of bcd clr.l d1 ;zero d1 for accumulator e_gd: mulu.l #TEN,d1 ;mul partial product by one digit place bfextu d4{d3:4},d0 ;get the digit and zero extend into d0 add.l d0,d1 ;d1 = d1 + d0 addq.b #4,d3 ;advance d3 to the next digit dbf.w d2,e_gd ;if we have used all 3 digits, exit loop btst #30,d4 ;get SE beq.b e_pos ;don't negate if pos neg.l d1 ;negate before subtracting e_pos: sub.l #16,d1 ;sub to compensate for shift of mant bge.b e_save ;if still pos, do not neg neg.l d1 ;now negative, make pos and set SE or.l #$40000000,d4 ;set SE in d4, or.l #$40000000,(a0) ;and in working bcd e_save: move.l d1,L_SCR1(a6) ;save exp in memory * * * Calculate mantissa: * 1. Calculate absolute value of mantissa in fp0 by mul and add. * 2. Correct for mantissa sign. * (i.e., all digits assumed left of the decimal point.) * * Register usage: * * calc_m: * (*) d0: temp digit storage * (*) d1: lword counter * (*) d2: digit count * (*) d3: offset pointer * ( ) d4: words 2 and 3 of bcd * ( ) a0: pointer to working bcd value * ( ) a6: pointer to original bcd value * (*) fp0: mantissa accumulator * ( ) FP_SCR1: working copy of original bcd value * ( ) L_SCR1: copy of original exponent word * calc_m: moveq.l #1,d1 ;word counter, init to 1 fmove.s FZERO,fp0 ;accumulator * * * Since the packed number has a long word between the first & second parts, * get the integer digit then skip down & get the rest of the * mantissa. We will unroll the loop once. * bfextu (a0){28:4},d0 ;integer part is ls digit in long word fadd.b d0,fp0 ;add digit to sum in fp0 * * * Get the rest of the mantissa. * loadlw: move.l (a0,d1.L*4),d4 ;load mantissa lonqword into d4 moveq.l #FSTRT,d3 ;counter to pick up digits moveq.l #FNIBS,d2 ;reset number of digits per a0 ptr md2b: fmul.s FTEN,fp0 ;fp0 = fp0 * 10 bfextu d4{d3:4},d0 ;get the digit and zero extend fadd.b d0,fp0 ;fp0 = fp0 + digit * * * If all the digits (8) in that long word have been converted (d2=0), * then inc d1 (=2) to point to the next long word and reset d3 to 0 * to initialize the digit offset, and set d2 to 7 for the digit count; * else continue with this long word. * addq.b #4,d3 ;advance d3 to the next digit dbf.w d2,md2b ;check for last digit in this lw nextlw: addq.l #1,d1 ;inc lw pointer in mantissa cmp.l #2,d1 ;test for last lw ble loadlw ;if not, get last one * * Check the sign of the mant and make the value in fp0 the same sign. * m_sign: btst #31,(a0) ;test sign of the mantissa beq.b ap_st_z ;if clear, go to append/strip zeros fneg.x fp0 ;if set, negate fp0 * * Append/strip zeros: * * For adjusted exponents which have an absolute value greater than 27*, * this routine calculates the amount needed to normalize the mantissa * for the adjusted exponent. That number is subtracted from the exp * if the exp was positive, and added if it was negative. The purpose * of this is to reduce the value of the exponent and the possibility * of error in calculation of pwrten. * * 1. Branch on the sign of the adjusted exponent. * 2p.(positive exp) * 2. Check M16 and the digits in lwords 2 and 3 in decending order. * 3. Add one for each zero encountered until a non-zero digit. * 4. Subtract the count from the exp. * 5. Check if the exp has crossed zero in #3 above; make the exp abs * and set SE. * 6. Multiply the mantissa by 10**count. * 2n.(negative exp) * 2. Check the digits in lwords 3 and 2 in decending order. * 3. Add one for each zero encountered until a non-zero digit. * 4. Add the count to the exp. * 5. Check if the exp has crossed zero in #3 above; clear SE. * 6. Divide the mantissa by 10**count. * * *Why 27? If the adjusted exponent is within -28 < expA < 28, than * any adjustment due to append/strip zeros will drive the resultane * exponent towards zero. Since all pwrten constants with a power * of 27 or less are exact, there is no need to use this routine to * attempt to lessen the resultant exponent. * * Register usage: * * ap_st_z: * (*) d0: temp digit storage * (*) d1: zero count * (*) d2: digit count * (*) d3: offset pointer * ( ) d4: first word of bcd * (*) d5: lword counter * ( ) a0: pointer to working bcd value * ( ) FP_SCR1: working copy of original bcd value * ( ) L_SCR1: copy of original exponent word * * * First check the absolute value of the exponent to see if this * routine is necessary. If so, then check the sign of the exponent * and do append (+) or strip (-) zeros accordingly. * This section handles a positive adjusted exponent. * ap_st_z: move.l L_SCR1(a6),d1 ;load expA for range test cmp.l #27,d1 ;test is with 27 ble.w pwrten ;if abs(expA) <28, skip ap/st zeros btst #30,(a0) ;check sign of exp bne.b ap_st_n ;if neg, go to neg side clr.l d1 ;zero count reg move.l (a0),d4 ;load lword 1 to d4 bfextu d4{28:4},d0 ;get M16 in d0 bne.b ap_p_fx ;if M16 is non-zero, go fix exp addq.l #1,d1 ;inc zero count moveq.l #1,d5 ;init lword counter move.l (a0,d5.L*4),d4 ;get lword 2 to d4 bne.b ap_p_cl ;if lw 2 is zero, skip it addq.l #8,d1 ;and inc count by 8 addq.l #1,d5 ;inc lword counter move.l (a0,d5.L*4),d4 ;get lword 3 to d4 ap_p_cl: clr.l d3 ;init offset reg moveq.l #7,d2 ;init digit counter ap_p_gd: bfextu d4{d3:4},d0 ;get digit bne.b ap_p_fx ;if non-zero, go to fix exp addq.l #4,d3 ;point to next digit addq.l #1,d1 ;inc digit counter dbf.w d2,ap_p_gd ;get next digit ap_p_fx: move.l d1,d0 ;copy counter to d2 move.l L_SCR1(a6),d1 ;get adjusted exp from memory sub.l d0,d1 ;subtract count from exp bge.b ap_p_fm ;if still pos, go to pwrten neg.l d1 ;now its neg; get abs move.l (a0),d4 ;load lword 1 to d4 or.l #$40000000,d4 ; and set SE in d4 or.l #$40000000,(a0) ; and in memory * * Calculate the mantissa multiplier to compensate for the striping of * zeros from the mantissa. * ap_p_fm: move.l #PTENRN,a1 ;get address of power-of-ten table clr.l d3 ;init table index fmove.s FONE,fp1 ;init fp1 to 1 moveq.l #3,d2 ;init d2 to count bits in counter ap_p_el: asr.l #1,d0 ;shift lsb into carry bcc.b ap_p_en ;if 1, mul fp1 by pwrten factor fmul.x (a1,d3),fp1 ;mul by 10**(d3_bit_no) ap_p_en: add.l #12,d3 ;inc d3 to next rtable entry tst.l d0 ;check if d0 is zero bne.b ap_p_el ;if not, get next bit fmul.x fp1,fp0 ;mul mantissa by 10**(no_bits_shifted) bra.b pwrten ;go calc pwrten * * This section handles a negative adjusted exponent. * ap_st_n: clr.l d1 ;clr counter moveq.l #2,d5 ;set up d5 to point to lword 3 move.l (a0,d5.L*4),d4 ;get lword 3 bne.b ap_n_cl ;if not zero, check digits sub.l #1,d5 ;dec d5 to point to lword 2 addq.l #8,d1 ;inc counter by 8 move.l (a0,d5.L*4),d4 ;get lword 2 ap_n_cl: move.l #28,d3 ;point to last digit moveq.l #7,d2 ;init digit counter ap_n_gd: bfextu d4{d3:4},d0 ;get digit bne.b ap_n_fx ;if non-zero, go to exp fix subq.l #4,d3 ;point to previous digit addq.l #1,d1 ;inc digit counter dbf.w d2,ap_n_gd ;get next digit ap_n_fx: move.l d1,d0 ;copy counter to d0 move.l L_SCR1(a6),d1 ;get adjusted exp from memory sub.l d0,d1 ;subtract count from exp bgt.b ap_n_fm ;if still pos, go fix mantissa neg.l d1 ;take abs of exp and clr SE move.l (a0),d4 ;load lword 1 to d4 and.l #$bfffffff,d4 ; and clr SE in d4 and.l #$bfffffff,(a0) ; and in memory * * Calculate the mantissa multiplier to compensate for the appending of * zeros to the mantissa. * ap_n_fm: move.l #PTENRN,a1 ;get address of power-of-ten table clr.l d3 ;init table index fmove.s FONE,fp1 ;init fp1 to 1 moveq.l #3,d2 ;init d2 to count bits in counter ap_n_el: asr.l #1,d0 ;shift lsb into carry bcc.b ap_n_en ;if 1, mul fp1 by pwrten factor fmul.x (a1,d3),fp1 ;mul by 10**(d3_bit_no) ap_n_en: add.l #12,d3 ;inc d3 to next rtable entry tst.l d0 ;check if d0 is zero bne.b ap_n_el ;if not, get next bit fdiv.x fp1,fp0 ;div mantissa by 10**(no_bits_shifted) * * * Calculate power-of-ten factor from adjusted and shifted exponent. * * Register usage: * * pwrten: * (*) d0: temp * ( ) d1: exponent * (*) d2: {FPCR[6:5],SM,SE} as index in RTABLE; temp * (*) d3: FPCR work copy * ( ) d4: first word of bcd * (*) a1: RTABLE pointer * calc_p: * (*) d0: temp * ( ) d1: exponent * (*) d3: PWRTxx table index * ( ) a0: pointer to working copy of bcd * (*) a1: PWRTxx pointer * (*) fp1: power-of-ten accumulator * * Pwrten calculates the exponent factor in the selected rounding mode * according to the following table: * * Sign of Mant Sign of Exp Rounding Mode PWRTEN Rounding Mode * * ANY ANY RN RN * * + + RP RP * - + RP RM * + - RP RM * - - RP RP * * + + RM RM * - + RM RP * + - RM RP * - - RM RM * * + + RZ RM * - + RZ RM * + - RZ RP * - - RZ RP * * pwrten: move.l USER_FPCR(a6),d3 ;get user's FPCR bfextu d3{26:2},d2 ;isolate rounding mode bits move.l (a0),d4 ;reload 1st bcd word to d4 asl.l #2,d2 ;format d2 to be bfextu d4{0:2},d0 ; {FPCR[6],FPCR[5],SM,SE} add.l d0,d2 ;in d2 as index into RTABLE lea.l RTABLE,a1 ;load rtable base move.b (a1,d2),d0 ;load new rounding bits from table clr.l d3 ;clear d3 to force no exc and extended bfins d0,d3{26:2} ;stuff new rounding bits in FPCR fmove.l d3,FPCR ;write new FPCR asr.l #1,d0 ;write correct PTENxx table bcc.b not_rp ;to a1 lea.l PTENRP,a1 ;it is RP bra.b calc_p ;go to init section not_rp: asr.l #1,d0 ;keep checking bcc.b not_rm lea.l PTENRM,a1 ;it is RM bra.b calc_p ;go to init section not_rm: lea.l PTENRN,a1 ;it is RN calc_p: move.l d1,d0 ;copy exp to d0;use d0 bpl.b no_neg ;if exp is negative, neg.l d0 ;invert it or.l #$40000000,(a0) ;and set SE bit no_neg: clr.l d3 ;table index fmove.s FONE,fp1 ;init fp1 to 1 e_loop: asr.l #1,d0 ;shift next bit into carry bcc.b e_next ;if zero, skip the mul fmul.x (a1,d3),fp1 ;mul by 10**(d3_bit_no) e_next: add.l #12,d3 ;inc d3 to next rtable entry tst.l d0 ;check if d0 is zero bne.b e_loop ;not zero, continue shifting * * * Check the sign of the adjusted exp and make the value in fp0 the * same sign. If the exp was pos then multiply fp1*fp0; * else divide fp0/fp1. * * Register Usage: * norm: * ( ) a0: pointer to working bcd value * (*) fp0: mantissa accumulator * ( ) fp1: scaling factor - 10**(abs(exp)) * norm: btst #30,(a0) ;test the sign of the exponent beq.b mul ;if clear, go to multiply div: fdiv.x fp1,fp0 ;exp is negative, so divide mant by exp bra.b end_dec mul: fmul.x fp1,fp0 ;exp is positive, so multiply by exp * * * Clean up and return with result in fp0. * * If the final mul/div in decbin incurred an inex exception, * it will be inex2, but will be reported as inex1 by get_op. * end_dec: fmove.l FPSR,d0 ;get status register bclr.l #inex2_bit+8,d0 ;test for inex2 and clear it fmove.l d0,FPSR ;return status reg w/o inex2 beq.b no_exc ;skip this if no exc or.l #inx1a_mask,USER_FPSR(a6) ;set inex1/ainex no_exc: movem.l (a7)+,d2-d5 rts end