/* $NetBSD: if_fxp.c,v 1.6 1997/11/11 06:35:46 thorpej Exp $ */ /* * Copyright (c) 1995, David Greenman * All rights reserved. * * Modifications to support NetBSD and media selection: * Copyright (c) 1997 Jason R. Thorpe. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice unmodified, this list of conditions, and the following * disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * Id: if_fxp.c,v 1.44 1997/10/17 06:27:44 davidg Exp */ /* * Intel EtherExpress Pro/100B PCI Fast Ethernet driver */ #include "bpfilter.h" #include #include #include #include #include #include #include #include #include #include #ifdef INET #include #endif #ifdef NS #include #include #endif #if NBPFILTER > 0 #include #endif #if defined(__NetBSD__) #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef __alpha__ /* XXX */ /* XXX XXX NEED REAL DMA MAPPING SUPPORT XXX XXX */ #undef vtophys #define vtophys(va) alpha_XXX_dmamap((vm_offset_t)(va)) #endif /* __alpha__ */ #else /* __FreeBSD__ */ #include #include #include /* for vtophys */ #include /* for vtophys */ #include /* for DELAY */ #include #include #include #endif /* __NetBSD__ */ /* * NOTE! On the Alpha, we have an alignment constraint. The * card DMAs the packet immediately following the RFA. However, * the first thing in the packet is a 14-byte Ethernet header. * This means that the packet is misaligned. To compensate, * we actually offset the RFA 2 bytes into the cluster. This * alignes the packet after the Ethernet header at a 32-bit * boundary. HOWEVER! This means that the RFA is misaligned! */ #define RFA_ALIGNMENT_FUDGE 2 /* * Inline function to copy a 16-bit aligned 32-bit quantity. */ static __inline void fxp_lwcopy __P((volatile u_int32_t *, volatile u_int32_t *)); static __inline void fxp_lwcopy(src, dst) volatile u_int32_t *src, *dst; { volatile u_int16_t *a = (u_int16_t *)src; volatile u_int16_t *b = (u_int16_t *)dst; b[0] = a[0]; b[1] = a[1]; } /* * Template for default configuration parameters. * See struct fxp_cb_config for the bit definitions. */ static u_char fxp_cb_config_template[] = { 0x0, 0x0, /* cb_status */ 0x80, 0x2, /* cb_command */ 0xff, 0xff, 0xff, 0xff, /* link_addr */ 0x16, /* 0 */ 0x8, /* 1 */ 0x0, /* 2 */ 0x0, /* 3 */ 0x0, /* 4 */ 0x80, /* 5 */ 0xb2, /* 6 */ 0x3, /* 7 */ 0x1, /* 8 */ 0x0, /* 9 */ 0x26, /* 10 */ 0x0, /* 11 */ 0x60, /* 12 */ 0x0, /* 13 */ 0xf2, /* 14 */ 0x48, /* 15 */ 0x0, /* 16 */ 0x40, /* 17 */ 0xf3, /* 18 */ 0x0, /* 19 */ 0x3f, /* 20 */ 0x5 /* 21 */ }; /* Supported media types. */ struct fxp_supported_media { const int fsm_phy; /* PHY type */ const int *fsm_media; /* the media array */ const int fsm_nmedia; /* the number of supported media */ const int fsm_defmedia; /* default media for this PHY */ }; const int fxp_media_standard[] = { IFM_ETHER|IFM_10_T, IFM_ETHER|IFM_10_T|IFM_FDX, IFM_ETHER|IFM_100_TX, IFM_ETHER|IFM_100_TX|IFM_FDX, IFM_ETHER|IFM_AUTO, }; #define FXP_MEDIA_STANDARD_DEFMEDIA (IFM_ETHER|IFM_AUTO) const int fxp_media_default[] = { IFM_ETHER|IFM_MANUAL, /* XXX IFM_AUTO ? */ }; #define FXP_MEDIA_DEFAULT_DEFMEDIA (IFM_ETHER|IFM_MANUAL) const struct fxp_supported_media fxp_media[] = { { FXP_PHY_DP83840, fxp_media_standard, sizeof(fxp_media_standard) / sizeof(fxp_media_standard[0]), FXP_MEDIA_STANDARD_DEFMEDIA }, { FXP_PHY_DP83840A, fxp_media_standard, sizeof(fxp_media_standard) / sizeof(fxp_media_standard[0]), FXP_MEDIA_STANDARD_DEFMEDIA }, { FXP_PHY_82555, fxp_media_standard, sizeof(fxp_media_standard) / sizeof(fxp_media_standard[0]), FXP_MEDIA_STANDARD_DEFMEDIA }, { FXP_PHY_80C24, fxp_media_default, sizeof(fxp_media_default) / sizeof(fxp_media_default[0]), FXP_MEDIA_DEFAULT_DEFMEDIA }, }; #define NFXPMEDIA (sizeof(fxp_media) / sizeof(fxp_media[0])) static int fxp_mediachange __P((struct ifnet *)); static void fxp_mediastatus __P((struct ifnet *, struct ifmediareq *)); void fxp_set_media __P((struct fxp_softc *, int)); static inline void fxp_scb_wait __P((struct fxp_softc *)); static FXP_INTR_TYPE fxp_intr __P((void *)); static void fxp_start __P((struct ifnet *)); static int fxp_ioctl __P((struct ifnet *, FXP_IOCTLCMD_TYPE, caddr_t)); static void fxp_init __P((void *)); static void fxp_stop __P((struct fxp_softc *)); static void fxp_watchdog __P((struct ifnet *)); static int fxp_add_rfabuf __P((struct fxp_softc *, struct mbuf *)); static int fxp_mdi_read __P((struct fxp_softc *, int, int)); static void fxp_mdi_write __P((struct fxp_softc *, int, int, int)); static void fxp_read_eeprom __P((struct fxp_softc *, u_int16_t *, int, int)); static int fxp_attach_common __P((struct fxp_softc *, u_int8_t *)); void fxp_stats_update __P((void *)); static void fxp_mc_setup __P((struct fxp_softc *)); /* * Set initial transmit threshold at 64 (512 bytes). This is * increased by 64 (512 bytes) at a time, to maximum of 192 * (1536 bytes), if an underrun occurs. */ static int tx_threshold = 64; /* * Number of transmit control blocks. This determines the number * of transmit buffers that can be chained in the CB list. * This must be a power of two. */ #define FXP_NTXCB 128 /* * TxCB list index mask. This is used to do list wrap-around. */ #define FXP_TXCB_MASK (FXP_NTXCB - 1) /* * Number of receive frame area buffers. These are large so chose * wisely. */ #define FXP_NRFABUFS 64 /* * Maximum number of seconds that the receiver can be idle before we * assume it's dead and attempt to reset it by reprogramming the * multicast filter. This is part of a work-around for a bug in the * NIC. See fxp_stats_update(). */ #define FXP_MAX_RX_IDLE 15 /* * Wait for the previous command to be accepted (but not necessarily * completed). */ static inline void fxp_scb_wait(sc) struct fxp_softc *sc; { int i = 10000; while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i); } /************************************************************* * Operating system-specific autoconfiguration glue *************************************************************/ #if defined(__NetBSD__) #ifdef __BROKEN_INDIRECT_CONFIG static int fxp_match __P((struct device *, void *, void *)); #else static int fxp_match __P((struct device *, struct cfdata *, void *)); #endif static void fxp_attach __P((struct device *, struct device *, void *)); static void fxp_shutdown __P((void *)); /* Compensate for lack of a generic ether_ioctl() */ static int fxp_ether_ioctl __P((struct ifnet *, FXP_IOCTLCMD_TYPE, caddr_t)); #define ether_ioctl fxp_ether_ioctl struct cfattach fxp_ca = { sizeof(struct fxp_softc), fxp_match, fxp_attach }; struct cfdriver fxp_cd = { NULL, "fxp", DV_IFNET }; /* * Check if a device is an 82557. */ static int fxp_match(parent, match, aux) struct device *parent; #ifdef __BROKEN_INDIRECT_CONFIG void *match; #else struct cfdata *match; #endif void *aux; { struct pci_attach_args *pa = aux; if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL) return (0); switch (PCI_PRODUCT(pa->pa_id)) { case PCI_PRODUCT_INTEL_82557: return (1); } return (0); } static void fxp_attach(parent, self, aux) struct device *parent, *self; void *aux; { struct fxp_softc *sc = (struct fxp_softc *)self; struct pci_attach_args *pa = aux; pci_chipset_tag_t pc = pa->pa_pc; pci_intr_handle_t ih; const char *intrstr = NULL; u_int8_t enaddr[6]; struct ifnet *ifp; /* * Map control/status registers. */ if (pci_mapreg_map(pa, FXP_PCI_MMBA, PCI_MAPREG_TYPE_MEM, 0, &sc->sc_st, &sc->sc_sh, NULL, NULL)) { printf(": can't map registers\n"); return; } printf(": Intel EtherExpress Pro 10/100B Ethernet\n"); /* * Allocate our interrupt. */ if (pci_intr_map(pc, pa->pa_intrtag, pa->pa_intrpin, pa->pa_intrline, &ih)) { printf("%s: couldn't map interrupt\n", sc->sc_dev.dv_xname); return; } intrstr = pci_intr_string(pc, ih); sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, fxp_intr, sc); if (sc->sc_ih == NULL) { printf("%s: couldn't establish interrupt", sc->sc_dev.dv_xname); if (intrstr != NULL) printf(" at %s", intrstr); printf("\n"); return; } printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr); /* Do generic parts of attach. */ if (fxp_attach_common(sc, enaddr)) { /* Failed! */ return; } printf("%s: Ethernet address %s%s\n", sc->sc_dev.dv_xname, ether_sprintf(enaddr), sc->phy_10Mbps_only ? ", 10Mbps" : ""); ifp = &sc->sc_ethercom.ec_if; bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ); ifp->if_softc = sc; ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_ioctl = fxp_ioctl; ifp->if_start = fxp_start; ifp->if_watchdog = fxp_watchdog; /* * Attach the interface. */ if_attach(ifp); ether_ifattach(ifp, enaddr); #if NBPFILTER > 0 bpfattach(&sc->sc_ethercom.ec_if.if_bpf, ifp, DLT_EN10MB, sizeof(struct ether_header)); #endif /* * Add shutdown hook so that DMA is disabled prior to reboot. Not * doing do could allow DMA to corrupt kernel memory during the * reboot before the driver initializes. */ shutdownhook_establish(fxp_shutdown, sc); } /* * Device shutdown routine. Called at system shutdown after sync. The * main purpose of this routine is to shut off receiver DMA so that * kernel memory doesn't get clobbered during warmboot. */ static void fxp_shutdown(sc) void *sc; { fxp_stop((struct fxp_softc *) sc); } static int fxp_ether_ioctl(ifp, cmd, data) struct ifnet *ifp; FXP_IOCTLCMD_TYPE cmd; caddr_t data; { struct ifaddr *ifa = (struct ifaddr *) data; struct fxp_softc *sc = ifp->if_softc; switch (cmd) { case SIOCSIFADDR: ifp->if_flags |= IFF_UP; switch (ifa->ifa_addr->sa_family) { #ifdef INET case AF_INET: fxp_init(sc); arp_ifinit(ifp, ifa); break; #endif #ifdef NS case AF_NS: { register struct ns_addr *ina = &IA_SNS(ifa)->sns_addr; if (ns_nullhost(*ina)) ina->x_host = *(union ns_host *) LLADDR(ifp->if_sadl); else bcopy(ina->x_host.c_host, LLADDR(ifp->if_sadl), ifp->if_addrlen); /* Set new address. */ fxp_init(sc); break; } #endif default: fxp_init(sc); break; } break; default: return (EINVAL); } return (0); } #else /* __FreeBSD__ */ static u_long fxp_count; static char *fxp_probe __P((pcici_t, pcidi_t)); static void fxp_attach __P((pcici_t, int)); static void fxp_shutdown __P((int, void *)); static struct pci_device fxp_device = { "fxp", fxp_probe, fxp_attach, &fxp_count, NULL }; DATA_SET(pcidevice_set, fxp_device); /* * Return identification string if this is device is ours. */ static char * fxp_probe(config_id, device_id) pcici_t config_id; pcidi_t device_id; { if (((device_id & 0xffff) == FXP_VENDORID_INTEL) && ((device_id >> 16) & 0xffff) == FXP_DEVICEID_i82557) return ("Intel EtherExpress Pro 10/100B Ethernet"); return NULL; } static void fxp_attach(config_id, unit) pcici_t config_id; int unit; { struct fxp_softc *sc; vm_offset_t pbase; struct ifnet *ifp; int s; sc = malloc(sizeof(struct fxp_softc), M_DEVBUF, M_NOWAIT); if (sc == NULL) return; bzero(sc, sizeof(struct fxp_softc)); callout_handle_init(&sc->stat_ch); s = splimp(); /* * Map control/status registers. */ if (!pci_map_mem(config_id, FXP_PCI_MMBA, (vm_offset_t *)&sc->csr, &pbase)) { printf("fxp%d: couldn't map memory\n", unit); goto fail; } /* * Allocate our interrupt. */ if (!pci_map_int(config_id, fxp_intr, sc, &net_imask)) { printf("fxp%d: couldn't map interrupt\n", unit); goto fail; } /* Do generic parts of attach. */ if (fxp_attach_common(sc, sc->arpcom.ac_enaddr)) { /* Failed! */ (void) pci_unmap_int(config_id); goto fail; } printf("fxp%d: Ethernet address %6D%s\n", unit, sc->arpcom.ac_enaddr, ":", sc->phy_10Mbps_only ? ", 10Mbps" : ""); ifp = &sc->arpcom.ac_if; ifp->if_unit = unit; ifp->if_name = "fxp"; ifp->if_output = ether_output; ifp->if_baudrate = 100000000; ifp->if_init = fxp_init; ifp->if_softc = sc; ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_ioctl = fxp_ioctl; ifp->if_start = fxp_start; ifp->if_watchdog = fxp_watchdog; /* * Attach the interface. */ if_attach(ifp); ether_ifattach(ifp); #if NBPFILTER > 0 bpfattach(ifp, DLT_EN10MB, sizeof(struct ether_header)); #endif /* * Add shutdown hook so that DMA is disabled prior to reboot. Not * doing do could allow DMA to corrupt kernel memory during the * reboot before the driver initializes. */ at_shutdown(fxp_shutdown, sc, SHUTDOWN_POST_SYNC); splx(s); return; fail: free(sc, M_DEVBUF); splx(s); } /* * Device shutdown routine. Called at system shutdown after sync. The * main purpose of this routine is to shut off receiver DMA so that * kernel memory doesn't get clobbered during warmboot. */ static void fxp_shutdown(howto, sc) int howto; void *sc; { fxp_stop((struct fxp_softc *) sc); } #endif /* __NetBSD__ */ /************************************************************* * End of operating system-specific autoconfiguration glue *************************************************************/ /* * Do generic parts of attach. */ static int fxp_attach_common(sc, enaddr) struct fxp_softc *sc; u_int8_t *enaddr; { u_int16_t data, myea[3]; int i, nmedia, defmedia; const int *media; /* * Reset to a stable state. */ CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET); DELAY(10); sc->cbl_base = malloc(sizeof(struct fxp_cb_tx) * FXP_NTXCB, M_DEVBUF, M_NOWAIT); if (sc->cbl_base == NULL) goto fail; sc->fxp_stats = malloc(sizeof(struct fxp_stats), M_DEVBUF, M_NOWAIT); if (sc->fxp_stats == NULL) goto fail; bzero(sc->fxp_stats, sizeof(struct fxp_stats)); sc->mcsp = malloc(sizeof(struct fxp_cb_mcs), M_DEVBUF, M_NOWAIT); if (sc->mcsp == NULL) goto fail; /* * Pre-allocate our receive buffers. */ for (i = 0; i < FXP_NRFABUFS; i++) { if (fxp_add_rfabuf(sc, NULL) != 0) { goto fail; } } /* * Get info about the primary PHY */ fxp_read_eeprom(sc, &data, 6, 1); sc->phy_primary_addr = data & 0xff; sc->phy_primary_device = (data >> 8) & 0x3f; sc->phy_10Mbps_only = data >> 15; /* * Read MAC address. */ fxp_read_eeprom(sc, myea, 0, 3); bcopy(myea, enaddr, ETHER_ADDR_LEN); /* * Initialize the media structures. */ media = fxp_media_default; nmedia = sizeof(fxp_media_default) / sizeof(fxp_media_default[0]); defmedia = FXP_MEDIA_DEFAULT_DEFMEDIA; for (i = 0; i < NFXPMEDIA; i++) { if (sc->phy_primary_device == fxp_media[i].fsm_phy) { media = fxp_media[i].fsm_media; nmedia = fxp_media[i].fsm_nmedia; defmedia = fxp_media[i].fsm_defmedia; } } ifmedia_init(&sc->sc_media, 0, fxp_mediachange, fxp_mediastatus); for (i = 0; i < nmedia; i++) { if (IFM_SUBTYPE(media[i]) == IFM_100_TX && sc->phy_10Mbps_only) continue; ifmedia_add(&sc->sc_media, media[i], 0, NULL); } ifmedia_set(&sc->sc_media, defmedia); return (0); fail: printf(FXP_FORMAT ": Failed to malloc memory\n", FXP_ARGS(sc)); if (sc->cbl_base) free(sc->cbl_base, M_DEVBUF); if (sc->fxp_stats) free(sc->fxp_stats, M_DEVBUF); if (sc->mcsp) free(sc->mcsp, M_DEVBUF); /* frees entire chain */ if (sc->rfa_headm) m_freem(sc->rfa_headm); return (ENOMEM); } /* * Read from the serial EEPROM. Basically, you manually shift in * the read opcode (one bit at a time) and then shift in the address, * and then you shift out the data (all of this one bit at a time). * The word size is 16 bits, so you have to provide the address for * every 16 bits of data. */ static void fxp_read_eeprom(sc, data, offset, words) struct fxp_softc *sc; u_int16_t *data; int offset; int words; { u_int16_t reg; int i, x; for (i = 0; i < words; i++) { CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS); /* * Shift in read opcode. */ for (x = 3; x > 0; x--) { if (FXP_EEPROM_OPC_READ & (1 << (x - 1))) { reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI; } else { reg = FXP_EEPROM_EECS; } CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg); CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK); DELAY(1); CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg); DELAY(1); } /* * Shift in address. */ for (x = 6; x > 0; x--) { if ((i + offset) & (1 << (x - 1))) { reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI; } else { reg = FXP_EEPROM_EECS; } CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg); CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK); DELAY(1); CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg); DELAY(1); } reg = FXP_EEPROM_EECS; data[i] = 0; /* * Shift out data. */ for (x = 16; x > 0; x--) { CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK); DELAY(1); if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO) data[i] |= (1 << (x - 1)); CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg); DELAY(1); } CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0); DELAY(1); } } /* * Start packet transmission on the interface. */ static void fxp_start(ifp) struct ifnet *ifp; { struct fxp_softc *sc = ifp->if_softc; struct fxp_cb_tx *txp; struct mbuf *m, *mb_head; int segment, first = 1; txloop: /* * See if we're all filled up with buffers to transmit, or * if we need to suspend xmit until the multicast filter * has been reprogrammed (which can only be done at the * head of the command chain). */ if (sc->tx_queued >= FXP_NTXCB || sc->need_mcsetup) return; /* * Grab a packet to transmit. */ IF_DEQUEUE(&ifp->if_snd, mb_head); if (mb_head == NULL) { /* * No more packets to send. */ return; } /* * Get pointer to next available (unused) descriptor. */ txp = sc->cbl_last->next; /* * Go through each of the mbufs in the chain and initialize * the transmit buffers descriptors with the physical address * and size of the mbuf. */ tbdinit: for (m = mb_head, segment = 0; m != NULL; m = m->m_next) { if (m->m_len != 0) { if (segment == FXP_NTXSEG) break; txp->tbd[segment].tb_addr = vtophys(mtod(m, vm_offset_t)); txp->tbd[segment].tb_size = m->m_len; segment++; } } if (m != NULL) { struct mbuf *mn; /* * We ran out of segments. We have to recopy this mbuf * chain first. */ MGETHDR(mn, M_DONTWAIT, MT_DATA); if (mn == NULL) { m_freem(mb_head); return; } if (mb_head->m_pkthdr.len > MHLEN) { MCLGET(mn, M_DONTWAIT); if ((mn->m_flags & M_EXT) == 0) { m_freem(mn); m_freem(mb_head); return; } } m_copydata(mb_head, 0, mb_head->m_pkthdr.len, mtod(mn, caddr_t)); mn->m_pkthdr.len = mn->m_len = mb_head->m_pkthdr.len; m_freem(mb_head); mb_head = mn; goto tbdinit; } txp->tbd_number = segment; txp->mb_head = mb_head; /* * Finish the initialization of this TxCB. */ txp->cb_status = 0; txp->cb_command = FXP_CB_COMMAND_XMIT | FXP_CB_COMMAND_SF | FXP_CB_COMMAND_S; txp->tx_threshold = tx_threshold; /* * Advance the end-of-list forward. */ sc->cbl_last->cb_command &= ~FXP_CB_COMMAND_S; sc->cbl_last = txp; /* * Advance the beginning of the list forward if there are * no other packets queued (when nothing is queued, cbl_first * sits on the last TxCB that was sent out).. */ if (sc->tx_queued == 0) sc->cbl_first = txp; sc->tx_queued++; /* * Only need to wait prior to the first resume command. */ if (first) { first--; fxp_scb_wait(sc); } /* * Resume transmission if suspended. */ CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_RESUME); #if NBPFILTER > 0 /* * Pass packet to bpf if there is a listener. */ if (ifp->if_bpf) bpf_mtap(FXP_BPFTAP_ARG(ifp), mb_head); #endif /* * Set a 5 second timer just in case we don't hear from the * card again. */ ifp->if_timer = 5; goto txloop; } /* * Process interface interrupts. */ static FXP_INTR_TYPE fxp_intr(arg) void *arg; { struct fxp_softc *sc = arg; struct ifnet *ifp = &sc->sc_if; u_int8_t statack; #if defined(__NetBSD__) int claimed = 0; #endif while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) { #if defined(__NetBSD__) claimed = 1; #endif /* * First ACK all the interrupts in this pass. */ CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack); /* * Process receiver interrupts. If a no-resource (RNR) * condition exists, get whatever packets we can and * re-start the receiver. */ if (statack & (FXP_SCB_STATACK_FR | FXP_SCB_STATACK_RNR)) { struct mbuf *m; struct fxp_rfa *rfa; rcvloop: m = sc->rfa_headm; rfa = (struct fxp_rfa *)(m->m_ext.ext_buf + RFA_ALIGNMENT_FUDGE); if (rfa->rfa_status & FXP_RFA_STATUS_C) { /* * Remove first packet from the chain. */ sc->rfa_headm = m->m_next; m->m_next = NULL; /* * Add a new buffer to the receive chain. * If this fails, the old buffer is recycled * instead. */ if (fxp_add_rfabuf(sc, m) == 0) { struct ether_header *eh; u_int16_t total_len; total_len = rfa->actual_size & (MCLBYTES - 1); if (total_len < sizeof(struct ether_header)) { m_freem(m); goto rcvloop; } m->m_pkthdr.rcvif = ifp; m->m_pkthdr.len = m->m_len = total_len - sizeof(struct ether_header); eh = mtod(m, struct ether_header *); #if NBPFILTER > 0 if (ifp->if_bpf) { bpf_tap(FXP_BPFTAP_ARG(ifp), mtod(m, caddr_t), total_len); /* * Only pass this packet up * if it is for us. */ if ((ifp->if_flags & IFF_PROMISC) && (rfa->rfa_status & FXP_RFA_STATUS_IAMATCH) && (eh->ether_dhost[0] & 1) == 0) { m_freem(m); goto rcvloop; } } #endif /* NBPFILTER > 0 */ m->m_data += sizeof(struct ether_header); ether_input(ifp, eh, m); } goto rcvloop; } if (statack & FXP_SCB_STATACK_RNR) { fxp_scb_wait(sc); CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(sc->rfa_headm->m_ext.ext_buf) + RFA_ALIGNMENT_FUDGE); CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_RU_START); } } /* * Free any finished transmit mbuf chains. */ if (statack & FXP_SCB_STATACK_CNA) { struct fxp_cb_tx *txp; for (txp = sc->cbl_first; sc->tx_queued && (txp->cb_status & FXP_CB_STATUS_C) != 0; txp = txp->next) { if (txp->mb_head != NULL) { m_freem(txp->mb_head); txp->mb_head = NULL; } sc->tx_queued--; } sc->cbl_first = txp; if (sc->tx_queued == 0) { ifp->if_timer = 0; if (sc->need_mcsetup) fxp_mc_setup(sc); } /* * Try to start more packets transmitting. */ if (ifp->if_snd.ifq_head != NULL) fxp_start(ifp); } } #if defined(__NetBSD__) return (claimed); #endif } /* * Update packet in/out/collision statistics. The i82557 doesn't * allow you to access these counters without doing a fairly * expensive DMA to get _all_ of the statistics it maintains, so * we do this operation here only once per second. The statistics * counters in the kernel are updated from the previous dump-stats * DMA and then a new dump-stats DMA is started. The on-chip * counters are zeroed when the DMA completes. If we can't start * the DMA immediately, we don't wait - we just prepare to read * them again next time. */ void fxp_stats_update(arg) void *arg; { struct fxp_softc *sc = arg; struct ifnet *ifp = &sc->sc_if; struct fxp_stats *sp = sc->fxp_stats; int s; ifp->if_opackets += sp->tx_good; ifp->if_collisions += sp->tx_total_collisions; if (sp->rx_good) { ifp->if_ipackets += sp->rx_good; sc->rx_idle_secs = 0; } else { sc->rx_idle_secs++; } ifp->if_ierrors += sp->rx_crc_errors + sp->rx_alignment_errors + sp->rx_rnr_errors + sp->rx_overrun_errors; /* * If any transmit underruns occured, bump up the transmit * threshold by another 512 bytes (64 * 8). */ if (sp->tx_underruns) { ifp->if_oerrors += sp->tx_underruns; if (tx_threshold < 192) tx_threshold += 64; } s = splimp(); /* * If we haven't received any packets in FXP_MAC_RX_IDLE seconds, * then assume the receiver has locked up and attempt to clear * the condition by reprogramming the multicast filter. This is * a work-around for a bug in the 82557 where the receiver locks * up if it gets certain types of garbage in the syncronization * bits prior to the packet header. This bug is supposed to only * occur in 10Mbps mode, but has been seen to occur in 100Mbps * mode as well (perhaps due to a 10/100 speed transition). */ if (sc->rx_idle_secs > FXP_MAX_RX_IDLE) { sc->rx_idle_secs = 0; fxp_mc_setup(sc); } /* * If there is no pending command, start another stats * dump. Otherwise punt for now. */ if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) { /* * Start another stats dump. */ CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_DUMPRESET); } else { /* * A previous command is still waiting to be accepted. * Just zero our copy of the stats and wait for the * next timer event to update them. */ sp->tx_good = 0; sp->tx_underruns = 0; sp->tx_total_collisions = 0; sp->rx_good = 0; sp->rx_crc_errors = 0; sp->rx_alignment_errors = 0; sp->rx_rnr_errors = 0; sp->rx_overrun_errors = 0; } splx(s); /* * Schedule another timeout one second from now. */ FXP_TIMEOUT(sc, fxp_stats_update, hz); } /* * Stop the interface. Cancels the statistics updater and resets * the interface. */ static void fxp_stop(sc) struct fxp_softc *sc; { struct ifnet *ifp = &sc->sc_if; struct fxp_cb_tx *txp; int i; /* * Cancel stats updater. */ FXP_UNTIMEOUT(sc, fxp_stats_update); /* * Issue software reset */ CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET); DELAY(10); /* * Release any xmit buffers. */ for (txp = sc->cbl_first; txp != NULL && txp->mb_head != NULL; txp = txp->next) { m_freem(txp->mb_head); txp->mb_head = NULL; } sc->tx_queued = 0; /* * Free all the receive buffers then reallocate/reinitialize */ if (sc->rfa_headm != NULL) m_freem(sc->rfa_headm); sc->rfa_headm = NULL; sc->rfa_tailm = NULL; for (i = 0; i < FXP_NRFABUFS; i++) { if (fxp_add_rfabuf(sc, NULL) != 0) { /* * This "can't happen" - we're at splimp() * and we just freed all the buffers we need * above. */ panic("fxp_stop: no buffers!"); } } ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); ifp->if_timer = 0; } /* * Watchdog/transmission transmit timeout handler. Called when a * transmission is started on the interface, but no interrupt is * received before the timeout. This usually indicates that the * card has wedged for some reason. */ static void fxp_watchdog(ifp) struct ifnet *ifp; { struct fxp_softc *sc = ifp->if_softc; printf(FXP_FORMAT ": device timeout\n", FXP_ARGS(sc)); ifp->if_oerrors++; fxp_init(sc); } static void fxp_init(xsc) void *xsc; { struct fxp_softc *sc = xsc; struct ifnet *ifp = &sc->sc_if; struct fxp_cb_config *cbp; struct fxp_cb_ias *cb_ias; struct fxp_cb_tx *txp; int i, s, prm; s = splimp(); /* * Cancel any pending I/O */ fxp_stop(sc); prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0; sc->promisc_mode = prm; /* * Initialize base of CBL and RFA memory. Loading with zero * sets it up for regular linear addressing. */ CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0); CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_BASE); fxp_scb_wait(sc); CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_RU_BASE); /* * Initialize base of dump-stats buffer. */ fxp_scb_wait(sc); CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(sc->fxp_stats)); CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_DUMP_ADR); /* * We temporarily use memory that contains the TxCB list to * construct the config CB. The TxCB list memory is rebuilt * later. */ cbp = (struct fxp_cb_config *) sc->cbl_base; /* * This bcopy is kind of disgusting, but there are a bunch of must be * zero and must be one bits in this structure and this is the easiest * way to initialize them all to proper values. */ bcopy(fxp_cb_config_template, (void *)&cbp->cb_status, sizeof(fxp_cb_config_template)); cbp->cb_status = 0; cbp->cb_command = FXP_CB_COMMAND_CONFIG | FXP_CB_COMMAND_EL; cbp->link_addr = -1; /* (no) next command */ cbp->byte_count = 22; /* (22) bytes to config */ cbp->rx_fifo_limit = 8; /* rx fifo threshold (32 bytes) */ cbp->tx_fifo_limit = 0; /* tx fifo threshold (0 bytes) */ cbp->adaptive_ifs = 0; /* (no) adaptive interframe spacing */ cbp->rx_dma_bytecount = 0; /* (no) rx DMA max */ cbp->tx_dma_bytecount = 0; /* (no) tx DMA max */ cbp->dma_bce = 0; /* (disable) dma max counters */ cbp->late_scb = 0; /* (don't) defer SCB update */ cbp->tno_int = 0; /* (disable) tx not okay interrupt */ cbp->ci_int = 0; /* interrupt on CU not active */ cbp->save_bf = prm; /* save bad frames */ cbp->disc_short_rx = !prm; /* discard short packets */ cbp->underrun_retry = 1; /* retry mode (1) on DMA underrun */ cbp->mediatype = !sc->phy_10Mbps_only; /* interface mode */ cbp->nsai = 1; /* (don't) disable source addr insert */ cbp->preamble_length = 2; /* (7 byte) preamble */ cbp->loopback = 0; /* (don't) loopback */ cbp->linear_priority = 0; /* (normal CSMA/CD operation) */ cbp->linear_pri_mode = 0; /* (wait after xmit only) */ cbp->interfrm_spacing = 6; /* (96 bits of) interframe spacing */ cbp->promiscuous = prm; /* promiscuous mode */ cbp->bcast_disable = 0; /* (don't) disable broadcasts */ cbp->crscdt = 0; /* (CRS only) */ cbp->stripping = !prm; /* truncate rx packet to byte count */ cbp->padding = 1; /* (do) pad short tx packets */ cbp->rcv_crc_xfer = 0; /* (don't) xfer CRC to host */ cbp->force_fdx = 0; /* (don't) force full duplex */ cbp->fdx_pin_en = 1; /* (enable) FDX# pin */ cbp->multi_ia = 0; /* (don't) accept multiple IAs */ cbp->mc_all = sc->all_mcasts;/* accept all multicasts */ /* * Start the config command/DMA. */ fxp_scb_wait(sc); CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&cbp->cb_status)); CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_START); /* ...and wait for it to complete. */ while (!(cbp->cb_status & FXP_CB_STATUS_C)); /* * Now initialize the station address. Temporarily use the TxCB * memory area like we did above for the config CB. */ cb_ias = (struct fxp_cb_ias *) sc->cbl_base; cb_ias->cb_status = 0; cb_ias->cb_command = FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL; cb_ias->link_addr = -1; #if defined(__NetBSD__) bcopy(LLADDR(ifp->if_sadl), (void *)cb_ias->macaddr, 6); #else bcopy(sc->arpcom.ac_enaddr, (void *)cb_ias->macaddr, sizeof(sc->arpcom.ac_enaddr)); #endif /* __NetBSD__ */ /* * Start the IAS (Individual Address Setup) command/DMA. */ fxp_scb_wait(sc); CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_START); /* ...and wait for it to complete. */ while (!(cb_ias->cb_status & FXP_CB_STATUS_C)); /* * Initialize transmit control block (TxCB) list. */ txp = sc->cbl_base; bzero(txp, sizeof(struct fxp_cb_tx) * FXP_NTXCB); for (i = 0; i < FXP_NTXCB; i++) { txp[i].cb_status = FXP_CB_STATUS_C | FXP_CB_STATUS_OK; txp[i].cb_command = FXP_CB_COMMAND_NOP; txp[i].link_addr = vtophys(&txp[(i + 1) & FXP_TXCB_MASK].cb_status); txp[i].tbd_array_addr = vtophys(&txp[i].tbd[0]); txp[i].next = &txp[(i + 1) & FXP_TXCB_MASK]; } /* * Set the suspend flag on the first TxCB and start the control * unit. It will execute the NOP and then suspend. */ txp->cb_command = FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S; sc->cbl_first = sc->cbl_last = txp; sc->tx_queued = 1; fxp_scb_wait(sc); CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_START); /* * Initialize receiver buffer area - RFA. */ fxp_scb_wait(sc); CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(sc->rfa_headm->m_ext.ext_buf) + RFA_ALIGNMENT_FUDGE); CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_RU_START); /* * Set current media. */ fxp_set_media(sc, sc->sc_media.ifm_cur->ifm_media); ifp->if_flags |= IFF_RUNNING; ifp->if_flags &= ~IFF_OACTIVE; splx(s); /* * Start stats updater. */ FXP_TIMEOUT(sc, fxp_stats_update, hz); } void fxp_set_media(sc, media) struct fxp_softc *sc; int media; { switch (sc->phy_primary_device) { case FXP_PHY_DP83840: case FXP_PHY_DP83840A: fxp_mdi_write(sc, sc->phy_primary_addr, FXP_DP83840_PCR, fxp_mdi_read(sc, sc->phy_primary_addr, FXP_DP83840_PCR) | FXP_DP83840_PCR_LED4_MODE | /* LED4 always indicates duplex */ FXP_DP83840_PCR_F_CONNECT | /* force link disconnect bypass */ FXP_DP83840_PCR_BIT10); /* XXX I have no idea */ /* fall through */ case FXP_PHY_82555: if (IFM_SUBTYPE(media) != IFM_AUTO) { int flags; flags = (IFM_SUBTYPE(media) == IFM_100_TX) ? FXP_PHY_BMCR_SPEED_100M : 0; flags |= (media & IFM_FDX) ? FXP_PHY_BMCR_FULLDUPLEX : 0; fxp_mdi_write(sc, sc->phy_primary_addr, FXP_PHY_BMCR, (fxp_mdi_read(sc, sc->phy_primary_addr, FXP_PHY_BMCR) & ~(FXP_PHY_BMCR_AUTOEN | FXP_PHY_BMCR_SPEED_100M | FXP_PHY_BMCR_FULLDUPLEX)) | flags); } else { fxp_mdi_write(sc, sc->phy_primary_addr, FXP_PHY_BMCR, (fxp_mdi_read(sc, sc->phy_primary_addr, FXP_PHY_BMCR) | FXP_PHY_BMCR_AUTOEN)); } break; /* * The Seeq 80c24 doesn't have a PHY programming interface, so do * nothing. */ case FXP_PHY_80C24: break; default: printf(FXP_FORMAT ": warning: unsupported PHY, type = %d, addr = %d\n", FXP_ARGS(sc), sc->phy_primary_device, sc->phy_primary_addr); } } /* * Change media according to request. */ int fxp_mediachange(ifp) struct ifnet *ifp; { struct fxp_softc *sc = ifp->if_softc; struct ifmedia *ifm = &sc->sc_media; if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER) return (EINVAL); fxp_set_media(sc, ifm->ifm_media); return (0); } /* * Notify the world which media we're using. */ void fxp_mediastatus(ifp, ifmr) struct ifnet *ifp; struct ifmediareq *ifmr; { struct fxp_softc *sc = ifp->if_softc; int flags; switch (sc->phy_primary_device) { case FXP_PHY_DP83840: case FXP_PHY_DP83840A: case FXP_PHY_82555: flags = fxp_mdi_read(sc, sc->phy_primary_addr, FXP_PHY_BMCR); ifmr->ifm_active = IFM_ETHER; if (flags & FXP_PHY_BMCR_AUTOEN) ifmr->ifm_active |= IFM_AUTO; else { if (flags & FXP_PHY_BMCR_SPEED_100M) ifmr->ifm_active |= IFM_100_TX; else ifmr->ifm_active |= IFM_10_T; if (flags & FXP_PHY_BMCR_FULLDUPLEX) ifmr->ifm_active |= IFM_FDX; } break; case FXP_PHY_80C24: default: ifmr->ifm_active = IFM_ETHER|IFM_MANUAL; /* XXX IFM_AUTO ? */ } } /* * Add a buffer to the end of the RFA buffer list. * Return 0 if successful, 1 for failure. A failure results in * adding the 'oldm' (if non-NULL) on to the end of the list - * tossing out it's old contents and recycling it. * The RFA struct is stuck at the beginning of mbuf cluster and the * data pointer is fixed up to point just past it. */ static int fxp_add_rfabuf(sc, oldm) struct fxp_softc *sc; struct mbuf *oldm; { u_int32_t v; struct mbuf *m; struct fxp_rfa *rfa, *p_rfa; MGETHDR(m, M_DONTWAIT, MT_DATA); if (m != NULL) { MCLGET(m, M_DONTWAIT); if ((m->m_flags & M_EXT) == 0) { m_freem(m); if (oldm == NULL) return 1; m = oldm; m->m_data = m->m_ext.ext_buf; } } else { if (oldm == NULL) return 1; m = oldm; m->m_data = m->m_ext.ext_buf; } /* * Move the data pointer up so that the incoming data packet * will be 32-bit aligned. */ m->m_data += RFA_ALIGNMENT_FUDGE; /* * Get a pointer to the base of the mbuf cluster and move * data start past it. */ rfa = mtod(m, struct fxp_rfa *); m->m_data += sizeof(struct fxp_rfa); rfa->size = MCLBYTES - sizeof(struct fxp_rfa) - RFA_ALIGNMENT_FUDGE; /* * Initialize the rest of the RFA. Note that since the RFA * is misaligned, we cannot store values directly. Instead, * we use an optimized, inline copy. */ rfa->rfa_status = 0; rfa->rfa_control = FXP_RFA_CONTROL_EL; rfa->actual_size = 0; v = -1; fxp_lwcopy(&v, &rfa->link_addr); fxp_lwcopy(&v, &rfa->rbd_addr); /* * If there are other buffers already on the list, attach this * one to the end by fixing up the tail to point to this one. */ if (sc->rfa_headm != NULL) { p_rfa = (struct fxp_rfa *) (sc->rfa_tailm->m_ext.ext_buf + RFA_ALIGNMENT_FUDGE); sc->rfa_tailm->m_next = m; v = vtophys(rfa); fxp_lwcopy(&v, &p_rfa->link_addr); p_rfa->rfa_control &= ~FXP_RFA_CONTROL_EL; } else { sc->rfa_headm = m; } sc->rfa_tailm = m; return (m == oldm); } static volatile int fxp_mdi_read(sc, phy, reg) struct fxp_softc *sc; int phy; int reg; { int count = 10000; int value; CSR_WRITE_4(sc, FXP_CSR_MDICONTROL, (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21)); while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0 && count--) DELAY(10); if (count <= 0) printf(FXP_FORMAT ": fxp_mdi_read: timed out\n", FXP_ARGS(sc)); return (value & 0xffff); } static void fxp_mdi_write(sc, phy, reg, value) struct fxp_softc *sc; int phy; int reg; int value; { int count = 10000; CSR_WRITE_4(sc, FXP_CSR_MDICONTROL, (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) | (value & 0xffff)); while((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 && count--) DELAY(10); if (count <= 0) printf(FXP_FORMAT ": fxp_mdi_write: timed out\n", FXP_ARGS(sc)); } static int fxp_ioctl(ifp, command, data) struct ifnet *ifp; FXP_IOCTLCMD_TYPE command; caddr_t data; { struct fxp_softc *sc = ifp->if_softc; struct ifreq *ifr = (struct ifreq *)data; int s, error = 0; s = splimp(); switch (command) { case SIOCSIFADDR: #if !defined(__NetBSD__) case SIOCGIFADDR: case SIOCSIFMTU: #endif error = ether_ioctl(ifp, command, data); break; case SIOCSIFFLAGS: sc->all_mcasts = (ifp->if_flags & IFF_ALLMULTI) ? 1 : 0; /* * If interface is marked up and not running, then start it. * If it is marked down and running, stop it. * XXX If it's up then re-initialize it. This is so flags * such as IFF_PROMISC are handled. */ if (ifp->if_flags & IFF_UP) { fxp_init(sc); } else { if (ifp->if_flags & IFF_RUNNING) fxp_stop(sc); } break; case SIOCADDMULTI: case SIOCDELMULTI: sc->all_mcasts = (ifp->if_flags & IFF_ALLMULTI) ? 1 : 0; #if defined(__NetBSD__) error = (command == SIOCADDMULTI) ? ether_addmulti(ifr, &sc->sc_ethercom) : ether_delmulti(ifr, &sc->sc_ethercom); if (error == ENETRESET) { /* * Multicast list has changed; set the hardware * filter accordingly. */ if (!sc->all_mcasts) fxp_mc_setup(sc); /* * fxp_mc_setup() can turn on all_mcasts if we run * out of space, so check it again rather than else {}. */ if (sc->all_mcasts) fxp_init(sc); error = 0; } #else /* __FreeBSD__ */ /* * Multicast list has changed; set the hardware filter * accordingly. */ if (!sc->all_mcasts) fxp_mc_setup(sc); /* * fxp_mc_setup() can turn on sc->all_mcasts, so check it * again rather than else {}. */ if (sc->all_mcasts) fxp_init(sc); error = 0; #endif /* __NetBSD__ */ break; case SIOCSIFMEDIA: case SIOCGIFMEDIA: error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, command); break; default: error = EINVAL; } (void) splx(s); return (error); } /* * Program the multicast filter. * * We have an artificial restriction that the multicast setup command * must be the first command in the chain, so we take steps to ensure * that. By requiring this, it allows us to keep the performance of * the pre-initialized command ring (esp. link pointers) by not actually * inserting the mcsetup command in the ring - i.e. it's link pointer * points to the TxCB ring, but the mcsetup descriptor itself is not part * of it. We then can do 'CU_START' on the mcsetup descriptor and have it * lead into the regular TxCB ring when it completes. * * This function must be called at splimp. */ static void fxp_mc_setup(sc) struct fxp_softc *sc; { struct fxp_cb_mcs *mcsp = sc->mcsp; struct ifnet *ifp = &sc->sc_if; #if defined(__NetBSD__) struct ethercom *ec = &sc->sc_ethercom; struct ether_multi *enm; struct ether_multistep step; #else struct ifmultiaddr *ifma; #endif /* __NetBSD__ */ int nmcasts; if (sc->tx_queued) { sc->need_mcsetup = 1; return; } sc->need_mcsetup = 0; /* * Initialize multicast setup descriptor. */ mcsp->next = sc->cbl_base; mcsp->mb_head = NULL; mcsp->cb_status = 0; mcsp->cb_command = FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_S; mcsp->link_addr = vtophys(&sc->cbl_base->cb_status); nmcasts = 0; if (!sc->all_mcasts) { #if defined(__NetBSD__) ETHER_FIRST_MULTI(step, ec, enm); while (enm != NULL) { /* * Check for too many multicast addresses or if we're * listening to a range. Either way, we simply have * to accept all multicasts. */ if (nmcasts >= MAXMCADDR || bcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN) != 0) { sc->all_mcasts = 1; nmcasts = 0; break; } bcopy(enm->enm_addrlo, (void *) &sc->mcsp->mc_addr[nmcasts][0], ETHER_ADDR_LEN); nmcasts++; ETHER_NEXT_MULTI(step, enm); } #else /* __FreeBSD__ */ for (ifma = ifp->if_multiaddrs.lh_first; ifma != NULL; ifma = ifma->ifma_link.le_next) { if (ifma->ifma_addr->sa_family != AF_LINK) continue; if (nmcasts >= MAXMCADDR) { sc->all_mcasts = 1; nmcasts = 0; break; } bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr), (void *) &sc->mcsp->mc_addr[nmcasts][0], 6); nmcasts++; } #endif /* __NetBSD__ */ } mcsp->mc_cnt = nmcasts * 6; sc->cbl_first = sc->cbl_last = (struct fxp_cb_tx *) mcsp; sc->tx_queued = 1; /* * Wait until command unit is not active. This should never * be the case when nothing is queued, but make sure anyway. */ while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) == FXP_SCB_CUS_ACTIVE) ; /* * Start the multicast setup command. */ fxp_scb_wait(sc); CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&mcsp->cb_status)); CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_SCB_COMMAND_CU_START); ifp->if_timer = 5; return; }