/* $NetBSD: rf_dagfuncs.c,v 1.14 2003/12/29 03:43:07 oster Exp $ */ /* * Copyright (c) 1995 Carnegie-Mellon University. * All rights reserved. * * Author: Mark Holland, William V. Courtright II * * Permission to use, copy, modify and distribute this software and * its documentation is hereby granted, provided that both the copyright * notice and this permission notice appear in all copies of the * software, derivative works or modified versions, and any portions * thereof, and that both notices appear in supporting documentation. * * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. * * Carnegie Mellon requests users of this software to return to * * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU * School of Computer Science * Carnegie Mellon University * Pittsburgh PA 15213-3890 * * any improvements or extensions that they make and grant Carnegie the * rights to redistribute these changes. */ /* * dagfuncs.c -- DAG node execution routines * * Rules: * 1. Every DAG execution function must eventually cause node->status to * get set to "good" or "bad", and "FinishNode" to be called. In the * case of nodes that complete immediately (xor, NullNodeFunc, etc), * the node execution function can do these two things directly. In * the case of nodes that have to wait for some event (a disk read to * complete, a lock to be released, etc) to occur before they can * complete, this is typically achieved by having whatever module * is doing the operation call GenericWakeupFunc upon completion. * 2. DAG execution functions should check the status in the DAG header * and NOP out their operations if the status is not "enable". However, * execution functions that release resources must be sure to release * them even when they NOP out the function that would use them. * Functions that acquire resources should go ahead and acquire them * even when they NOP, so that a downstream release node will not have * to check to find out whether or not the acquire was suppressed. */ #include __KERNEL_RCSID(0, "$NetBSD: rf_dagfuncs.c,v 1.14 2003/12/29 03:43:07 oster Exp $"); #include #include #include "rf_archs.h" #include "rf_raid.h" #include "rf_dag.h" #include "rf_layout.h" #include "rf_etimer.h" #include "rf_acctrace.h" #include "rf_diskqueue.h" #include "rf_dagfuncs.h" #include "rf_general.h" #include "rf_engine.h" #include "rf_dagutils.h" #include "rf_kintf.h" #if RF_INCLUDE_PARITYLOGGING > 0 #include "rf_paritylog.h" #endif /* RF_INCLUDE_PARITYLOGGING > 0 */ int (*rf_DiskReadFunc) (RF_DagNode_t *); int (*rf_DiskWriteFunc) (RF_DagNode_t *); int (*rf_DiskReadUndoFunc) (RF_DagNode_t *); int (*rf_DiskWriteUndoFunc) (RF_DagNode_t *); int (*rf_DiskUnlockFunc) (RF_DagNode_t *); int (*rf_DiskUnlockUndoFunc) (RF_DagNode_t *); int (*rf_RegularXorUndoFunc) (RF_DagNode_t *); int (*rf_SimpleXorUndoFunc) (RF_DagNode_t *); int (*rf_RecoveryXorUndoFunc) (RF_DagNode_t *); /***************************************************************************** * main (only) configuration routine for this module ****************************************************************************/ int rf_ConfigureDAGFuncs(listp) RF_ShutdownList_t **listp; { RF_ASSERT(((sizeof(long) == 8) && RF_LONGSHIFT == 3) || ((sizeof(long) == 4) && RF_LONGSHIFT == 2)); rf_DiskReadFunc = rf_DiskReadFuncForThreads; rf_DiskReadUndoFunc = rf_DiskUndoFunc; rf_DiskWriteFunc = rf_DiskWriteFuncForThreads; rf_DiskWriteUndoFunc = rf_DiskUndoFunc; rf_DiskUnlockFunc = rf_DiskUnlockFuncForThreads; rf_DiskUnlockUndoFunc = rf_NullNodeUndoFunc; rf_RegularXorUndoFunc = rf_NullNodeUndoFunc; rf_SimpleXorUndoFunc = rf_NullNodeUndoFunc; rf_RecoveryXorUndoFunc = rf_NullNodeUndoFunc; return (0); } /***************************************************************************** * the execution function associated with a terminate node ****************************************************************************/ int rf_TerminateFunc(node) RF_DagNode_t *node; { RF_ASSERT(node->dagHdr->numCommits == node->dagHdr->numCommitNodes); node->status = rf_good; return (rf_FinishNode(node, RF_THREAD_CONTEXT)); } int rf_TerminateUndoFunc(node) RF_DagNode_t *node; { return (0); } /***************************************************************************************** * execution functions associated with a mirror node * * parameters: * * 0 - physical disk addres of data * 1 - buffer for holding read data * 2 - parity stripe ID * 3 - flags * 4 - physical disk address of mirror (parity) * ****************************************************************************************/ int rf_DiskReadMirrorIdleFunc(node) RF_DagNode_t *node; { /* select the mirror copy with the shortest queue and fill in node * parameters with physical disk address */ rf_SelectMirrorDiskIdle(node); return (rf_DiskReadFunc(node)); } #if (RF_INCLUDE_CHAINDECLUSTER > 0) || (RF_INCLUDE_INTERDECLUSTER > 0) || (RF_DEBUG_VALIDATE_DAG > 0) int rf_DiskReadMirrorPartitionFunc(node) RF_DagNode_t *node; { /* select the mirror copy with the shortest queue and fill in node * parameters with physical disk address */ rf_SelectMirrorDiskPartition(node); return (rf_DiskReadFunc(node)); } #endif int rf_DiskReadMirrorUndoFunc(node) RF_DagNode_t *node; { return (0); } #if RF_INCLUDE_PARITYLOGGING > 0 /***************************************************************************** * the execution function associated with a parity log update node ****************************************************************************/ int rf_ParityLogUpdateFunc(node) RF_DagNode_t *node; { RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p; caddr_t buf = (caddr_t) node->params[1].p; RF_ParityLogData_t *logData; RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec; RF_Etimer_t timer; if (node->dagHdr->status == rf_enable) { RF_ETIMER_START(timer); logData = rf_CreateParityLogData(RF_UPDATE, pda, buf, (RF_Raid_t *) (node->dagHdr->raidPtr), node->wakeFunc, (void *) node, node->dagHdr->tracerec, timer); if (logData) rf_ParityLogAppend(logData, RF_FALSE, NULL, RF_FALSE); else { RF_ETIMER_STOP(timer); RF_ETIMER_EVAL(timer); tracerec->plog_us += RF_ETIMER_VAL_US(timer); (node->wakeFunc) (node, ENOMEM); } } return (0); } /***************************************************************************************** * the execution function associated with a parity log overwrite node ****************************************************************************************/ int rf_ParityLogOverwriteFunc(node) RF_DagNode_t *node; { RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p; caddr_t buf = (caddr_t) node->params[1].p; RF_ParityLogData_t *logData; RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec; RF_Etimer_t timer; if (node->dagHdr->status == rf_enable) { RF_ETIMER_START(timer); logData = rf_CreateParityLogData(RF_OVERWRITE, pda, buf, (RF_Raid_t *) (node->dagHdr->raidPtr), node->wakeFunc, (void *) node, node->dagHdr->tracerec, timer); if (logData) rf_ParityLogAppend(logData, RF_FALSE, NULL, RF_FALSE); else { RF_ETIMER_STOP(timer); RF_ETIMER_EVAL(timer); tracerec->plog_us += RF_ETIMER_VAL_US(timer); (node->wakeFunc) (node, ENOMEM); } } return (0); } int rf_ParityLogUpdateUndoFunc(node) RF_DagNode_t *node; { return (0); } int rf_ParityLogOverwriteUndoFunc(node) RF_DagNode_t *node; { return (0); } #endif /* RF_INCLUDE_PARITYLOGGING > 0 */ /***************************************************************************** * the execution function associated with a NOP node ****************************************************************************/ int rf_NullNodeFunc(node) RF_DagNode_t *node; { node->status = rf_good; return (rf_FinishNode(node, RF_THREAD_CONTEXT)); } int rf_NullNodeUndoFunc(node) RF_DagNode_t *node; { node->status = rf_undone; return (rf_FinishNode(node, RF_THREAD_CONTEXT)); } /***************************************************************************** * the execution function associated with a disk-read node ****************************************************************************/ int rf_DiskReadFuncForThreads(node) RF_DagNode_t *node; { RF_DiskQueueData_t *req; RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p; caddr_t buf = (caddr_t) node->params[1].p; RF_StripeNum_t parityStripeID = (RF_StripeNum_t) node->params[2].v; unsigned priority = RF_EXTRACT_PRIORITY(node->params[3].v); unsigned lock = RF_EXTRACT_LOCK_FLAG(node->params[3].v); unsigned unlock = RF_EXTRACT_UNLOCK_FLAG(node->params[3].v); unsigned which_ru = RF_EXTRACT_RU(node->params[3].v); RF_DiskQueueDataFlags_t flags = 0; RF_IoType_t iotype = (node->dagHdr->status == rf_enable) ? RF_IO_TYPE_READ : RF_IO_TYPE_NOP; RF_DiskQueue_t *dqs = ((RF_Raid_t *) (node->dagHdr->raidPtr))->Queues; void *b_proc = NULL; if (node->dagHdr->bp) b_proc = (void *) ((struct buf *) node->dagHdr->bp)->b_proc; RF_ASSERT(!(lock && unlock)); flags |= (lock) ? RF_LOCK_DISK_QUEUE : 0; flags |= (unlock) ? RF_UNLOCK_DISK_QUEUE : 0; req = rf_CreateDiskQueueData(iotype, pda->startSector, pda->numSector, buf, parityStripeID, which_ru, (int (*) (void *, int)) node->wakeFunc, node, NULL, node->dagHdr->tracerec, (void *) (node->dagHdr->raidPtr), flags, b_proc); if (!req) { (node->wakeFunc) (node, ENOMEM); } else { node->dagFuncData = (void *) req; rf_DiskIOEnqueue(&(dqs[pda->col]), req, priority); } return (0); } /***************************************************************************** * the execution function associated with a disk-write node ****************************************************************************/ int rf_DiskWriteFuncForThreads(node) RF_DagNode_t *node; { RF_DiskQueueData_t *req; RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p; caddr_t buf = (caddr_t) node->params[1].p; RF_StripeNum_t parityStripeID = (RF_StripeNum_t) node->params[2].v; unsigned priority = RF_EXTRACT_PRIORITY(node->params[3].v); unsigned lock = RF_EXTRACT_LOCK_FLAG(node->params[3].v); unsigned unlock = RF_EXTRACT_UNLOCK_FLAG(node->params[3].v); unsigned which_ru = RF_EXTRACT_RU(node->params[3].v); RF_DiskQueueDataFlags_t flags = 0; RF_IoType_t iotype = (node->dagHdr->status == rf_enable) ? RF_IO_TYPE_WRITE : RF_IO_TYPE_NOP; RF_DiskQueue_t *dqs = ((RF_Raid_t *) (node->dagHdr->raidPtr))->Queues; void *b_proc = NULL; if (node->dagHdr->bp) b_proc = (void *) ((struct buf *) node->dagHdr->bp)->b_proc; /* normal processing (rollaway or forward recovery) begins here */ RF_ASSERT(!(lock && unlock)); flags |= (lock) ? RF_LOCK_DISK_QUEUE : 0; flags |= (unlock) ? RF_UNLOCK_DISK_QUEUE : 0; req = rf_CreateDiskQueueData(iotype, pda->startSector, pda->numSector, buf, parityStripeID, which_ru, (int (*) (void *, int)) node->wakeFunc, (void *) node, NULL, node->dagHdr->tracerec, (void *) (node->dagHdr->raidPtr), flags, b_proc); if (!req) { (node->wakeFunc) (node, ENOMEM); } else { node->dagFuncData = (void *) req; rf_DiskIOEnqueue(&(dqs[pda->col]), req, priority); } return (0); } /***************************************************************************** * the undo function for disk nodes * Note: this is not a proper undo of a write node, only locks are released. * old data is not restored to disk! ****************************************************************************/ int rf_DiskUndoFunc(node) RF_DagNode_t *node; { RF_DiskQueueData_t *req; RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p; RF_DiskQueue_t *dqs = ((RF_Raid_t *) (node->dagHdr->raidPtr))->Queues; req = rf_CreateDiskQueueData(RF_IO_TYPE_NOP, 0L, 0, NULL, 0L, 0, (int (*) (void *, int)) node->wakeFunc, (void *) node, NULL, node->dagHdr->tracerec, (void *) (node->dagHdr->raidPtr), RF_UNLOCK_DISK_QUEUE, NULL); if (!req) (node->wakeFunc) (node, ENOMEM); else { node->dagFuncData = (void *) req; rf_DiskIOEnqueue(&(dqs[pda->col]), req, RF_IO_NORMAL_PRIORITY); } return (0); } /***************************************************************************** * the execution function associated with an "unlock disk queue" node ****************************************************************************/ int rf_DiskUnlockFuncForThreads(node) RF_DagNode_t *node; { RF_DiskQueueData_t *req; RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p; RF_DiskQueue_t *dqs = ((RF_Raid_t *) (node->dagHdr->raidPtr))->Queues; req = rf_CreateDiskQueueData(RF_IO_TYPE_NOP, 0L, 0, NULL, 0L, 0, (int (*) (void *, int)) node->wakeFunc, (void *) node, NULL, node->dagHdr->tracerec, (void *) (node->dagHdr->raidPtr), RF_UNLOCK_DISK_QUEUE, NULL); if (!req) (node->wakeFunc) (node, ENOMEM); else { node->dagFuncData = (void *) req; rf_DiskIOEnqueue(&(dqs[pda->col]), req, RF_IO_NORMAL_PRIORITY); } return (0); } /***************************************************************************** * Callback routine for DiskRead and DiskWrite nodes. When the disk * op completes, the routine is called to set the node status and * inform the execution engine that the node has fired. ****************************************************************************/ int rf_GenericWakeupFunc(node, status) RF_DagNode_t *node; int status; { switch (node->status) { case rf_bwd1: node->status = rf_bwd2; if (node->dagFuncData) rf_FreeDiskQueueData((RF_DiskQueueData_t *) node->dagFuncData); return (rf_DiskWriteFuncForThreads(node)); case rf_fired: if (status) node->status = rf_bad; else node->status = rf_good; break; case rf_recover: /* probably should never reach this case */ if (status) node->status = rf_panic; else node->status = rf_undone; break; default: printf("rf_GenericWakeupFunc:"); printf("node->status is %d,", node->status); printf("status is %d \n", status); RF_PANIC(); break; } if (node->dagFuncData) rf_FreeDiskQueueData((RF_DiskQueueData_t *) node->dagFuncData); return (rf_FinishNode(node, RF_INTR_CONTEXT)); } /***************************************************************************** * there are three distinct types of xor nodes: * A "regular xor" is used in the fault-free case where the access * spans a complete stripe unit. It assumes that the result buffer is * one full stripe unit in size, and uses the stripe-unit-offset * values that it computes from the PDAs to determine where within the * stripe unit to XOR each argument buffer. * * A "simple xor" is used in the fault-free case where the access * touches only a portion of one (or two, in some cases) stripe * unit(s). It assumes that all the argument buffers are of the same * size and have the same stripe unit offset. * * A "recovery xor" is used in the degraded-mode case. It's similar * to the regular xor function except that it takes the failed PDA as * an additional parameter, and uses it to determine what portions of * the argument buffers need to be xor'd into the result buffer, and * where in the result buffer they should go. ****************************************************************************/ /* xor the params together and store the result in the result field. * assume the result field points to a buffer that is the size of one * SU, and use the pda params to determine where within the buffer to * XOR the input buffers. */ int rf_RegularXorFunc(node) RF_DagNode_t *node; { RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p; RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec; RF_Etimer_t timer; int i, retcode; retcode = 0; if (node->dagHdr->status == rf_enable) { /* don't do the XOR if the input is the same as the output */ RF_ETIMER_START(timer); for (i = 0; i < node->numParams - 1; i += 2) if (node->params[i + 1].p != node->results[0]) { retcode = rf_XorIntoBuffer(raidPtr, (RF_PhysDiskAddr_t *) node->params[i].p, (char *) node->params[i + 1].p, (char *) node->results[0], node->dagHdr->bp); } RF_ETIMER_STOP(timer); RF_ETIMER_EVAL(timer); tracerec->xor_us += RF_ETIMER_VAL_US(timer); } return (rf_GenericWakeupFunc(node, retcode)); /* call wake func * explicitly since no * I/O in this node */ } /* xor the inputs into the result buffer, ignoring placement issues */ int rf_SimpleXorFunc(node) RF_DagNode_t *node; { RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p; int i, retcode = 0; RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec; RF_Etimer_t timer; if (node->dagHdr->status == rf_enable) { RF_ETIMER_START(timer); /* don't do the XOR if the input is the same as the output */ for (i = 0; i < node->numParams - 1; i += 2) if (node->params[i + 1].p != node->results[0]) { retcode = rf_bxor((char *) node->params[i + 1].p, (char *) node->results[0], rf_RaidAddressToByte(raidPtr, ((RF_PhysDiskAddr_t *) node->params[i].p)->numSector), (struct buf *) node->dagHdr->bp); } RF_ETIMER_STOP(timer); RF_ETIMER_EVAL(timer); tracerec->xor_us += RF_ETIMER_VAL_US(timer); } return (rf_GenericWakeupFunc(node, retcode)); /* call wake func * explicitly since no * I/O in this node */ } /* this xor is used by the degraded-mode dag functions to recover lost * data. the second-to-last parameter is the PDA for the failed * portion of the access. the code here looks at this PDA and assumes * that the xor target buffer is equal in size to the number of * sectors in the failed PDA. It then uses the other PDAs in the * parameter list to determine where within the target buffer the * corresponding data should be xored. */ int rf_RecoveryXorFunc(node) RF_DagNode_t *node; { RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p; RF_RaidLayout_t *layoutPtr = (RF_RaidLayout_t *) & raidPtr->Layout; RF_PhysDiskAddr_t *failedPDA = (RF_PhysDiskAddr_t *) node->params[node->numParams - 2].p; int i, retcode = 0; RF_PhysDiskAddr_t *pda; int suoffset, failedSUOffset = rf_StripeUnitOffset(layoutPtr, failedPDA->startSector); char *srcbuf, *destbuf; RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec; RF_Etimer_t timer; if (node->dagHdr->status == rf_enable) { RF_ETIMER_START(timer); for (i = 0; i < node->numParams - 2; i += 2) if (node->params[i + 1].p != node->results[0]) { pda = (RF_PhysDiskAddr_t *) node->params[i].p; srcbuf = (char *) node->params[i + 1].p; suoffset = rf_StripeUnitOffset(layoutPtr, pda->startSector); destbuf = ((char *) node->results[0]) + rf_RaidAddressToByte(raidPtr, suoffset - failedSUOffset); retcode = rf_bxor(srcbuf, destbuf, rf_RaidAddressToByte(raidPtr, pda->numSector), node->dagHdr->bp); } RF_ETIMER_STOP(timer); RF_ETIMER_EVAL(timer); tracerec->xor_us += RF_ETIMER_VAL_US(timer); } return (rf_GenericWakeupFunc(node, retcode)); } /***************************************************************************** * The next three functions are utilities used by the above * xor-execution functions. ****************************************************************************/ /* * this is just a glorified buffer xor. targbuf points to a buffer * that is one full stripe unit in size. srcbuf points to a buffer * that may be less than 1 SU, but never more. When the access * described by pda is one SU in size (which by implication means it's * SU-aligned), all that happens is (targbuf) <- (srcbuf ^ targbuf). * When the access is less than one SU in size the XOR occurs on only * the portion of targbuf identified in the pda. */ int rf_XorIntoBuffer(raidPtr, pda, srcbuf, targbuf, bp) RF_Raid_t *raidPtr; RF_PhysDiskAddr_t *pda; char *srcbuf; char *targbuf; void *bp; { char *targptr; int sectPerSU = raidPtr->Layout.sectorsPerStripeUnit; int SUOffset = pda->startSector % sectPerSU; int length, retcode = 0; RF_ASSERT(pda->numSector <= sectPerSU); targptr = targbuf + rf_RaidAddressToByte(raidPtr, SUOffset); length = rf_RaidAddressToByte(raidPtr, pda->numSector); retcode = rf_bxor(srcbuf, targptr, length, bp); return (retcode); } /* it really should be the case that the buffer pointers (returned by * malloc) are aligned to the natural word size of the machine, so * this is the only case we optimize for. The length should always be * a multiple of the sector size, so there should be no problem with * leftover bytes at the end. */ int rf_bxor(src, dest, len, bp) char *src; char *dest; int len; void *bp; { unsigned mask = sizeof(long) - 1, retcode = 0; if (!(((unsigned long) src) & mask) && !(((unsigned long) dest) & mask) && !(len & mask)) { retcode = rf_longword_bxor((unsigned long *) src, (unsigned long *) dest, len >> RF_LONGSHIFT, bp); } else { RF_ASSERT(0); } return (retcode); } /* map a user buffer into kernel space, if necessary */ #define REMAP_VA(_bp,x,y) (y) = (x) /* When XORing in kernel mode, we need to map each user page to kernel * space before we can access it. We don't want to assume anything * about which input buffers are in kernel/user space, nor about their * alignment, so in each loop we compute the maximum number of bytes * that we can xor without crossing any page boundaries, and do only * this many bytes before the next remap. */ int rf_longword_bxor(src, dest, len, bp) unsigned long *src; unsigned long *dest; int len; /* longwords */ void *bp; { unsigned long *end = src + len; unsigned long d0, d1, d2, d3, s0, s1, s2, s3; /* temps */ unsigned long *pg_src, *pg_dest; /* per-page source/dest pointers */ int longs_this_time;/* # longwords to xor in the current iteration */ REMAP_VA(bp, src, pg_src); REMAP_VA(bp, dest, pg_dest); if (!pg_src || !pg_dest) return (EFAULT); while (len >= 4) { longs_this_time = RF_MIN(len, RF_MIN(RF_BLIP(pg_src), RF_BLIP(pg_dest)) >> RF_LONGSHIFT); /* note len in longwords */ src += longs_this_time; dest += longs_this_time; len -= longs_this_time; while (longs_this_time >= 4) { d0 = pg_dest[0]; d1 = pg_dest[1]; d2 = pg_dest[2]; d3 = pg_dest[3]; s0 = pg_src[0]; s1 = pg_src[1]; s2 = pg_src[2]; s3 = pg_src[3]; pg_dest[0] = d0 ^ s0; pg_dest[1] = d1 ^ s1; pg_dest[2] = d2 ^ s2; pg_dest[3] = d3 ^ s3; pg_src += 4; pg_dest += 4; longs_this_time -= 4; } while (longs_this_time > 0) { /* cannot cross any page * boundaries here */ *pg_dest++ ^= *pg_src++; longs_this_time--; } /* either we're done, or we've reached a page boundary on one * (or possibly both) of the pointers */ if (len) { if (RF_PAGE_ALIGNED(src)) REMAP_VA(bp, src, pg_src); if (RF_PAGE_ALIGNED(dest)) REMAP_VA(bp, dest, pg_dest); if (!pg_src || !pg_dest) return (EFAULT); } } while (src < end) { *pg_dest++ ^= *pg_src++; src++; dest++; len--; if (RF_PAGE_ALIGNED(src)) REMAP_VA(bp, src, pg_src); if (RF_PAGE_ALIGNED(dest)) REMAP_VA(bp, dest, pg_dest); } RF_ASSERT(len == 0); return (0); } #if 0 /* dst = a ^ b ^ c; a may equal dst see comment above longword_bxor */ int rf_longword_bxor3(dst, a, b, c, len, bp) unsigned long *dst; unsigned long *a; unsigned long *b; unsigned long *c; int len; /* length in longwords */ void *bp; { unsigned long a0, a1, a2, a3, b0, b1, b2, b3; unsigned long *pg_a, *pg_b, *pg_c, *pg_dst; /* per-page source/dest * pointers */ int longs_this_time;/* # longs to xor in the current iteration */ char dst_is_a = 0; REMAP_VA(bp, a, pg_a); REMAP_VA(bp, b, pg_b); REMAP_VA(bp, c, pg_c); if (a == dst) { pg_dst = pg_a; dst_is_a = 1; } else { REMAP_VA(bp, dst, pg_dst); } /* align dest to cache line. Can't cross a pg boundary on dst here. */ while ((((unsigned long) pg_dst) & 0x1f)) { *pg_dst++ = *pg_a++ ^ *pg_b++ ^ *pg_c++; dst++; a++; b++; c++; if (RF_PAGE_ALIGNED(a)) { REMAP_VA(bp, a, pg_a); if (!pg_a) return (EFAULT); } if (RF_PAGE_ALIGNED(b)) { REMAP_VA(bp, a, pg_b); if (!pg_b) return (EFAULT); } if (RF_PAGE_ALIGNED(c)) { REMAP_VA(bp, a, pg_c); if (!pg_c) return (EFAULT); } len--; } while (len > 4) { longs_this_time = RF_MIN(len, RF_MIN(RF_BLIP(a), RF_MIN(RF_BLIP(b), RF_MIN(RF_BLIP(c), RF_BLIP(dst)))) >> RF_LONGSHIFT); a += longs_this_time; b += longs_this_time; c += longs_this_time; dst += longs_this_time; len -= longs_this_time; while (longs_this_time >= 4) { a0 = pg_a[0]; longs_this_time -= 4; a1 = pg_a[1]; a2 = pg_a[2]; a3 = pg_a[3]; pg_a += 4; b0 = pg_b[0]; b1 = pg_b[1]; b2 = pg_b[2]; b3 = pg_b[3]; /* start dual issue */ a0 ^= b0; b0 = pg_c[0]; pg_b += 4; a1 ^= b1; a2 ^= b2; a3 ^= b3; b1 = pg_c[1]; a0 ^= b0; b2 = pg_c[2]; a1 ^= b1; b3 = pg_c[3]; a2 ^= b2; pg_dst[0] = a0; a3 ^= b3; pg_dst[1] = a1; pg_c += 4; pg_dst[2] = a2; pg_dst[3] = a3; pg_dst += 4; } while (longs_this_time > 0) { /* cannot cross any page * boundaries here */ *pg_dst++ = *pg_a++ ^ *pg_b++ ^ *pg_c++; longs_this_time--; } if (len) { if (RF_PAGE_ALIGNED(a)) { REMAP_VA(bp, a, pg_a); if (!pg_a) return (EFAULT); if (dst_is_a) pg_dst = pg_a; } if (RF_PAGE_ALIGNED(b)) { REMAP_VA(bp, b, pg_b); if (!pg_b) return (EFAULT); } if (RF_PAGE_ALIGNED(c)) { REMAP_VA(bp, c, pg_c); if (!pg_c) return (EFAULT); } if (!dst_is_a) if (RF_PAGE_ALIGNED(dst)) { REMAP_VA(bp, dst, pg_dst); if (!pg_dst) return (EFAULT); } } } while (len) { *pg_dst++ = *pg_a++ ^ *pg_b++ ^ *pg_c++; dst++; a++; b++; c++; if (RF_PAGE_ALIGNED(a)) { REMAP_VA(bp, a, pg_a); if (!pg_a) return (EFAULT); if (dst_is_a) pg_dst = pg_a; } if (RF_PAGE_ALIGNED(b)) { REMAP_VA(bp, b, pg_b); if (!pg_b) return (EFAULT); } if (RF_PAGE_ALIGNED(c)) { REMAP_VA(bp, c, pg_c); if (!pg_c) return (EFAULT); } if (!dst_is_a) if (RF_PAGE_ALIGNED(dst)) { REMAP_VA(bp, dst, pg_dst); if (!pg_dst) return (EFAULT); } len--; } return (0); } int rf_bxor3(dst, a, b, c, len, bp) unsigned char *dst; unsigned char *a; unsigned char *b; unsigned char *c; unsigned long len; void *bp; { RF_ASSERT(((RF_UL(dst) | RF_UL(a) | RF_UL(b) | RF_UL(c) | len) & 0x7) == 0); return (rf_longword_bxor3((unsigned long *) dst, (unsigned long *) a, (unsigned long *) b, (unsigned long *) c, len >> RF_LONGSHIFT, bp)); } #endif