/* $NetBSD: sys_pset.c,v 1.18 2014/02/25 18:30:11 pooka Exp $ */ /* * Copyright (c) 2008, Mindaugas Rasiukevicius * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * Implementation of the Processor Sets. * * Locking * The array of the processor-set structures and its members are protected * by the global cpu_lock. Note that in scheduler, the very l_psid value * might be used without lock held. */ #include __KERNEL_RCSID(0, "$NetBSD: sys_pset.c,v 1.18 2014/02/25 18:30:11 pooka Exp $"); #include #include #include #include #include #include #include #include #include #include #include #include #include static pset_info_t ** psets; static u_int psets_max; static u_int psets_count; static kauth_listener_t psets_listener; static int psets_realloc(int); static int psid_validate(psetid_t, bool); static int kern_pset_create(psetid_t *); static int kern_pset_destroy(psetid_t); static int psets_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie, void *arg0, void *arg1, void *arg2, void *arg3) { psetid_t id; enum kauth_system_req req; int result; result = KAUTH_RESULT_DEFER; req = (enum kauth_system_req)arg0; id = (psetid_t)(unsigned long)arg1; if (action != KAUTH_SYSTEM_PSET) return result; if ((req == KAUTH_REQ_SYSTEM_PSET_ASSIGN) || (req == KAUTH_REQ_SYSTEM_PSET_BIND)) { if (id == PS_QUERY) result = KAUTH_RESULT_ALLOW; } return result; } /* * Initialization of the processor-sets. */ void psets_init(void) { psets_max = max(maxcpus, 32); psets = kmem_zalloc(psets_max * sizeof(void *), KM_SLEEP); psets_count = 0; psets_listener = kauth_listen_scope(KAUTH_SCOPE_SYSTEM, psets_listener_cb, NULL); } /* * Reallocate the array of the processor-set structures. */ static int psets_realloc(int new_psets_max) { pset_info_t **new_psets, **old_psets; const u_int newsize = new_psets_max * sizeof(void *); u_int i, oldsize; if (new_psets_max < 1) return EINVAL; new_psets = kmem_zalloc(newsize, KM_SLEEP); mutex_enter(&cpu_lock); old_psets = psets; oldsize = psets_max * sizeof(void *); /* Check if we can lower the size of the array */ if (new_psets_max < psets_max) { for (i = new_psets_max; i < psets_max; i++) { if (psets[i] == NULL) continue; mutex_exit(&cpu_lock); kmem_free(new_psets, newsize); return EBUSY; } } /* Copy all pointers to the new array */ memcpy(new_psets, psets, newsize); psets_max = new_psets_max; psets = new_psets; mutex_exit(&cpu_lock); kmem_free(old_psets, oldsize); return 0; } /* * Validate processor-set ID. */ static int psid_validate(psetid_t psid, bool chkps) { KASSERT(mutex_owned(&cpu_lock)); if (chkps && (psid == PS_NONE || psid == PS_QUERY || psid == PS_MYID)) return 0; if (psid <= 0 || psid > psets_max) return EINVAL; if (psets[psid - 1] == NULL) return EINVAL; if (psets[psid - 1]->ps_flags & PSET_BUSY) return EBUSY; return 0; } /* * Create a processor-set. */ static int kern_pset_create(psetid_t *psid) { pset_info_t *pi; u_int i; if (psets_count == psets_max) return ENOMEM; pi = kmem_zalloc(sizeof(pset_info_t), KM_SLEEP); mutex_enter(&cpu_lock); if (psets_count == psets_max) { mutex_exit(&cpu_lock); kmem_free(pi, sizeof(pset_info_t)); return ENOMEM; } /* Find a free entry in the array */ for (i = 0; i < psets_max; i++) if (psets[i] == NULL) break; KASSERT(i != psets_max); psets[i] = pi; psets_count++; mutex_exit(&cpu_lock); *psid = i + 1; return 0; } /* * Destroy a processor-set. */ static int kern_pset_destroy(psetid_t psid) { struct cpu_info *ci; pset_info_t *pi; struct lwp *l; CPU_INFO_ITERATOR cii; int error; mutex_enter(&cpu_lock); if (psid == PS_MYID) { /* Use caller's processor-set ID */ psid = curlwp->l_psid; } error = psid_validate(psid, false); if (error) { mutex_exit(&cpu_lock); return error; } /* Release the processor-set from all CPUs */ for (CPU_INFO_FOREACH(cii, ci)) { struct schedstate_percpu *spc; spc = &ci->ci_schedstate; if (spc->spc_psid != psid) continue; spc->spc_psid = PS_NONE; } /* Mark that processor-set is going to be destroyed */ pi = psets[psid - 1]; pi->ps_flags |= PSET_BUSY; mutex_exit(&cpu_lock); /* Unmark the processor-set ID from each thread */ mutex_enter(proc_lock); LIST_FOREACH(l, &alllwp, l_list) { /* Safe to check and set without lock held */ if (l->l_psid != psid) continue; l->l_psid = PS_NONE; } mutex_exit(proc_lock); /* Destroy the processor-set */ mutex_enter(&cpu_lock); psets[psid - 1] = NULL; psets_count--; mutex_exit(&cpu_lock); kmem_free(pi, sizeof(pset_info_t)); return 0; } /* * General system calls for the processor-sets. */ int sys_pset_create(struct lwp *l, const struct sys_pset_create_args *uap, register_t *retval) { /* { syscallarg(psetid_t) *psid; } */ psetid_t psid; int error; /* Available only for super-user */ if (kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_PSET, KAUTH_REQ_SYSTEM_PSET_CREATE, NULL, NULL, NULL)) return EPERM; error = kern_pset_create(&psid); if (error) return error; error = copyout(&psid, SCARG(uap, psid), sizeof(psetid_t)); if (error) (void)kern_pset_destroy(psid); return error; } int sys_pset_destroy(struct lwp *l, const struct sys_pset_destroy_args *uap, register_t *retval) { /* { syscallarg(psetid_t) psid; } */ /* Available only for super-user */ if (kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_PSET, KAUTH_REQ_SYSTEM_PSET_DESTROY, KAUTH_ARG(SCARG(uap, psid)), NULL, NULL)) return EPERM; return kern_pset_destroy(SCARG(uap, psid)); } int sys_pset_assign(struct lwp *l, const struct sys_pset_assign_args *uap, register_t *retval) { /* { syscallarg(psetid_t) psid; syscallarg(cpuid_t) cpuid; syscallarg(psetid_t) *opsid; } */ struct cpu_info *ici, *ci = NULL; struct schedstate_percpu *spc = NULL; struct lwp *t; psetid_t psid = SCARG(uap, psid), opsid = 0; CPU_INFO_ITERATOR cii; int error = 0, nnone = 0; /* Available only for super-user, except the case of PS_QUERY */ if (kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_PSET, KAUTH_REQ_SYSTEM_PSET_ASSIGN, KAUTH_ARG(SCARG(uap, psid)), NULL, NULL)) return EPERM; /* Find the target CPU */ mutex_enter(&cpu_lock); for (CPU_INFO_FOREACH(cii, ici)) { struct schedstate_percpu *ispc; ispc = &ici->ci_schedstate; if (cpu_index(ici) == SCARG(uap, cpuid)) { ci = ici; spc = ispc; } nnone += (ispc->spc_psid == PS_NONE); } if (ci == NULL) { mutex_exit(&cpu_lock); return EINVAL; } error = psid_validate(psid, true); if (error) { mutex_exit(&cpu_lock); return error; } opsid = spc->spc_psid; switch (psid) { case PS_QUERY: break; case PS_MYID: psid = curlwp->l_psid; /* FALLTHROUGH */ default: /* * Ensure at least one CPU stays in the default set, * and that specified CPU is not offline. */ if (psid != PS_NONE && ((spc->spc_flags & SPCF_OFFLINE) || (nnone == 1 && spc->spc_psid == PS_NONE))) { mutex_exit(&cpu_lock); return EBUSY; } mutex_enter(proc_lock); /* * Ensure that none of the threads are using affinity mask * with this target CPU in it. */ LIST_FOREACH(t, &alllwp, l_list) { if (t->l_affinity == NULL) { continue; } lwp_lock(t); if (t->l_affinity == NULL) { lwp_unlock(t); continue; } if (kcpuset_isset(t->l_affinity, cpu_index(ci))) { lwp_unlock(t); mutex_exit(proc_lock); mutex_exit(&cpu_lock); return EPERM; } } /* * Set the processor-set ID. * Migrate out any threads running on this CPU. */ spc->spc_psid = psid; LIST_FOREACH(t, &alllwp, l_list) { struct cpu_info *tci; if (t->l_cpu != ci) continue; if (t->l_pflag & (LP_BOUND | LP_INTR)) continue; lwp_lock(t); tci = sched_takecpu(t); KASSERT(tci != ci); lwp_migrate(t, tci); } mutex_exit(proc_lock); break; } mutex_exit(&cpu_lock); if (SCARG(uap, opsid) != NULL) error = copyout(&opsid, SCARG(uap, opsid), sizeof(psetid_t)); return error; } int sys__pset_bind(struct lwp *l, const struct sys__pset_bind_args *uap, register_t *retval) { /* { syscallarg(idtype_t) idtype; syscallarg(id_t) first_id; syscallarg(id_t) second_id; syscallarg(psetid_t) psid; syscallarg(psetid_t) *opsid; } */ struct cpu_info *ci; struct proc *p; struct lwp *t; id_t id1, id2; pid_t pid = 0; lwpid_t lid = 0; psetid_t psid, opsid; int error = 0, lcnt; psid = SCARG(uap, psid); /* Available only for super-user, except the case of PS_QUERY */ if (kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_PSET, KAUTH_REQ_SYSTEM_PSET_BIND, KAUTH_ARG(SCARG(uap, psid)), NULL, NULL)) return EPERM; mutex_enter(&cpu_lock); error = psid_validate(psid, true); if (error) { mutex_exit(&cpu_lock); return error; } if (psid == PS_MYID) psid = curlwp->l_psid; if (psid != PS_QUERY && psid != PS_NONE) psets[psid - 1]->ps_flags |= PSET_BUSY; mutex_exit(&cpu_lock); /* * Get PID and LID from the ID. */ p = l->l_proc; id1 = SCARG(uap, first_id); id2 = SCARG(uap, second_id); switch (SCARG(uap, idtype)) { case P_PID: /* * Process: * First ID - PID; * Second ID - ignored; */ pid = (id1 == P_MYID) ? p->p_pid : id1; lid = 0; break; case P_LWPID: /* * Thread (LWP): * First ID - LID; * Second ID - PID; */ if (id1 == P_MYID) { pid = p->p_pid; lid = l->l_lid; break; } lid = id1; pid = (id2 == P_MYID) ? p->p_pid : id2; break; default: error = EINVAL; goto error; } /* Find the process */ mutex_enter(proc_lock); p = proc_find(pid); if (p == NULL) { mutex_exit(proc_lock); error = ESRCH; goto error; } mutex_enter(p->p_lock); mutex_exit(proc_lock); /* Disallow modification of the system processes */ if (p->p_flag & PK_SYSTEM) { mutex_exit(p->p_lock); error = EPERM; goto error; } /* Find the LWP(s) */ lcnt = 0; ci = NULL; LIST_FOREACH(t, &p->p_lwps, l_sibling) { if (lid && lid != t->l_lid) continue; /* * Bind the thread to the processor-set, * take some CPU and migrate. */ lwp_lock(t); opsid = t->l_psid; t->l_psid = psid; ci = sched_takecpu(t); /* Unlocks LWP */ lwp_migrate(t, ci); lcnt++; } mutex_exit(p->p_lock); if (lcnt == 0) { error = ESRCH; goto error; } if (SCARG(uap, opsid)) error = copyout(&opsid, SCARG(uap, opsid), sizeof(psetid_t)); error: if (psid != PS_QUERY && psid != PS_NONE) { mutex_enter(&cpu_lock); psets[psid - 1]->ps_flags &= ~PSET_BUSY; mutex_exit(&cpu_lock); } return error; } /* * Sysctl nodes and initialization. */ static int sysctl_psets_max(SYSCTLFN_ARGS) { struct sysctlnode node; int error, newsize; node = *rnode; node.sysctl_data = &newsize; newsize = psets_max; error = sysctl_lookup(SYSCTLFN_CALL(&node)); if (error || newp == NULL) return error; if (newsize <= 0) return EINVAL; sysctl_unlock(); error = psets_realloc(newsize); sysctl_relock(); return error; } static int sysctl_psets_list(SYSCTLFN_ARGS) { const size_t bufsz = 1024; char *buf, tbuf[16]; int i, error; size_t len; sysctl_unlock(); buf = kmem_alloc(bufsz, KM_SLEEP); snprintf(buf, bufsz, "%d:1", PS_NONE); /* XXX */ mutex_enter(&cpu_lock); for (i = 0; i < psets_max; i++) { if (psets[i] == NULL) continue; snprintf(tbuf, sizeof(tbuf), ",%d:2", i + 1); /* XXX */ strlcat(buf, tbuf, bufsz); } mutex_exit(&cpu_lock); len = strlen(buf) + 1; error = 0; if (oldp != NULL) error = copyout(buf, oldp, min(len, *oldlenp)); *oldlenp = len; kmem_free(buf, bufsz); sysctl_relock(); return error; } SYSCTL_SETUP(sysctl_pset_setup, "sysctl kern.pset subtree setup") { const struct sysctlnode *node = NULL; sysctl_createv(clog, 0, NULL, &node, CTLFLAG_PERMANENT, CTLTYPE_NODE, "pset", SYSCTL_DESCR("Processor-set options"), NULL, 0, NULL, 0, CTL_KERN, CTL_CREATE, CTL_EOL); if (node == NULL) return; sysctl_createv(clog, 0, &node, NULL, CTLFLAG_PERMANENT | CTLFLAG_READWRITE, CTLTYPE_INT, "psets_max", SYSCTL_DESCR("Maximal count of the processor-sets"), sysctl_psets_max, 0, &psets_max, 0, CTL_CREATE, CTL_EOL); sysctl_createv(clog, 0, &node, NULL, CTLFLAG_PERMANENT, CTLTYPE_STRING, "list", SYSCTL_DESCR("List of active sets"), sysctl_psets_list, 0, NULL, 0, CTL_CREATE, CTL_EOL); }