/* $NetBSD: rtsock.c,v 1.85 2006/05/27 23:08:11 elad Exp $ */ /* * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the project nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * Copyright (c) 1988, 1991, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)rtsock.c 8.7 (Berkeley) 10/12/95 */ #include __KERNEL_RCSID(0, "$NetBSD: rtsock.c,v 1.85 2006/05/27 23:08:11 elad Exp $"); #include "opt_inet.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include DOMAIN_DEFINE(routedomain); /* forward declare and add to link set */ struct sockaddr route_dst = { 2, PF_ROUTE, }; struct sockaddr route_src = { 2, PF_ROUTE, }; struct sockproto route_proto = { PF_ROUTE, }; struct walkarg { int w_op; int w_arg; int w_given; int w_needed; caddr_t w_where; int w_tmemsize; int w_tmemneeded; caddr_t w_tmem; }; static struct mbuf *rt_msg1(int, struct rt_addrinfo *, caddr_t, int); static int rt_msg2(int, struct rt_addrinfo *, caddr_t, struct walkarg *, int *); static int rt_xaddrs(u_char, const char *, const char *, struct rt_addrinfo *); static struct mbuf *rt_makeifannouncemsg(struct ifnet *, int, int, struct rt_addrinfo *); static int sysctl_dumpentry(struct radix_node *, void *); static int sysctl_iflist(int, struct walkarg *, int); static int sysctl_rtable(SYSCTLFN_PROTO); static inline void rt_adjustcount(int, int); /* Sleazy use of local variables throughout file, warning!!!! */ #define dst info.rti_info[RTAX_DST] #define gate info.rti_info[RTAX_GATEWAY] #define netmask info.rti_info[RTAX_NETMASK] #define genmask info.rti_info[RTAX_GENMASK] #define ifpaddr info.rti_info[RTAX_IFP] #define ifaaddr info.rti_info[RTAX_IFA] #define brdaddr info.rti_info[RTAX_BRD] static inline void rt_adjustcount(int af, int cnt) { route_cb.any_count += cnt; switch (af) { case AF_INET: route_cb.ip_count += cnt; return; #ifdef INET6 case AF_INET6: route_cb.ip6_count += cnt; return; #endif case AF_IPX: route_cb.ipx_count += cnt; return; case AF_NS: route_cb.ns_count += cnt; return; case AF_ISO: route_cb.iso_count += cnt; return; } } /*ARGSUSED*/ int route_usrreq(struct socket *so, int req, struct mbuf *m, struct mbuf *nam, struct mbuf *control, struct lwp *l) { int error = 0; struct rawcb *rp = sotorawcb(so); int s; if (req == PRU_ATTACH) { MALLOC(rp, struct rawcb *, sizeof(*rp), M_PCB, M_WAITOK); if ((so->so_pcb = rp) != NULL) memset(so->so_pcb, 0, sizeof(*rp)); } if (req == PRU_DETACH && rp) rt_adjustcount(rp->rcb_proto.sp_protocol, -1); s = splsoftnet(); /* * Don't call raw_usrreq() in the attach case, because * we want to allow non-privileged processes to listen on * and send "safe" commands to the routing socket. */ if (req == PRU_ATTACH) { if (l == 0) error = EACCES; else error = raw_attach(so, (int)(long)nam); } else error = raw_usrreq(so, req, m, nam, control, l); rp = sotorawcb(so); if (req == PRU_ATTACH && rp) { if (error) { free((caddr_t)rp, M_PCB); splx(s); return (error); } rt_adjustcount(rp->rcb_proto.sp_protocol, 1); rp->rcb_laddr = &route_src; rp->rcb_faddr = &route_dst; soisconnected(so); so->so_options |= SO_USELOOPBACK; } splx(s); return (error); } /*ARGSUSED*/ int route_output(struct mbuf *m, ...) { struct rt_msghdr *rtm = 0; struct radix_node *rn = 0; struct rtentry *rt = 0; struct rtentry *saved_nrt = 0; struct radix_node_head *rnh; struct rt_addrinfo info; int len, error = 0; struct ifnet *ifp = 0; struct ifaddr *ifa = 0; struct socket *so; va_list ap; sa_family_t family; va_start(ap, m); so = va_arg(ap, struct socket *); va_end(ap); #define senderr(e) do { error = e; goto flush;} while (/*CONSTCOND*/ 0) if (m == 0 || ((m->m_len < sizeof(int32_t)) && (m = m_pullup(m, sizeof(int32_t))) == 0)) return (ENOBUFS); if ((m->m_flags & M_PKTHDR) == 0) panic("route_output"); len = m->m_pkthdr.len; if (len < sizeof(*rtm) || len != mtod(m, struct rt_msghdr *)->rtm_msglen) { dst = 0; senderr(EINVAL); } R_Malloc(rtm, struct rt_msghdr *, len); if (rtm == 0) { dst = 0; senderr(ENOBUFS); } m_copydata(m, 0, len, (caddr_t)rtm); if (rtm->rtm_version != RTM_VERSION) { dst = 0; senderr(EPROTONOSUPPORT); } rtm->rtm_pid = curproc->p_pid; memset(&info, 0, sizeof(info)); info.rti_addrs = rtm->rtm_addrs; if (rt_xaddrs(rtm->rtm_type, (caddr_t)(rtm + 1), len + (caddr_t)rtm, &info)) senderr(EINVAL); info.rti_flags = rtm->rtm_flags; if (dst == 0 || (dst->sa_family >= AF_MAX)) senderr(EINVAL); if (gate != 0 && (gate->sa_family >= AF_MAX)) senderr(EINVAL); if (genmask) { struct radix_node *t; t = rn_addmask(genmask, 0, 1); if (t && genmask->sa_len >= ((const struct sockaddr *)t->rn_key)->sa_len && Bcmp((const char *const *)genmask + 1, (const char *const *)t->rn_key + 1, ((const struct sockaddr *)t->rn_key)->sa_len) - 1) genmask = (const struct sockaddr *)(t->rn_key); else senderr(ENOBUFS); } /* * Verify that the caller has the appropriate privilege; RTM_GET * is the only operation the non-superuser is allowed. */ if (rtm->rtm_type != RTM_GET && kauth_authorize_generic(curproc->p_cred, KAUTH_GENERIC_ISSUSER, &curproc->p_acflag) != 0) senderr(EACCES); switch (rtm->rtm_type) { case RTM_ADD: if (gate == 0) senderr(EINVAL); error = rtrequest1(rtm->rtm_type, &info, &saved_nrt); if (error == 0 && saved_nrt) { rt_setmetrics(rtm->rtm_inits, &rtm->rtm_rmx, &saved_nrt->rt_rmx); saved_nrt->rt_refcnt--; saved_nrt->rt_genmask = genmask; } break; case RTM_DELETE: error = rtrequest1(rtm->rtm_type, &info, &saved_nrt); if (error == 0) { (rt = saved_nrt)->rt_refcnt++; goto report; } break; case RTM_GET: case RTM_CHANGE: case RTM_LOCK: if ((rnh = rt_tables[dst->sa_family]) == 0) { senderr(EAFNOSUPPORT); } rn = rnh->rnh_lookup(dst, netmask, rnh); if (rn == NULL || (rn->rn_flags & RNF_ROOT) != 0) { senderr(ESRCH); } rt = (struct rtentry *)rn; rt->rt_refcnt++; if (rtm->rtm_type != RTM_GET) {/* XXX: too grotty */ struct radix_node *rnn; extern struct radix_node_head *mask_rnhead; if (Bcmp(dst, rt_key(rt), dst->sa_len) != 0) senderr(ESRCH); if (netmask && (rnn = rn_search(netmask, mask_rnhead->rnh_treetop))) netmask = (const struct sockaddr *)rnn->rn_key; for (rnn = rt->rt_nodes; rnn; rnn = rnn->rn_dupedkey) if (netmask == (const struct sockaddr *)rnn->rn_mask) break; if (rnn == 0) senderr(ETOOMANYREFS); rt = (struct rtentry *)rnn; } switch (rtm->rtm_type) { case RTM_GET: report: dst = rt_key(rt); gate = rt->rt_gateway; netmask = rt_mask(rt); genmask = rt->rt_genmask; if (rtm->rtm_addrs & (RTA_IFP | RTA_IFA)) { if ((ifp = rt->rt_ifp) != NULL) { ifpaddr = TAILQ_FIRST(&ifp->if_addrlist)->ifa_addr; ifaaddr = rt->rt_ifa->ifa_addr; if (ifp->if_flags & IFF_POINTOPOINT) brdaddr = rt->rt_ifa->ifa_dstaddr; else brdaddr = 0; rtm->rtm_index = ifp->if_index; } else { ifpaddr = 0; ifaaddr = 0; } } (void)rt_msg2(rtm->rtm_type, &info, (caddr_t)0, (struct walkarg *)0, &len); if (len > rtm->rtm_msglen) { struct rt_msghdr *new_rtm; R_Malloc(new_rtm, struct rt_msghdr *, len); if (new_rtm == 0) senderr(ENOBUFS); Bcopy(rtm, new_rtm, rtm->rtm_msglen); Free(rtm); rtm = new_rtm; } (void)rt_msg2(rtm->rtm_type, &info, (caddr_t)rtm, (struct walkarg *)0, 0); rtm->rtm_flags = rt->rt_flags; rtm->rtm_rmx = rt->rt_rmx; rtm->rtm_addrs = info.rti_addrs; break; case RTM_CHANGE: /* * new gateway could require new ifaddr, ifp; * flags may also be different; ifp may be specified * by ll sockaddr when protocol address is ambiguous */ if ((error = rt_getifa(&info)) != 0) senderr(error); if (gate && rt_setgate(rt, rt_key(rt), gate)) senderr(EDQUOT); /* new gateway could require new ifaddr, ifp; flags may also be different; ifp may be specified by ll sockaddr when protocol address is ambiguous */ if (ifpaddr && (ifa = ifa_ifwithnet(ifpaddr)) && (ifp = ifa->ifa_ifp) && (ifaaddr || gate)) ifa = ifaof_ifpforaddr(ifaaddr ? ifaaddr : gate, ifp); else if ((ifaaddr && (ifa = ifa_ifwithaddr(ifaaddr))) || (gate && (ifa = ifa_ifwithroute(rt->rt_flags, rt_key(rt), gate)))) ifp = ifa->ifa_ifp; if (ifa) { struct ifaddr *oifa = rt->rt_ifa; if (oifa != ifa) { if (oifa && oifa->ifa_rtrequest) oifa->ifa_rtrequest(RTM_DELETE, rt, &info); IFAFREE(rt->rt_ifa); rt->rt_ifa = ifa; IFAREF(rt->rt_ifa); rt->rt_ifp = ifp; } } rt_setmetrics(rtm->rtm_inits, &rtm->rtm_rmx, &rt->rt_rmx); if (rt->rt_ifa && rt->rt_ifa->ifa_rtrequest) rt->rt_ifa->ifa_rtrequest(RTM_ADD, rt, &info); if (genmask) rt->rt_genmask = genmask; /* * Fall into */ case RTM_LOCK: rt->rt_rmx.rmx_locks &= ~(rtm->rtm_inits); rt->rt_rmx.rmx_locks |= (rtm->rtm_inits & rtm->rtm_rmx.rmx_locks); break; } break; default: senderr(EOPNOTSUPP); } flush: if (rtm) { if (error) rtm->rtm_errno = error; else rtm->rtm_flags |= RTF_DONE; } family = dst ? dst->sa_family : 0; if (rt) rtfree(rt); { struct rawcb *rp = 0; /* * Check to see if we don't want our own messages. */ if ((so->so_options & SO_USELOOPBACK) == 0) { if (route_cb.any_count <= 1) { if (rtm) Free(rtm); m_freem(m); return (error); } /* There is another listener, so construct message */ rp = sotorawcb(so); } if (rtm) { m_copyback(m, 0, rtm->rtm_msglen, (caddr_t)rtm); if (m->m_pkthdr.len < rtm->rtm_msglen) { m_freem(m); m = NULL; } else if (m->m_pkthdr.len > rtm->rtm_msglen) m_adj(m, rtm->rtm_msglen - m->m_pkthdr.len); Free(rtm); } if (rp) rp->rcb_proto.sp_family = 0; /* Avoid us */ if (family) route_proto.sp_protocol = family; if (m) raw_input(m, &route_proto, &route_src, &route_dst); if (rp) rp->rcb_proto.sp_family = PF_ROUTE; } return (error); } void rt_setmetrics(u_long which, const struct rt_metrics *in, struct rt_metrics *out) { #define metric(f, e) if (which & (f)) out->e = in->e; metric(RTV_RPIPE, rmx_recvpipe); metric(RTV_SPIPE, rmx_sendpipe); metric(RTV_SSTHRESH, rmx_ssthresh); metric(RTV_RTT, rmx_rtt); metric(RTV_RTTVAR, rmx_rttvar); metric(RTV_HOPCOUNT, rmx_hopcount); metric(RTV_MTU, rmx_mtu); metric(RTV_EXPIRE, rmx_expire); #undef metric } #define ROUNDUP(a) \ ((a) > 0 ? (1 + (((a) - 1) | (sizeof(long) - 1))) : sizeof(long)) #define ADVANCE(x, n) (x += ROUNDUP((n)->sa_len)) static int rt_xaddrs(u_char rtmtype, const char *cp, const char *cplim, struct rt_addrinfo *rtinfo) { const struct sockaddr *sa = NULL; /* Quell compiler warning */ int i; for (i = 0; (i < RTAX_MAX) && (cp < cplim); i++) { if ((rtinfo->rti_addrs & (1 << i)) == 0) continue; rtinfo->rti_info[i] = sa = (const struct sockaddr *)cp; ADVANCE(cp, sa); } /* Check for extra addresses specified, except RTM_GET asking for interface info. */ if (rtmtype == RTM_GET) { if (((rtinfo->rti_addrs & (~((1 << RTAX_IFP) | (1 << RTAX_IFA)))) & (~0 << i)) != 0) return (1); } else { if ((rtinfo->rti_addrs & (~0 << i)) != 0) return (1); } /* Check for bad data length. */ if (cp != cplim) { if (i == RTAX_NETMASK + 1 && sa && cp - ROUNDUP(sa->sa_len) + sa->sa_len == cplim) /* * The last sockaddr was netmask. * We accept this for now for the sake of old * binaries or third party softwares. */ ; else return (1); } return (0); } static struct mbuf * rt_msg1(int type, struct rt_addrinfo *rtinfo, caddr_t data, int datalen) { struct rt_msghdr *rtm; struct mbuf *m; int i; const struct sockaddr *sa; int len, dlen; m = m_gethdr(M_DONTWAIT, MT_DATA); if (m == 0) return (m); MCLAIM(m, &routedomain.dom_mowner); switch (type) { case RTM_DELADDR: case RTM_NEWADDR: len = sizeof(struct ifa_msghdr); break; #ifdef COMPAT_14 case RTM_OIFINFO: len = sizeof(struct if_msghdr14); break; #endif case RTM_IFINFO: len = sizeof(struct if_msghdr); break; case RTM_IFANNOUNCE: case RTM_IEEE80211: len = sizeof(struct if_announcemsghdr); break; default: len = sizeof(struct rt_msghdr); } if (len > MHLEN + MLEN) panic("rt_msg1: message too long"); else if (len > MHLEN) { m->m_next = m_get(M_DONTWAIT, MT_DATA); if (m->m_next == NULL) { m_freem(m); return (NULL); } MCLAIM(m->m_next, m->m_owner); m->m_pkthdr.len = len; m->m_len = MHLEN; m->m_next->m_len = len - MHLEN; } else { m->m_pkthdr.len = m->m_len = len; } m->m_pkthdr.rcvif = 0; m_copyback(m, 0, datalen, data); rtm = mtod(m, struct rt_msghdr *); for (i = 0; i < RTAX_MAX; i++) { if ((sa = rtinfo->rti_info[i]) == NULL) continue; rtinfo->rti_addrs |= (1 << i); dlen = ROUNDUP(sa->sa_len); m_copyback(m, len, dlen, sa); len += dlen; } if (m->m_pkthdr.len != len) { m_freem(m); return (NULL); } rtm->rtm_msglen = len; rtm->rtm_version = RTM_VERSION; rtm->rtm_type = type; return (m); } /* * rt_msg2 * * fills 'cp' or 'w'.w_tmem with the routing socket message and * returns the length of the message in 'lenp'. * * if walkarg is 0, cp is expected to be 0 or a buffer large enough to hold * the message * otherwise walkarg's w_needed is updated and if the user buffer is * specified and w_needed indicates space exists the information is copied * into the temp space (w_tmem). w_tmem is [re]allocated if necessary, * if the allocation fails ENOBUFS is returned. */ static int rt_msg2(int type, struct rt_addrinfo *rtinfo, caddr_t cp, struct walkarg *w, int *lenp) { int i; int len, dlen, second_time = 0; caddr_t cp0; rtinfo->rti_addrs = 0; again: switch (type) { case RTM_DELADDR: case RTM_NEWADDR: len = sizeof(struct ifa_msghdr); break; #ifdef COMPAT_14 case RTM_OIFINFO: len = sizeof(struct if_msghdr14); break; #endif case RTM_IFINFO: len = sizeof(struct if_msghdr); break; default: len = sizeof(struct rt_msghdr); } if ((cp0 = cp) != NULL) cp += len; for (i = 0; i < RTAX_MAX; i++) { const struct sockaddr *sa; if ((sa = rtinfo->rti_info[i]) == 0) continue; rtinfo->rti_addrs |= (1 << i); dlen = ROUNDUP(sa->sa_len); if (cp) { bcopy(sa, cp, (unsigned)dlen); cp += dlen; } len += dlen; } if (cp == 0 && w != NULL && !second_time) { struct walkarg *rw = w; rw->w_needed += len; if (rw->w_needed <= 0 && rw->w_where) { if (rw->w_tmemsize < len) { if (rw->w_tmem) free(rw->w_tmem, M_RTABLE); rw->w_tmem = (caddr_t) malloc(len, M_RTABLE, M_NOWAIT); if (rw->w_tmem) rw->w_tmemsize = len; } if (rw->w_tmem) { cp = rw->w_tmem; second_time = 1; goto again; } else { rw->w_tmemneeded = len; return (ENOBUFS); } } } if (cp) { struct rt_msghdr *rtm = (struct rt_msghdr *)cp0; rtm->rtm_version = RTM_VERSION; rtm->rtm_type = type; rtm->rtm_msglen = len; } if (lenp) *lenp = len; return (0); } /* * This routine is called to generate a message from the routing * socket indicating that a redirect has occurred, a routing lookup * has failed, or that a protocol has detected timeouts to a particular * destination. */ void rt_missmsg(int type, struct rt_addrinfo *rtinfo, int flags, int error) { struct rt_msghdr rtm; struct mbuf *m; const struct sockaddr *sa = rtinfo->rti_info[RTAX_DST]; if (route_cb.any_count == 0) return; memset(&rtm, 0, sizeof(rtm)); rtm.rtm_flags = RTF_DONE | flags; rtm.rtm_errno = error; m = rt_msg1(type, rtinfo, (caddr_t)&rtm, sizeof(rtm)); if (m == 0) return; mtod(m, struct rt_msghdr *)->rtm_addrs = rtinfo->rti_addrs; route_proto.sp_protocol = sa ? sa->sa_family : 0; raw_input(m, &route_proto, &route_src, &route_dst); } /* * This routine is called to generate a message from the routing * socket indicating that the status of a network interface has changed. */ void rt_ifmsg(struct ifnet *ifp) { struct if_msghdr ifm; #ifdef COMPAT_14 struct if_msghdr14 oifm; #endif struct mbuf *m; struct rt_addrinfo info; if (route_cb.any_count == 0) return; memset(&info, 0, sizeof(info)); memset(&ifm, 0, sizeof(ifm)); ifm.ifm_index = ifp->if_index; ifm.ifm_flags = ifp->if_flags; ifm.ifm_data = ifp->if_data; ifm.ifm_addrs = 0; m = rt_msg1(RTM_IFINFO, &info, (caddr_t)&ifm, sizeof(ifm)); if (m == 0) return; route_proto.sp_protocol = 0; raw_input(m, &route_proto, &route_src, &route_dst); #ifdef COMPAT_14 memset(&info, 0, sizeof(info)); memset(&oifm, 0, sizeof(oifm)); oifm.ifm_index = ifp->if_index; oifm.ifm_flags = ifp->if_flags; oifm.ifm_data.ifi_type = ifp->if_data.ifi_type; oifm.ifm_data.ifi_addrlen = ifp->if_data.ifi_addrlen; oifm.ifm_data.ifi_hdrlen = ifp->if_data.ifi_hdrlen; oifm.ifm_data.ifi_mtu = ifp->if_data.ifi_mtu; oifm.ifm_data.ifi_metric = ifp->if_data.ifi_metric; oifm.ifm_data.ifi_baudrate = ifp->if_data.ifi_baudrate; oifm.ifm_data.ifi_ipackets = ifp->if_data.ifi_ipackets; oifm.ifm_data.ifi_ierrors = ifp->if_data.ifi_ierrors; oifm.ifm_data.ifi_opackets = ifp->if_data.ifi_opackets; oifm.ifm_data.ifi_oerrors = ifp->if_data.ifi_oerrors; oifm.ifm_data.ifi_collisions = ifp->if_data.ifi_collisions; oifm.ifm_data.ifi_ibytes = ifp->if_data.ifi_ibytes; oifm.ifm_data.ifi_obytes = ifp->if_data.ifi_obytes; oifm.ifm_data.ifi_imcasts = ifp->if_data.ifi_imcasts; oifm.ifm_data.ifi_omcasts = ifp->if_data.ifi_omcasts; oifm.ifm_data.ifi_iqdrops = ifp->if_data.ifi_iqdrops; oifm.ifm_data.ifi_noproto = ifp->if_data.ifi_noproto; oifm.ifm_data.ifi_lastchange = ifp->if_data.ifi_lastchange; oifm.ifm_addrs = 0; m = rt_msg1(RTM_OIFINFO, &info, (caddr_t)&oifm, sizeof(oifm)); if (m == 0) return; route_proto.sp_protocol = 0; raw_input(m, &route_proto, &route_src, &route_dst); #endif } /* * This is called to generate messages from the routing socket * indicating a network interface has had addresses associated with it. * if we ever reverse the logic and replace messages TO the routing * socket indicate a request to configure interfaces, then it will * be unnecessary as the routing socket will automatically generate * copies of it. */ void rt_newaddrmsg(int cmd, struct ifaddr *ifa, int error, struct rtentry *rt) { struct rt_addrinfo info; struct sockaddr *sa = NULL; int pass; struct mbuf *m = NULL; struct ifnet *ifp = ifa->ifa_ifp; if (route_cb.any_count == 0) return; for (pass = 1; pass < 3; pass++) { memset(&info, 0, sizeof(info)); if ((cmd == RTM_ADD && pass == 1) || (cmd == RTM_DELETE && pass == 2)) { struct ifa_msghdr ifam; int ncmd = cmd == RTM_ADD ? RTM_NEWADDR : RTM_DELADDR; ifaaddr = sa = ifa->ifa_addr; ifpaddr = TAILQ_FIRST(&ifp->if_addrlist)->ifa_addr; netmask = ifa->ifa_netmask; brdaddr = ifa->ifa_dstaddr; memset(&ifam, 0, sizeof(ifam)); ifam.ifam_index = ifp->if_index; ifam.ifam_metric = ifa->ifa_metric; ifam.ifam_flags = ifa->ifa_flags; m = rt_msg1(ncmd, &info, (caddr_t)&ifam, sizeof(ifam)); if (m == NULL) continue; mtod(m, struct ifa_msghdr *)->ifam_addrs = info.rti_addrs; } if ((cmd == RTM_ADD && pass == 2) || (cmd == RTM_DELETE && pass == 1)) { struct rt_msghdr rtm; if (rt == 0) continue; netmask = rt_mask(rt); dst = sa = rt_key(rt); gate = rt->rt_gateway; memset(&rtm, 0, sizeof(rtm)); rtm.rtm_index = ifp->if_index; rtm.rtm_flags |= rt->rt_flags; rtm.rtm_errno = error; m = rt_msg1(cmd, &info, (caddr_t)&rtm, sizeof(rtm)); if (m == NULL) continue; mtod(m, struct rt_msghdr *)->rtm_addrs = info.rti_addrs; } route_proto.sp_protocol = sa ? sa->sa_family : 0; raw_input(m, &route_proto, &route_src, &route_dst); } } static struct mbuf * rt_makeifannouncemsg(struct ifnet *ifp, int type, int what, struct rt_addrinfo *info) { struct if_announcemsghdr ifan; memset(info, 0, sizeof(*info)); memset(&ifan, 0, sizeof(ifan)); ifan.ifan_index = ifp->if_index; strlcpy(ifan.ifan_name, ifp->if_xname, sizeof(ifan.ifan_name)); ifan.ifan_what = what; return rt_msg1(type, info, (caddr_t)&ifan, sizeof(ifan)); } /* * This is called to generate routing socket messages indicating * network interface arrival and departure. */ void rt_ifannouncemsg(struct ifnet *ifp, int what) { struct mbuf *m; struct rt_addrinfo info; if (route_cb.any_count == 0) return; m = rt_makeifannouncemsg(ifp, RTM_IFANNOUNCE, what, &info); if (m == NULL) return; route_proto.sp_protocol = 0; raw_input(m, &route_proto, &route_src, &route_dst); } /* * This is called to generate routing socket messages indicating * IEEE80211 wireless events. * XXX we piggyback on the RTM_IFANNOUNCE msg format in a clumsy way. */ void rt_ieee80211msg(struct ifnet *ifp, int what, void *data, size_t data_len) { struct mbuf *m; struct rt_addrinfo info; if (route_cb.any_count == 0) return; m = rt_makeifannouncemsg(ifp, RTM_IEEE80211, what, &info); if (m == NULL) return; /* * Append the ieee80211 data. Try to stick it in the * mbuf containing the ifannounce msg; otherwise allocate * a new mbuf and append. * * NB: we assume m is a single mbuf. */ if (data_len > M_TRAILINGSPACE(m)) { struct mbuf *n = m_get(M_NOWAIT, MT_DATA); if (n == NULL) { m_freem(m); return; } (void)memcpy(mtod(n, void *), data, data_len); n->m_len = data_len; m->m_next = n; } else if (data_len > 0) { (void)memcpy(mtod(m, u_int8_t *) + m->m_len, data, data_len); m->m_len += data_len; } if (m->m_flags & M_PKTHDR) m->m_pkthdr.len += data_len; mtod(m, struct if_announcemsghdr *)->ifan_msglen += data_len; route_proto.sp_protocol = 0; raw_input(m, &route_proto, &route_src, &route_dst); } /* * This is used in dumping the kernel table via sysctl(). */ static int sysctl_dumpentry(struct radix_node *rn, void *v) { struct walkarg *w = v; struct rtentry *rt = (struct rtentry *)rn; int error = 0, size; struct rt_addrinfo info; if (w->w_op == NET_RT_FLAGS && !(rt->rt_flags & w->w_arg)) return 0; memset(&info, 0, sizeof(info)); dst = rt_key(rt); gate = rt->rt_gateway; netmask = rt_mask(rt); genmask = rt->rt_genmask; if (rt->rt_ifp) { ifpaddr = TAILQ_FIRST(&rt->rt_ifp->if_addrlist)->ifa_addr; ifaaddr = rt->rt_ifa->ifa_addr; if (rt->rt_ifp->if_flags & IFF_POINTOPOINT) brdaddr = rt->rt_ifa->ifa_dstaddr; } if ((error = rt_msg2(RTM_GET, &info, 0, w, &size))) return (error); if (w->w_where && w->w_tmem && w->w_needed <= 0) { struct rt_msghdr *rtm = (struct rt_msghdr *)w->w_tmem; rtm->rtm_flags = rt->rt_flags; rtm->rtm_use = rt->rt_use; rtm->rtm_rmx = rt->rt_rmx; KASSERT(rt->rt_ifp != NULL); rtm->rtm_index = rt->rt_ifp->if_index; rtm->rtm_errno = rtm->rtm_pid = rtm->rtm_seq = 0; rtm->rtm_addrs = info.rti_addrs; if ((error = copyout(rtm, w->w_where, size)) != 0) w->w_where = NULL; else w->w_where += size; } return (error); } static int sysctl_iflist(int af, struct walkarg *w, int type) { struct ifnet *ifp; struct ifaddr *ifa; struct rt_addrinfo info; int len, error = 0; memset(&info, 0, sizeof(info)); IFNET_FOREACH(ifp) { if (w->w_arg && w->w_arg != ifp->if_index) continue; ifa = TAILQ_FIRST(&ifp->if_addrlist); if (ifa == NULL) continue; ifpaddr = ifa->ifa_addr; switch (type) { case NET_RT_IFLIST: error = rt_msg2(RTM_IFINFO, &info, (caddr_t)0, w, &len); break; #ifdef COMPAT_14 case NET_RT_OIFLIST: error = rt_msg2(RTM_OIFINFO, &info, (caddr_t)0, w, &len); break; #endif default: panic("sysctl_iflist(1)"); } if (error) return (error); ifpaddr = 0; if (w->w_where && w->w_tmem && w->w_needed <= 0) { switch (type) { case NET_RT_IFLIST: { struct if_msghdr *ifm; ifm = (struct if_msghdr *)w->w_tmem; ifm->ifm_index = ifp->if_index; ifm->ifm_flags = ifp->if_flags; ifm->ifm_data = ifp->if_data; ifm->ifm_addrs = info.rti_addrs; error = copyout(ifm, w->w_where, len); if (error) return (error); w->w_where += len; break; } #ifdef COMPAT_14 case NET_RT_OIFLIST: { struct if_msghdr14 *ifm; ifm = (struct if_msghdr14 *)w->w_tmem; ifm->ifm_index = ifp->if_index; ifm->ifm_flags = ifp->if_flags; ifm->ifm_data.ifi_type = ifp->if_data.ifi_type; ifm->ifm_data.ifi_addrlen = ifp->if_data.ifi_addrlen; ifm->ifm_data.ifi_hdrlen = ifp->if_data.ifi_hdrlen; ifm->ifm_data.ifi_mtu = ifp->if_data.ifi_mtu; ifm->ifm_data.ifi_metric = ifp->if_data.ifi_metric; ifm->ifm_data.ifi_baudrate = ifp->if_data.ifi_baudrate; ifm->ifm_data.ifi_ipackets = ifp->if_data.ifi_ipackets; ifm->ifm_data.ifi_ierrors = ifp->if_data.ifi_ierrors; ifm->ifm_data.ifi_opackets = ifp->if_data.ifi_opackets; ifm->ifm_data.ifi_oerrors = ifp->if_data.ifi_oerrors; ifm->ifm_data.ifi_collisions = ifp->if_data.ifi_collisions; ifm->ifm_data.ifi_ibytes = ifp->if_data.ifi_ibytes; ifm->ifm_data.ifi_obytes = ifp->if_data.ifi_obytes; ifm->ifm_data.ifi_imcasts = ifp->if_data.ifi_imcasts; ifm->ifm_data.ifi_omcasts = ifp->if_data.ifi_omcasts; ifm->ifm_data.ifi_iqdrops = ifp->if_data.ifi_iqdrops; ifm->ifm_data.ifi_noproto = ifp->if_data.ifi_noproto; ifm->ifm_data.ifi_lastchange = ifp->if_data.ifi_lastchange; ifm->ifm_addrs = info.rti_addrs; error = copyout(ifm, w->w_where, len); if (error) return (error); w->w_where += len; break; } #endif default: panic("sysctl_iflist(2)"); } } while ((ifa = TAILQ_NEXT(ifa, ifa_list)) != NULL) { if (af && af != ifa->ifa_addr->sa_family) continue; ifaaddr = ifa->ifa_addr; netmask = ifa->ifa_netmask; brdaddr = ifa->ifa_dstaddr; if ((error = rt_msg2(RTM_NEWADDR, &info, 0, w, &len))) return (error); if (w->w_where && w->w_tmem && w->w_needed <= 0) { struct ifa_msghdr *ifam; ifam = (struct ifa_msghdr *)w->w_tmem; ifam->ifam_index = ifa->ifa_ifp->if_index; ifam->ifam_flags = ifa->ifa_flags; ifam->ifam_metric = ifa->ifa_metric; ifam->ifam_addrs = info.rti_addrs; error = copyout(w->w_tmem, w->w_where, len); if (error) return (error); w->w_where += len; } } ifaaddr = netmask = brdaddr = 0; } return (0); } static int sysctl_rtable(SYSCTLFN_ARGS) { void *where = oldp; size_t *given = oldlenp; const void *new = newp; struct radix_node_head *rnh; int i, s, error = EINVAL; u_char af; struct walkarg w; if (namelen == 1 && name[0] == CTL_QUERY) return (sysctl_query(SYSCTLFN_CALL(rnode))); if (new) return (EPERM); if (namelen != 3) return (EINVAL); af = name[0]; w.w_tmemneeded = 0; w.w_tmemsize = 0; w.w_tmem = NULL; again: /* we may return here if a later [re]alloc of the t_mem buffer fails */ if (w.w_tmemneeded) { w.w_tmem = (caddr_t) malloc(w.w_tmemneeded, M_RTABLE, M_WAITOK); w.w_tmemsize = w.w_tmemneeded; w.w_tmemneeded = 0; } w.w_op = name[1]; w.w_arg = name[2]; w.w_given = *given; w.w_needed = 0 - w.w_given; w.w_where = where; s = splsoftnet(); switch (w.w_op) { case NET_RT_DUMP: case NET_RT_FLAGS: for (i = 1; i <= AF_MAX; i++) if ((rnh = rt_tables[i]) && (af == 0 || af == i) && (error = (*rnh->rnh_walktree)(rnh, sysctl_dumpentry, &w))) break; break; #ifdef COMPAT_14 case NET_RT_OIFLIST: error = sysctl_iflist(af, &w, w.w_op); break; #endif case NET_RT_IFLIST: error = sysctl_iflist(af, &w, w.w_op); } splx(s); /* check to see if we couldn't allocate memory with NOWAIT */ if (error == ENOBUFS && w.w_tmem == 0 && w.w_tmemneeded) goto again; if (w.w_tmem) free(w.w_tmem, M_RTABLE); w.w_needed += w.w_given; if (where) { *given = w.w_where - (caddr_t) where; if (*given < w.w_needed) return (ENOMEM); } else { *given = (11 * w.w_needed) / 10; } return (error); } /* * Definitions of protocols supported in the ROUTE domain. */ const struct protosw routesw[] = { { SOCK_RAW, &routedomain, 0, PR_ATOMIC|PR_ADDR, raw_input, route_output, raw_ctlinput, 0, route_usrreq, raw_init, 0, 0, 0, } }; struct domain routedomain = { PF_ROUTE, "route", route_init, 0, 0, routesw, &routesw[sizeof(routesw)/sizeof(routesw[0])] }; SYSCTL_SETUP(sysctl_net_route_setup, "sysctl net.route subtree setup") { const struct sysctlnode *rnode = NULL; sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT, CTLTYPE_NODE, "net", NULL, NULL, 0, NULL, 0, CTL_NET, CTL_EOL); sysctl_createv(clog, 0, NULL, &rnode, CTLFLAG_PERMANENT, CTLTYPE_NODE, "route", SYSCTL_DESCR("PF_ROUTE information"), NULL, 0, NULL, 0, CTL_NET, PF_ROUTE, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT, CTLTYPE_NODE, "rtable", SYSCTL_DESCR("Routing table information"), sysctl_rtable, 0, NULL, 0, CTL_NET, PF_ROUTE, 0 /* any protocol */, CTL_EOL); sysctl_createv(clog, 0, &rnode, NULL, CTLFLAG_PERMANENT, CTLTYPE_STRUCT, "stats", SYSCTL_DESCR("Routing statistics"), NULL, 0, &rtstat, sizeof(rtstat), CTL_CREATE, CTL_EOL); }