/* $NetBSD: uvm_km.c,v 1.91 2006/10/12 21:35:00 uwe Exp $ */ /* * Copyright (c) 1997 Charles D. Cranor and Washington University. * Copyright (c) 1991, 1993, The Regents of the University of California. * * All rights reserved. * * This code is derived from software contributed to Berkeley by * The Mach Operating System project at Carnegie-Mellon University. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Charles D. Cranor, * Washington University, the University of California, Berkeley and * its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)vm_kern.c 8.3 (Berkeley) 1/12/94 * from: Id: uvm_km.c,v 1.1.2.14 1998/02/06 05:19:27 chs Exp * * * Copyright (c) 1987, 1990 Carnegie-Mellon University. * All rights reserved. * * Permission to use, copy, modify and distribute this software and * its documentation is hereby granted, provided that both the copyright * notice and this permission notice appear in all copies of the * software, derivative works or modified versions, and any portions * thereof, and that both notices appear in supporting documentation. * * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. * * Carnegie Mellon requests users of this software to return to * * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU * School of Computer Science * Carnegie Mellon University * Pittsburgh PA 15213-3890 * * any improvements or extensions that they make and grant Carnegie the * rights to redistribute these changes. */ /* * uvm_km.c: handle kernel memory allocation and management */ /* * overview of kernel memory management: * * the kernel virtual address space is mapped by "kernel_map." kernel_map * starts at VM_MIN_KERNEL_ADDRESS and goes to VM_MAX_KERNEL_ADDRESS. * note that VM_MIN_KERNEL_ADDRESS is equal to vm_map_min(kernel_map). * * the kernel_map has several "submaps." submaps can only appear in * the kernel_map (user processes can't use them). submaps "take over" * the management of a sub-range of the kernel's address space. submaps * are typically allocated at boot time and are never released. kernel * virtual address space that is mapped by a submap is locked by the * submap's lock -- not the kernel_map's lock. * * thus, the useful feature of submaps is that they allow us to break * up the locking and protection of the kernel address space into smaller * chunks. * * the vm system has several standard kernel submaps, including: * kmem_map => contains only wired kernel memory for the kernel * malloc. *** access to kmem_map must be protected * by splvm() because we are allowed to call malloc() * at interrupt time *** * mb_map => memory for large mbufs, *** protected by splvm *** * pager_map => used to map "buf" structures into kernel space * exec_map => used during exec to handle exec args * etc... * * the kernel allocates its private memory out of special uvm_objects whose * reference count is set to UVM_OBJ_KERN (thus indicating that the objects * are "special" and never die). all kernel objects should be thought of * as large, fixed-sized, sparsely populated uvm_objects. each kernel * object is equal to the size of kernel virtual address space (i.e. the * value "VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS"). * * note that just because a kernel object spans the entire kernel virutal * address space doesn't mean that it has to be mapped into the entire space. * large chunks of a kernel object's space go unused either because * that area of kernel VM is unmapped, or there is some other type of * object mapped into that range (e.g. a vnode). for submap's kernel * objects, the only part of the object that can ever be populated is the * offsets that are managed by the submap. * * note that the "offset" in a kernel object is always the kernel virtual * address minus the VM_MIN_KERNEL_ADDRESS (aka vm_map_min(kernel_map)). * example: * suppose VM_MIN_KERNEL_ADDRESS is 0xf8000000 and the kernel does a * uvm_km_alloc(kernel_map, PAGE_SIZE) [allocate 1 wired down page in the * kernel map]. if uvm_km_alloc returns virtual address 0xf8235000, * then that means that the page at offset 0x235000 in kernel_object is * mapped at 0xf8235000. * * kernel object have one other special property: when the kernel virtual * memory mapping them is unmapped, the backing memory in the object is * freed right away. this is done with the uvm_km_pgremove() function. * this has to be done because there is no backing store for kernel pages * and no need to save them after they are no longer referenced. */ #include __KERNEL_RCSID(0, "$NetBSD: uvm_km.c,v 1.91 2006/10/12 21:35:00 uwe Exp $"); #include "opt_uvmhist.h" #include #include #include #include #include #include /* * global data structures */ struct vm_map *kernel_map = NULL; /* * local data structues */ static struct vm_map_kernel kernel_map_store; static struct vm_map_entry kernel_first_mapent_store; #if !defined(PMAP_MAP_POOLPAGE) /* * kva cache * * XXX maybe it's better to do this at the uvm_map layer. */ #define KM_VACACHE_SIZE (32 * PAGE_SIZE) /* XXX tune */ static void *km_vacache_alloc(struct pool *, int); static void km_vacache_free(struct pool *, void *); static void km_vacache_init(struct vm_map *, const char *, size_t); /* XXX */ #define KM_VACACHE_POOL_TO_MAP(pp) \ ((struct vm_map *)((char *)(pp) - \ offsetof(struct vm_map_kernel, vmk_vacache))) static void * km_vacache_alloc(struct pool *pp, int flags) { vaddr_t va; size_t size; struct vm_map *map; size = pp->pr_alloc->pa_pagesz; map = KM_VACACHE_POOL_TO_MAP(pp); va = vm_map_min(map); /* hint */ if (uvm_map(map, &va, size, NULL, UVM_UNKNOWN_OFFSET, size, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE, UVM_ADV_RANDOM, UVM_FLAG_QUANTUM | ((flags & PR_WAITOK) ? UVM_FLAG_WAITVA : UVM_FLAG_TRYLOCK | UVM_FLAG_NOWAIT)))) return NULL; return (void *)va; } static void km_vacache_free(struct pool *pp, void *v) { vaddr_t va = (vaddr_t)v; size_t size = pp->pr_alloc->pa_pagesz; struct vm_map *map; map = KM_VACACHE_POOL_TO_MAP(pp); uvm_unmap1(map, va, va + size, UVM_FLAG_QUANTUM|UVM_FLAG_VAONLY); } /* * km_vacache_init: initialize kva cache. */ static void km_vacache_init(struct vm_map *map, const char *name, size_t size) { struct vm_map_kernel *vmk; struct pool *pp; struct pool_allocator *pa; KASSERT(VM_MAP_IS_KERNEL(map)); KASSERT(size < (vm_map_max(map) - vm_map_min(map)) / 2); /* sanity */ vmk = vm_map_to_kernel(map); pp = &vmk->vmk_vacache; pa = &vmk->vmk_vacache_allocator; memset(pa, 0, sizeof(*pa)); pa->pa_alloc = km_vacache_alloc; pa->pa_free = km_vacache_free; pa->pa_pagesz = (unsigned int)size; pa->pa_backingmap = map; pa->pa_backingmapptr = NULL; pool_init(pp, PAGE_SIZE, 0, 0, PR_NOTOUCH | PR_RECURSIVE, name, pa); } void uvm_km_vacache_init(struct vm_map *map, const char *name, size_t size) { map->flags |= VM_MAP_VACACHE; if (size == 0) size = KM_VACACHE_SIZE; km_vacache_init(map, name, size); } #else /* !defined(PMAP_MAP_POOLPAGE) */ void uvm_km_vacache_init(struct vm_map *map __unused, const char *name __unused, size_t size __unused) { /* nothing */ } #endif /* !defined(PMAP_MAP_POOLPAGE) */ void uvm_km_va_drain(struct vm_map *map, uvm_flag_t flags __unused) { struct vm_map_kernel *vmk = vm_map_to_kernel(map); const boolean_t intrsafe = (map->flags & VM_MAP_INTRSAFE) != 0; int s = 0xdeadbeaf; /* XXX: gcc */ if (intrsafe) { s = splvm(); } callback_run_roundrobin(&vmk->vmk_reclaim_callback, NULL); if (intrsafe) { splx(s); } } /* * uvm_km_init: init kernel maps and objects to reflect reality (i.e. * KVM already allocated for text, data, bss, and static data structures). * * => KVM is defined by VM_MIN_KERNEL_ADDRESS/VM_MAX_KERNEL_ADDRESS. * we assume that [vmin -> start] has already been allocated and that * "end" is the end. */ void uvm_km_init(vaddr_t start, vaddr_t end) { vaddr_t base = VM_MIN_KERNEL_ADDRESS; /* * next, init kernel memory objects. */ /* kernel_object: for pageable anonymous kernel memory */ uao_init(); uvm.kernel_object = uao_create(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS, UAO_FLAG_KERNOBJ); /* * init the map and reserve any space that might already * have been allocated kernel space before installing. */ uvm_map_setup_kernel(&kernel_map_store, base, end, VM_MAP_PAGEABLE); kernel_map_store.vmk_map.pmap = pmap_kernel(); if (start != base) { int error; struct uvm_map_args args; error = uvm_map_prepare(&kernel_map_store.vmk_map, base, start - base, NULL, UVM_UNKNOWN_OFFSET, 0, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE, UVM_ADV_RANDOM, UVM_FLAG_FIXED), &args); if (!error) { kernel_first_mapent_store.flags = UVM_MAP_KERNEL | UVM_MAP_FIRST; error = uvm_map_enter(&kernel_map_store.vmk_map, &args, &kernel_first_mapent_store); } if (error) panic( "uvm_km_init: could not reserve space for kernel"); } /* * install! */ kernel_map = &kernel_map_store.vmk_map; uvm_km_vacache_init(kernel_map, "kvakernel", 0); } /* * uvm_km_suballoc: allocate a submap in the kernel map. once a submap * is allocated all references to that area of VM must go through it. this * allows the locking of VAs in kernel_map to be broken up into regions. * * => if `fixed' is true, *vmin specifies where the region described * by the submap must start * => if submap is non NULL we use that as the submap, otherwise we * alloc a new map */ struct vm_map * uvm_km_suballoc(struct vm_map *map, vaddr_t *vmin /* IN/OUT */, vaddr_t *vmax /* OUT */, vsize_t size, int flags, boolean_t fixed, struct vm_map_kernel *submap) { int mapflags = UVM_FLAG_NOMERGE | (fixed ? UVM_FLAG_FIXED : 0); KASSERT(vm_map_pmap(map) == pmap_kernel()); size = round_page(size); /* round up to pagesize */ size += uvm_mapent_overhead(size, flags); /* * first allocate a blank spot in the parent map */ if (uvm_map(map, vmin, size, NULL, UVM_UNKNOWN_OFFSET, 0, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE, UVM_ADV_RANDOM, mapflags)) != 0) { panic("uvm_km_suballoc: unable to allocate space in parent map"); } /* * set VM bounds (vmin is filled in by uvm_map) */ *vmax = *vmin + size; /* * add references to pmap and create or init the submap */ pmap_reference(vm_map_pmap(map)); if (submap == NULL) { submap = malloc(sizeof(*submap), M_VMMAP, M_WAITOK); if (submap == NULL) panic("uvm_km_suballoc: unable to create submap"); } uvm_map_setup_kernel(submap, *vmin, *vmax, flags); submap->vmk_map.pmap = vm_map_pmap(map); /* * now let uvm_map_submap plug in it... */ if (uvm_map_submap(map, *vmin, *vmax, &submap->vmk_map) != 0) panic("uvm_km_suballoc: submap allocation failed"); return(&submap->vmk_map); } /* * uvm_km_pgremove: remove pages from a kernel uvm_object. * * => when you unmap a part of anonymous kernel memory you want to toss * the pages right away. (this gets called from uvm_unmap_...). */ void uvm_km_pgremove(vaddr_t startva, vaddr_t endva) { struct uvm_object * const uobj = uvm.kernel_object; const voff_t start = startva - vm_map_min(kernel_map); const voff_t end = endva - vm_map_min(kernel_map); struct vm_page *pg; voff_t curoff, nextoff; int swpgonlydelta = 0; UVMHIST_FUNC("uvm_km_pgremove"); UVMHIST_CALLED(maphist); KASSERT(VM_MIN_KERNEL_ADDRESS <= startva); KASSERT(startva < endva); KASSERT(endva <= VM_MAX_KERNEL_ADDRESS); simple_lock(&uobj->vmobjlock); for (curoff = start; curoff < end; curoff = nextoff) { nextoff = curoff + PAGE_SIZE; pg = uvm_pagelookup(uobj, curoff); if (pg != NULL && pg->flags & PG_BUSY) { pg->flags |= PG_WANTED; UVM_UNLOCK_AND_WAIT(pg, &uobj->vmobjlock, 0, "km_pgrm", 0); simple_lock(&uobj->vmobjlock); nextoff = curoff; continue; } /* * free the swap slot, then the page. */ if (pg == NULL && uao_find_swslot(uobj, curoff >> PAGE_SHIFT) > 0) { swpgonlydelta++; } uao_dropswap(uobj, curoff >> PAGE_SHIFT); if (pg != NULL) { uvm_lock_pageq(); uvm_pagefree(pg); uvm_unlock_pageq(); } } simple_unlock(&uobj->vmobjlock); if (swpgonlydelta > 0) { simple_lock(&uvm.swap_data_lock); KASSERT(uvmexp.swpgonly >= swpgonlydelta); uvmexp.swpgonly -= swpgonlydelta; simple_unlock(&uvm.swap_data_lock); } } /* * uvm_km_pgremove_intrsafe: like uvm_km_pgremove(), but for non object backed * regions. * * => when you unmap a part of anonymous kernel memory you want to toss * the pages right away. (this is called from uvm_unmap_...). * => none of the pages will ever be busy, and none of them will ever * be on the active or inactive queues (because they have no object). */ void uvm_km_pgremove_intrsafe(vaddr_t start, vaddr_t end) { struct vm_page *pg; paddr_t pa; UVMHIST_FUNC("uvm_km_pgremove_intrsafe"); UVMHIST_CALLED(maphist); KASSERT(VM_MIN_KERNEL_ADDRESS <= start); KASSERT(start < end); KASSERT(end <= VM_MAX_KERNEL_ADDRESS); for (; start < end; start += PAGE_SIZE) { if (!pmap_extract(pmap_kernel(), start, &pa)) { continue; } pg = PHYS_TO_VM_PAGE(pa); KASSERT(pg); KASSERT(pg->uobject == NULL && pg->uanon == NULL); uvm_pagefree(pg); } } #if defined(DEBUG) void uvm_km_check_empty(vaddr_t start, vaddr_t end, boolean_t intrsafe) { vaddr_t va; paddr_t pa; KDASSERT(VM_MIN_KERNEL_ADDRESS <= start); KDASSERT(start < end); KDASSERT(end <= VM_MAX_KERNEL_ADDRESS); for (va = start; va < end; va += PAGE_SIZE) { if (pmap_extract(pmap_kernel(), va, &pa)) { panic("uvm_km_check_empty: va %p has pa 0x%llx", (void *)va, (long long)pa); } if (!intrsafe) { const struct vm_page *pg; simple_lock(&uvm.kernel_object->vmobjlock); pg = uvm_pagelookup(uvm.kernel_object, va - vm_map_min(kernel_map)); simple_unlock(&uvm.kernel_object->vmobjlock); if (pg) { panic("uvm_km_check_empty: " "has page hashed at %p", (const void *)va); } } } } #endif /* defined(DEBUG) */ /* * uvm_km_alloc: allocate an area of kernel memory. * * => NOTE: we can return 0 even if we can wait if there is not enough * free VM space in the map... caller should be prepared to handle * this case. * => we return KVA of memory allocated */ vaddr_t uvm_km_alloc(struct vm_map *map, vsize_t size, vsize_t align, uvm_flag_t flags) { vaddr_t kva, loopva; vaddr_t offset; vsize_t loopsize; struct vm_page *pg; struct uvm_object *obj; int pgaflags; vm_prot_t prot; UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist); KASSERT(vm_map_pmap(map) == pmap_kernel()); KASSERT((flags & UVM_KMF_TYPEMASK) == UVM_KMF_WIRED || (flags & UVM_KMF_TYPEMASK) == UVM_KMF_PAGEABLE || (flags & UVM_KMF_TYPEMASK) == UVM_KMF_VAONLY); /* * setup for call */ kva = vm_map_min(map); /* hint */ size = round_page(size); obj = (flags & UVM_KMF_PAGEABLE) ? uvm.kernel_object : NULL; UVMHIST_LOG(maphist," (map=0x%x, obj=0x%x, size=0x%x, flags=%d)", map, obj, size, flags); /* * allocate some virtual space */ if (__predict_false(uvm_map(map, &kva, size, obj, UVM_UNKNOWN_OFFSET, align, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE, UVM_ADV_RANDOM, (flags & (UVM_KMF_TRYLOCK | UVM_KMF_NOWAIT | UVM_KMF_WAITVA)) | UVM_FLAG_QUANTUM)) != 0)) { UVMHIST_LOG(maphist, "<- done (no VM)",0,0,0,0); return(0); } /* * if all we wanted was VA, return now */ if (flags & (UVM_KMF_VAONLY | UVM_KMF_PAGEABLE)) { UVMHIST_LOG(maphist,"<- done valloc (kva=0x%x)", kva,0,0,0); return(kva); } /* * recover object offset from virtual address */ offset = kva - vm_map_min(kernel_map); UVMHIST_LOG(maphist, " kva=0x%x, offset=0x%x", kva, offset,0,0); /* * now allocate and map in the memory... note that we are the only ones * whom should ever get a handle on this area of VM. */ loopva = kva; loopsize = size; pgaflags = UVM_PGA_USERESERVE; if (flags & UVM_KMF_ZERO) pgaflags |= UVM_PGA_ZERO; prot = VM_PROT_READ | VM_PROT_WRITE; if (flags & UVM_KMF_EXEC) prot |= VM_PROT_EXECUTE; while (loopsize) { KASSERT(!pmap_extract(pmap_kernel(), loopva, NULL)); pg = uvm_pagealloc(NULL, offset, NULL, pgaflags); /* * out of memory? */ if (__predict_false(pg == NULL)) { if ((flags & UVM_KMF_NOWAIT) || ((flags & UVM_KMF_CANFAIL) && !uvm_reclaimable())) { /* free everything! */ uvm_km_free(map, kva, size, flags & UVM_KMF_TYPEMASK); return (0); } else { uvm_wait("km_getwait2"); /* sleep here */ continue; } } pg->flags &= ~PG_BUSY; /* new page */ UVM_PAGE_OWN(pg, NULL); /* * map it in */ pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg), prot); loopva += PAGE_SIZE; offset += PAGE_SIZE; loopsize -= PAGE_SIZE; } pmap_update(pmap_kernel()); UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0); return(kva); } /* * uvm_km_free: free an area of kernel memory */ void uvm_km_free(struct vm_map *map, vaddr_t addr, vsize_t size, uvm_flag_t flags) { KASSERT((flags & UVM_KMF_TYPEMASK) == UVM_KMF_WIRED || (flags & UVM_KMF_TYPEMASK) == UVM_KMF_PAGEABLE || (flags & UVM_KMF_TYPEMASK) == UVM_KMF_VAONLY); KASSERT((addr & PAGE_MASK) == 0); KASSERT(vm_map_pmap(map) == pmap_kernel()); size = round_page(size); if (flags & UVM_KMF_PAGEABLE) { uvm_km_pgremove(addr, addr + size); pmap_remove(pmap_kernel(), addr, addr + size); } else if (flags & UVM_KMF_WIRED) { uvm_km_pgremove_intrsafe(addr, addr + size); pmap_kremove(addr, size); } uvm_unmap1(map, addr, addr + size, UVM_FLAG_QUANTUM|UVM_FLAG_VAONLY); } /* Sanity; must specify both or none. */ #if (defined(PMAP_MAP_POOLPAGE) || defined(PMAP_UNMAP_POOLPAGE)) && \ (!defined(PMAP_MAP_POOLPAGE) || !defined(PMAP_UNMAP_POOLPAGE)) #error Must specify MAP and UNMAP together. #endif /* * uvm_km_alloc_poolpage: allocate a page for the pool allocator * * => if the pmap specifies an alternate mapping method, we use it. */ /* ARGSUSED */ vaddr_t uvm_km_alloc_poolpage_cache(struct vm_map *map, boolean_t waitok) { #if defined(PMAP_MAP_POOLPAGE) return uvm_km_alloc_poolpage(map, waitok); #else struct vm_page *pg; struct pool *pp = &vm_map_to_kernel(map)->vmk_vacache; vaddr_t va; int s = 0xdeadbeaf; /* XXX: gcc */ const boolean_t intrsafe = (map->flags & VM_MAP_INTRSAFE) != 0; if ((map->flags & VM_MAP_VACACHE) == 0) return uvm_km_alloc_poolpage(map, waitok); if (intrsafe) s = splvm(); va = (vaddr_t)pool_get(pp, waitok ? PR_WAITOK : PR_NOWAIT); if (intrsafe) splx(s); if (va == 0) return 0; KASSERT(!pmap_extract(pmap_kernel(), va, NULL)); again: pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE); if (__predict_false(pg == NULL)) { if (waitok) { uvm_wait("plpg"); goto again; } else { if (intrsafe) s = splvm(); pool_put(pp, (void *)va); if (intrsafe) splx(s); return 0; } } pmap_kenter_pa(va, VM_PAGE_TO_PHYS(pg), VM_PROT_READ|VM_PROT_WRITE); pmap_update(pmap_kernel()); return va; #endif /* PMAP_MAP_POOLPAGE */ } vaddr_t uvm_km_alloc_poolpage(struct vm_map *map, boolean_t waitok) { #if defined(PMAP_MAP_POOLPAGE) struct vm_page *pg; vaddr_t va; again: pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE); if (__predict_false(pg == NULL)) { if (waitok) { uvm_wait("plpg"); goto again; } else return (0); } va = PMAP_MAP_POOLPAGE(VM_PAGE_TO_PHYS(pg)); if (__predict_false(va == 0)) uvm_pagefree(pg); return (va); #else vaddr_t va; int s = 0xdeadbeaf; /* XXX: gcc */ const boolean_t intrsafe = (map->flags & VM_MAP_INTRSAFE) != 0; if (intrsafe) s = splvm(); va = uvm_km_alloc(map, PAGE_SIZE, 0, (waitok ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK) | UVM_KMF_WIRED); if (intrsafe) splx(s); return (va); #endif /* PMAP_MAP_POOLPAGE */ } /* * uvm_km_free_poolpage: free a previously allocated pool page * * => if the pmap specifies an alternate unmapping method, we use it. */ /* ARGSUSED */ void uvm_km_free_poolpage_cache(struct vm_map *map, vaddr_t addr) { #if defined(PMAP_UNMAP_POOLPAGE) uvm_km_free_poolpage(map, addr); #else struct pool *pp; int s = 0xdeadbeaf; /* XXX: gcc */ const boolean_t intrsafe = (map->flags & VM_MAP_INTRSAFE) != 0; if ((map->flags & VM_MAP_VACACHE) == 0) { uvm_km_free_poolpage(map, addr); return; } KASSERT(pmap_extract(pmap_kernel(), addr, NULL)); uvm_km_pgremove_intrsafe(addr, addr + PAGE_SIZE); pmap_kremove(addr, PAGE_SIZE); #if defined(DEBUG) pmap_update(pmap_kernel()); #endif KASSERT(!pmap_extract(pmap_kernel(), addr, NULL)); pp = &vm_map_to_kernel(map)->vmk_vacache; if (intrsafe) s = splvm(); pool_put(pp, (void *)addr); if (intrsafe) splx(s); #endif } /* ARGSUSED */ void uvm_km_free_poolpage(struct vm_map *map, vaddr_t addr) { #if defined(PMAP_UNMAP_POOLPAGE) paddr_t pa; pa = PMAP_UNMAP_POOLPAGE(addr); uvm_pagefree(PHYS_TO_VM_PAGE(pa)); #else int s = 0xdeadbeaf; /* XXX: gcc */ const boolean_t intrsafe = (map->flags & VM_MAP_INTRSAFE) != 0; if (intrsafe) s = splvm(); uvm_km_free(map, addr, PAGE_SIZE, UVM_KMF_WIRED); if (intrsafe) splx(s); #endif /* PMAP_UNMAP_POOLPAGE */ }