/* $NetBSD: n_expm1.c,v 1.6 2003/08/07 16:44:51 agc Exp $ */ /* * Copyright (c) 1985, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #ifndef lint #if 0 static char sccsid[] = "@(#)expm1.c 8.1 (Berkeley) 6/4/93"; #endif #endif /* not lint */ /* EXPM1(X) * RETURN THE EXPONENTIAL OF X MINUS ONE * DOUBLE PRECISION (IEEE 53 BITS, VAX D FORMAT 56 BITS) * CODED IN C BY K.C. NG, 1/19/85; * REVISED BY K.C. NG on 2/6/85, 3/7/85, 3/21/85, 4/16/85. * * Required system supported functions: * scalb(x,n) * copysign(x,y) * finite(x) * * Kernel function: * exp__E(x,c) * * Method: * 1. Argument Reduction: given the input x, find r and integer k such * that * x = k*ln2 + r, |r| <= 0.5*ln2 . * r will be represented as r := z+c for better accuracy. * * 2. Compute EXPM1(r)=exp(r)-1 by * * EXPM1(r=z+c) := z + exp__E(z,c) * * 3. EXPM1(x) = 2^k * ( EXPM1(r) + 1-2^-k ). * * Remarks: * 1. When k=1 and z < -0.25, we use the following formula for * better accuracy: * EXPM1(x) = 2 * ( (z+0.5) + exp__E(z,c) ) * 2. To avoid rounding error in 1-2^-k where k is large, we use * EXPM1(x) = 2^k * { [z+(exp__E(z,c)-2^-k )] + 1 } * when k>56. * * Special cases: * EXPM1(INF) is INF, EXPM1(NaN) is NaN; * EXPM1(-INF)= -1; * for finite argument, only EXPM1(0)=0 is exact. * * Accuracy: * EXPM1(x) returns the exact (exp(x)-1) nearly rounded. In a test run with * 1,166,000 random arguments on a VAX, the maximum observed error was * .872 ulps (units of the last place). * * Constants: * The hexadecimal values are the intended ones for the following constants. * The decimal values may be used, provided that the compiler will convert * from decimal to binary accurately enough to produce the hexadecimal values * shown. */ #define _LIBM_STATIC #include "mathimpl.h" vc(ln2hi, 6.9314718055829871446E-1 ,7217,4031,0000,f7d0, 0, .B17217F7D00000) vc(ln2lo, 1.6465949582897081279E-12 ,bcd5,2ce7,d9cc,e4f1, -39, .E7BCD5E4F1D9CC) vc(lnhuge, 9.4961163736712506989E1 ,ec1d,43bd,9010,a73e, 7, .BDEC1DA73E9010) vc(invln2, 1.4426950408889634148E0 ,aa3b,40b8,17f1,295c, 1, .B8AA3B295C17F1) ic(ln2hi, 6.9314718036912381649E-1, -1, 1.62E42FEE00000) ic(ln2lo, 1.9082149292705877000E-10, -33, 1.A39EF35793C76) ic(lnhuge, 7.1602103751842355450E2, 9, 1.6602B15B7ECF2) ic(invln2, 1.4426950408889633870E0, 0, 1.71547652B82FE) #ifdef vccast #define ln2hi vccast(ln2hi) #define ln2lo vccast(ln2lo) #define lnhuge vccast(lnhuge) #define invln2 vccast(invln2) #endif #if defined(__vax__)||defined(tahoe) #define PREC 56 #else /* defined(__vax__)||defined(tahoe) */ #define PREC 53 #endif /* defined(__vax__)||defined(tahoe) */ double expm1(double x) { const static double one=1.0, half=1.0/2.0; double z,hi,lo,c; int k; #if !defined(__vax__)&&!defined(tahoe) if(x!=x) return(x); /* x is NaN */ #endif /* !defined(__vax__)&&!defined(tahoe) */ if( x <= lnhuge ) { if( x >= -40.0 ) { /* argument reduction : x - k*ln2 */ k= invln2 *x+copysign(0.5,x); /* k=NINT(x/ln2) */ hi=x-k*ln2hi ; z=hi-(lo=k*ln2lo); c=(hi-z)-lo; if(k==0) return(z+__exp__E(z,c)); if(k==1) if(z< -0.25) {x=z+half;x +=__exp__E(z,c); return(x+x);} else {z+=__exp__E(z,c); x=half+z; return(x+x);} /* end of k=1 */ else { if(k<=PREC) { x=one-scalb(one,-k); z += __exp__E(z,c);} else if(k<100) { x = __exp__E(z,c)-scalb(one,-k); x+=z; z=one;} else { x = __exp__E(z,c)+z; z=one;} return (scalb(x+z,k)); } } /* end of x > lnunfl */ else /* expm1(-big#) rounded to -1 (inexact) */ if(finite(x)) { c=ln2hi+ln2lo; return(-one);} /* ??? -ragge */ /* expm1(-INF) is -1 */ else return(-one); } /* end of x < lnhuge */ else /* expm1(INF) is INF, expm1(+big#) overflows to INF */ return( finite(x) ? scalb(one,5000) : x); }