/* $NetBSD: ffs_inode.c,v 1.49 2001/11/30 07:05:55 chs Exp $ */ /* * Copyright (c) 1982, 1986, 1989, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)ffs_inode.c 8.13 (Berkeley) 4/21/95 */ #include __KERNEL_RCSID(0, "$NetBSD: ffs_inode.c,v 1.49 2001/11/30 07:05:55 chs Exp $"); #if defined(_KERNEL_OPT) #include "opt_ffs.h" #include "opt_quota.h" #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static int ffs_indirtrunc __P((struct inode *, ufs_daddr_t, ufs_daddr_t, ufs_daddr_t, int, long *)); /* * Update the access, modified, and inode change times as specified * by the IN_ACCESS, IN_UPDATE, and IN_CHANGE flags respectively. * The IN_MODIFIED flag is used to specify that the inode needs to be * updated but that the times have already been set. The access * and modified times are taken from the second and third parameters; * the inode change time is always taken from the current time. If * UPDATE_WAIT flag is set, or UPDATE_DIROP is set and we are not doing * softupdates, then wait for the disk write of the inode to complete. */ int ffs_update(v) void *v; { struct vop_update_args /* { struct vnode *a_vp; struct timespec *a_access; struct timespec *a_modify; int a_flags; } */ *ap = v; struct fs *fs; struct buf *bp; struct inode *ip; int error; struct timespec ts; caddr_t cp; int waitfor, flags; if (ap->a_vp->v_mount->mnt_flag & MNT_RDONLY) return (0); ip = VTOI(ap->a_vp); TIMEVAL_TO_TIMESPEC(&time, &ts); FFS_ITIMES(ip, ap->a_access ? ap->a_access : &ts, ap->a_modify ? ap->a_modify : &ts, &ts); flags = ip->i_flag & (IN_MODIFIED | IN_ACCESSED); if (flags == 0) return (0); fs = ip->i_fs; if ((flags & IN_MODIFIED) != 0 && (ap->a_vp->v_mount->mnt_flag & MNT_ASYNC) == 0) { waitfor = ap->a_flags & UPDATE_WAIT; if ((ap->a_flags & UPDATE_DIROP) && !DOINGSOFTDEP(ap->a_vp)) waitfor |= UPDATE_WAIT; } else waitfor = 0; /* * Ensure that uid and gid are correct. This is a temporary * fix until fsck has been changed to do the update. */ if (fs->fs_inodefmt < FS_44INODEFMT) { /* XXX */ ip->i_din.ffs_din.di_ouid = ip->i_ffs_uid; /* XXX */ ip->i_din.ffs_din.di_ogid = ip->i_ffs_gid; /* XXX */ } /* XXX */ error = bread(ip->i_devvp, fsbtodb(fs, ino_to_fsba(fs, ip->i_number)), (int)fs->fs_bsize, NOCRED, &bp); if (error) { brelse(bp); return (error); } ip->i_flag &= ~(IN_MODIFIED | IN_ACCESSED); if (DOINGSOFTDEP(ap->a_vp)) softdep_update_inodeblock(ip, bp, waitfor); else if (ip->i_ffs_effnlink != ip->i_ffs_nlink) panic("ffs_update: bad link cnt"); cp = (caddr_t)bp->b_data + (ino_to_fsbo(fs, ip->i_number) * DINODE_SIZE); #ifdef FFS_EI if (UFS_FSNEEDSWAP(fs)) ffs_dinode_swap(&ip->i_din.ffs_din, (struct dinode *)cp); else #endif memcpy(cp, &ip->i_din.ffs_din, DINODE_SIZE); if (waitfor) { return (bwrite(bp)); } else { bdwrite(bp); return (0); } } #define SINGLE 0 /* index of single indirect block */ #define DOUBLE 1 /* index of double indirect block */ #define TRIPLE 2 /* index of triple indirect block */ /* * Truncate the inode oip to at most length size, freeing the * disk blocks. */ int ffs_truncate(v) void *v; { struct vop_truncate_args /* { struct vnode *a_vp; off_t a_length; int a_flags; struct ucred *a_cred; struct proc *a_p; } */ *ap = v; struct vnode *ovp = ap->a_vp; struct genfs_node *gp = VTOG(ovp); ufs_daddr_t lastblock; struct inode *oip; ufs_daddr_t bn, lastiblock[NIADDR], indir_lbn[NIADDR]; ufs_daddr_t oldblks[NDADDR + NIADDR], newblks[NDADDR + NIADDR]; off_t length = ap->a_length; struct fs *fs; int offset, size, level; long count, nblocks, blocksreleased = 0; int i, ioflag, aflag; int error, allerror = 0; off_t osize; if (length < 0) return (EINVAL); oip = VTOI(ovp); if (ovp->v_type == VLNK && (oip->i_ffs_size < ovp->v_mount->mnt_maxsymlinklen || (ovp->v_mount->mnt_maxsymlinklen == 0 && oip->i_din.ffs_din.di_blocks == 0))) { KDASSERT(length == 0); memset(&oip->i_ffs_shortlink, 0, (size_t)oip->i_ffs_size); oip->i_ffs_size = 0; oip->i_flag |= IN_CHANGE | IN_UPDATE; return (VOP_UPDATE(ovp, NULL, NULL, UPDATE_WAIT)); } if (oip->i_ffs_size == length) { oip->i_flag |= IN_CHANGE | IN_UPDATE; return (VOP_UPDATE(ovp, NULL, NULL, 0)); } #ifdef QUOTA if ((error = getinoquota(oip)) != 0) return (error); #endif fs = oip->i_fs; if (length > fs->fs_maxfilesize) return (EFBIG); osize = oip->i_ffs_size; ioflag = ap->a_flags; /* * Lengthen the size of the file. We must ensure that the * last byte of the file is allocated. Since the smallest * value of osize is 0, length will be at least 1. */ if (osize < length) { aflag = ioflag & IO_SYNC ? B_SYNC : 0; if (lblkno(fs, osize) < NDADDR && lblkno(fs, osize) != lblkno(fs, length) && blkroundup(fs, osize) != osize) { error = ufs_balloc_range(ovp, osize, blkroundup(fs, osize) - osize, ap->a_cred, aflag); if (error) { return error; } if (ioflag & IO_SYNC) { ovp->v_size = blkroundup(fs, osize); simple_lock(&ovp->v_interlock); VOP_PUTPAGES(ovp, trunc_page(osize & ~(fs->fs_bsize - 1)), round_page(ovp->v_size), PGO_CLEANIT | PGO_SYNCIO); } } error = ufs_balloc_range(ovp, length - 1, 1, ap->a_cred, aflag); if (error) { (void) VOP_TRUNCATE(ovp, osize, ioflag & IO_SYNC, ap->a_cred, ap->a_p); return error; } uvm_vnp_setsize(ovp, length); oip->i_flag |= IN_CHANGE | IN_UPDATE; KASSERT(ovp->v_size == oip->i_ffs_size); return (VOP_UPDATE(ovp, NULL, NULL, 1)); } /* * When truncating a regular file down to a non-block-aligned size, * we must zero the part of last block which is past the new EOF. * We must synchronously flush the zeroed pages to disk * since the new pages will be invalidated as soon as we * inform the VM system of the new, smaller size. * We must do this before acquiring the GLOCK, since fetching * the pages will acquire the GLOCK internally. * So there is a window where another thread could see a whole * zeroed page past EOF, but that's life. */ offset = blkoff(fs, length); if (ovp->v_type == VREG && length < osize && offset != 0) { voff_t eoz; size = blksize(fs, oip, lblkno(fs, length)); eoz = MIN(lblktosize(fs, lblkno(fs, length)) + size, osize); uvm_vnp_zerorange(ovp, length, eoz - length); simple_lock(&ovp->v_interlock); error = VOP_PUTPAGES(ovp, trunc_page(length), round_page(eoz), PGO_CLEANIT | PGO_DEACTIVATE | PGO_SYNCIO); if (error) { return error; } } lockmgr(&gp->g_glock, LK_EXCLUSIVE, NULL); if (DOINGSOFTDEP(ovp)) { if (length > 0) { /* * If a file is only partially truncated, then * we have to clean up the data structures * describing the allocation past the truncation * point. Finding and deallocating those structures * is a lot of work. Since partial truncation occurs * rarely, we solve the problem by syncing the file * so that it will have no data structures left. */ if ((error = VOP_FSYNC(ovp, ap->a_cred, FSYNC_WAIT, 0, 0, ap->a_p)) != 0) { lockmgr(&gp->g_glock, LK_RELEASE, NULL); return (error); } } else { uvm_vnp_setsize(ovp, length); #ifdef QUOTA (void) chkdq(oip, -oip->i_ffs_blocks, NOCRED, 0); #endif softdep_setup_freeblocks(oip, length); (void) vinvalbuf(ovp, 0, ap->a_cred, ap->a_p, 0, 0); lockmgr(&gp->g_glock, LK_RELEASE, NULL); oip->i_flag |= IN_CHANGE | IN_UPDATE; return (VOP_UPDATE(ovp, NULL, NULL, 0)); } } /* * Reduce the size of the file. */ oip->i_ffs_size = length; uvm_vnp_setsize(ovp, length); /* * Calculate index into inode's block list of * last direct and indirect blocks (if any) * which we want to keep. Lastblock is -1 when * the file is truncated to 0. */ lastblock = lblkno(fs, length + fs->fs_bsize - 1) - 1; lastiblock[SINGLE] = lastblock - NDADDR; lastiblock[DOUBLE] = lastiblock[SINGLE] - NINDIR(fs); lastiblock[TRIPLE] = lastiblock[DOUBLE] - NINDIR(fs) * NINDIR(fs); nblocks = btodb(fs->fs_bsize); /* * Update file and block pointers on disk before we start freeing * blocks. If we crash before free'ing blocks below, the blocks * will be returned to the free list. lastiblock values are also * normalized to -1 for calls to ffs_indirtrunc below. */ memcpy((caddr_t)oldblks, (caddr_t)&oip->i_ffs_db[0], sizeof oldblks); for (level = TRIPLE; level >= SINGLE; level--) if (lastiblock[level] < 0) { oip->i_ffs_ib[level] = 0; lastiblock[level] = -1; } for (i = NDADDR - 1; i > lastblock; i--) oip->i_ffs_db[i] = 0; oip->i_flag |= IN_CHANGE | IN_UPDATE; error = VOP_UPDATE(ovp, NULL, NULL, UPDATE_WAIT); if (error && !allerror) allerror = error; /* * Having written the new inode to disk, save its new configuration * and put back the old block pointers long enough to process them. * Note that we save the new block configuration so we can check it * when we are done. */ memcpy((caddr_t)newblks, (caddr_t)&oip->i_ffs_db[0], sizeof newblks); memcpy((caddr_t)&oip->i_ffs_db[0], (caddr_t)oldblks, sizeof oldblks); oip->i_ffs_size = osize; error = vtruncbuf(ovp, lastblock + 1, 0, 0); if (error && !allerror) allerror = error; /* * Indirect blocks first. */ indir_lbn[SINGLE] = -NDADDR; indir_lbn[DOUBLE] = indir_lbn[SINGLE] - NINDIR(fs) - 1; indir_lbn[TRIPLE] = indir_lbn[DOUBLE] - NINDIR(fs) * NINDIR(fs) - 1; for (level = TRIPLE; level >= SINGLE; level--) { bn = ufs_rw32(oip->i_ffs_ib[level], UFS_FSNEEDSWAP(fs)); if (bn != 0) { error = ffs_indirtrunc(oip, indir_lbn[level], fsbtodb(fs, bn), lastiblock[level], level, &count); if (error) allerror = error; blocksreleased += count; if (lastiblock[level] < 0) { oip->i_ffs_ib[level] = 0; ffs_blkfree(oip, bn, fs->fs_bsize); blocksreleased += nblocks; } } if (lastiblock[level] >= 0) goto done; } /* * All whole direct blocks or frags. */ for (i = NDADDR - 1; i > lastblock; i--) { long bsize; bn = ufs_rw32(oip->i_ffs_db[i], UFS_FSNEEDSWAP(fs)); if (bn == 0) continue; oip->i_ffs_db[i] = 0; bsize = blksize(fs, oip, i); ffs_blkfree(oip, bn, bsize); blocksreleased += btodb(bsize); } if (lastblock < 0) goto done; /* * Finally, look for a change in size of the * last direct block; release any frags. */ bn = ufs_rw32(oip->i_ffs_db[lastblock], UFS_FSNEEDSWAP(fs)); if (bn != 0) { long oldspace, newspace; /* * Calculate amount of space we're giving * back as old block size minus new block size. */ oldspace = blksize(fs, oip, lastblock); oip->i_ffs_size = length; newspace = blksize(fs, oip, lastblock); if (newspace == 0) panic("itrunc: newspace"); if (oldspace - newspace > 0) { /* * Block number of space to be free'd is * the old block # plus the number of frags * required for the storage we're keeping. */ bn += numfrags(fs, newspace); ffs_blkfree(oip, bn, oldspace - newspace); blocksreleased += btodb(oldspace - newspace); } } done: #ifdef DIAGNOSTIC for (level = SINGLE; level <= TRIPLE; level++) if (newblks[NDADDR + level] != oip->i_ffs_ib[level]) panic("itrunc1"); for (i = 0; i < NDADDR; i++) if (newblks[i] != oip->i_ffs_db[i]) panic("itrunc2"); if (length == 0 && (!LIST_EMPTY(&ovp->v_cleanblkhd) || !LIST_EMPTY(&ovp->v_dirtyblkhd))) panic("itrunc3"); #endif /* DIAGNOSTIC */ /* * Put back the real size. */ oip->i_ffs_size = length; oip->i_ffs_blocks -= blocksreleased; lockmgr(&gp->g_glock, LK_RELEASE, NULL); oip->i_flag |= IN_CHANGE; #ifdef QUOTA (void) chkdq(oip, -blocksreleased, NOCRED, 0); #endif KASSERT(ovp->v_type != VREG || ovp->v_size == oip->i_ffs_size); return (allerror); } /* * Release blocks associated with the inode ip and stored in the indirect * block bn. Blocks are free'd in LIFO order up to (but not including) * lastbn. If level is greater than SINGLE, the block is an indirect block * and recursive calls to indirtrunc must be used to cleanse other indirect * blocks. * * NB: triple indirect blocks are untested. */ static int ffs_indirtrunc(ip, lbn, dbn, lastbn, level, countp) struct inode *ip; ufs_daddr_t lbn, lastbn; ufs_daddr_t dbn; int level; long *countp; { int i; struct buf *bp; struct fs *fs = ip->i_fs; ufs_daddr_t *bap; struct vnode *vp; ufs_daddr_t *copy = NULL, nb, nlbn, last; long blkcount, factor; int nblocks, blocksreleased = 0; int error = 0, allerror = 0; /* * Calculate index in current block of last * block to be kept. -1 indicates the entire * block so we need not calculate the index. */ factor = 1; for (i = SINGLE; i < level; i++) factor *= NINDIR(fs); last = lastbn; if (lastbn > 0) last /= factor; nblocks = btodb(fs->fs_bsize); /* * Get buffer of block pointers, zero those entries corresponding * to blocks to be free'd, and update on disk copy first. Since * double(triple) indirect before single(double) indirect, calls * to bmap on these blocks will fail. However, we already have * the on disk address, so we have to set the b_blkno field * explicitly instead of letting bread do everything for us. */ vp = ITOV(ip); bp = getblk(vp, lbn, (int)fs->fs_bsize, 0, 0); if (bp->b_flags & (B_DONE | B_DELWRI)) { /* Braces must be here in case trace evaluates to nothing. */ trace(TR_BREADHIT, pack(vp, fs->fs_bsize), lbn); } else { trace(TR_BREADMISS, pack(vp, fs->fs_bsize), lbn); curproc->p_stats->p_ru.ru_inblock++; /* pay for read */ bp->b_flags |= B_READ; if (bp->b_bcount > bp->b_bufsize) panic("ffs_indirtrunc: bad buffer size"); bp->b_blkno = dbn; VOP_STRATEGY(bp); error = biowait(bp); } if (error) { brelse(bp); *countp = 0; return (error); } bap = (ufs_daddr_t *)bp->b_data; if (lastbn >= 0) { copy = (ufs_daddr_t *) malloc(fs->fs_bsize, M_TEMP, M_WAITOK); memcpy((caddr_t)copy, (caddr_t)bap, (u_int)fs->fs_bsize); memset((caddr_t)&bap[last + 1], 0, (u_int)(NINDIR(fs) - (last + 1)) * sizeof (ufs_daddr_t)); error = bwrite(bp); if (error) allerror = error; bap = copy; } /* * Recursively free totally unused blocks. */ for (i = NINDIR(fs) - 1, nlbn = lbn + 1 - i * factor; i > last; i--, nlbn += factor) { nb = ufs_rw32(bap[i], UFS_FSNEEDSWAP(fs)); if (nb == 0) continue; if (level > SINGLE) { error = ffs_indirtrunc(ip, nlbn, fsbtodb(fs, nb), (ufs_daddr_t)-1, level - 1, &blkcount); if (error) allerror = error; blocksreleased += blkcount; } ffs_blkfree(ip, nb, fs->fs_bsize); blocksreleased += nblocks; } /* * Recursively free last partial block. */ if (level > SINGLE && lastbn >= 0) { last = lastbn % factor; nb = ufs_rw32(bap[i], UFS_FSNEEDSWAP(fs)); if (nb != 0) { error = ffs_indirtrunc(ip, nlbn, fsbtodb(fs, nb), last, level - 1, &blkcount); if (error) allerror = error; blocksreleased += blkcount; } } if (copy != NULL) { FREE(copy, M_TEMP); } else { bp->b_flags |= B_INVAL; brelse(bp); } *countp = blocksreleased; return (allerror); }