/* $NetBSD: udp_usrreq.c,v 1.235 2017/08/10 04:31:58 ryo Exp $ */ /* * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the project nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)udp_usrreq.c 8.6 (Berkeley) 5/23/95 */ /* * UDP protocol implementation. * Per RFC 768, August, 1980. */ #include __KERNEL_RCSID(0, "$NetBSD: udp_usrreq.c,v 1.235 2017/08/10 04:31:58 ryo Exp $"); #ifdef _KERNEL_OPT #include "opt_inet.h" #include "opt_ipsec.h" #include "opt_inet_csum.h" #include "opt_ipkdb.h" #include "opt_mbuftrace.h" #include "opt_net_mpsafe.h" #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef INET6 #include #include #include #include #include #include #include #endif #ifndef INET6 /* always need ip6.h for IP6_EXTHDR_GET */ #include #endif #ifdef IPSEC #include #include #include #include #ifdef INET6 #include #endif #endif /* IPSEC */ #ifdef IPKDB #include #endif int udpcksum = 1; int udp_do_loopback_cksum = 0; struct inpcbtable udbtable; percpu_t *udpstat_percpu; #ifdef INET #ifdef IPSEC static int udp4_espinudp (struct mbuf **, int, struct sockaddr *, struct socket *); #endif static void udp4_sendup (struct mbuf *, int, struct sockaddr *, struct socket *); static int udp4_realinput (struct sockaddr_in *, struct sockaddr_in *, struct mbuf **, int); static int udp4_input_checksum(struct mbuf *, const struct udphdr *, int, int); #endif #ifdef INET static void udp_notify (struct inpcb *, int); #endif #ifndef UDBHASHSIZE #define UDBHASHSIZE 128 #endif int udbhashsize = UDBHASHSIZE; /* * For send - really max datagram size; for receive - 40 1K datagrams. */ static int udp_sendspace = 9216; static int udp_recvspace = 40 * (1024 + sizeof(struct sockaddr_in)); #ifdef MBUFTRACE struct mowner udp_mowner = MOWNER_INIT("udp", ""); struct mowner udp_rx_mowner = MOWNER_INIT("udp", "rx"); struct mowner udp_tx_mowner = MOWNER_INIT("udp", "tx"); #endif #ifdef UDP_CSUM_COUNTERS #include #if defined(INET) struct evcnt udp_hwcsum_bad = EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "udp", "hwcsum bad"); struct evcnt udp_hwcsum_ok = EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "udp", "hwcsum ok"); struct evcnt udp_hwcsum_data = EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "udp", "hwcsum data"); struct evcnt udp_swcsum = EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "udp", "swcsum"); EVCNT_ATTACH_STATIC(udp_hwcsum_bad); EVCNT_ATTACH_STATIC(udp_hwcsum_ok); EVCNT_ATTACH_STATIC(udp_hwcsum_data); EVCNT_ATTACH_STATIC(udp_swcsum); #endif /* defined(INET) */ #define UDP_CSUM_COUNTER_INCR(ev) (ev)->ev_count++ #else #define UDP_CSUM_COUNTER_INCR(ev) /* nothing */ #endif /* UDP_CSUM_COUNTERS */ static void sysctl_net_inet_udp_setup(struct sysctllog **); static int do_udpinit(void) { in_pcbinit(&udbtable, udbhashsize, udbhashsize); udpstat_percpu = percpu_alloc(sizeof(uint64_t) * UDP_NSTATS); MOWNER_ATTACH(&udp_tx_mowner); MOWNER_ATTACH(&udp_rx_mowner); MOWNER_ATTACH(&udp_mowner); return 0; } void udp_init_common(void) { static ONCE_DECL(doudpinit); RUN_ONCE(&doudpinit, do_udpinit); } void udp_init(void) { sysctl_net_inet_udp_setup(NULL); udp_init_common(); } /* * Checksum extended UDP header and data. */ int udp_input_checksum(int af, struct mbuf *m, const struct udphdr *uh, int iphlen, int len) { switch (af) { #ifdef INET case AF_INET: return udp4_input_checksum(m, uh, iphlen, len); #endif #ifdef INET6 case AF_INET6: return udp6_input_checksum(m, uh, iphlen, len); #endif } #ifdef DIAGNOSTIC panic("udp_input_checksum: unknown af %d", af); #endif /* NOTREACHED */ return -1; } #ifdef INET /* * Checksum extended UDP header and data. */ static int udp4_input_checksum(struct mbuf *m, const struct udphdr *uh, int iphlen, int len) { /* * XXX it's better to record and check if this mbuf is * already checked. */ if (uh->uh_sum == 0) return 0; switch (m->m_pkthdr.csum_flags & ((m_get_rcvif_NOMPSAFE(m)->if_csum_flags_rx & M_CSUM_UDPv4) | M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) { case M_CSUM_UDPv4|M_CSUM_TCP_UDP_BAD: UDP_CSUM_COUNTER_INCR(&udp_hwcsum_bad); goto badcsum; case M_CSUM_UDPv4|M_CSUM_DATA: { u_int32_t hw_csum = m->m_pkthdr.csum_data; UDP_CSUM_COUNTER_INCR(&udp_hwcsum_data); if (m->m_pkthdr.csum_flags & M_CSUM_NO_PSEUDOHDR) { const struct ip *ip = mtod(m, const struct ip *); hw_csum = in_cksum_phdr(ip->ip_src.s_addr, ip->ip_dst.s_addr, htons(hw_csum + len + IPPROTO_UDP)); } if ((hw_csum ^ 0xffff) != 0) goto badcsum; break; } case M_CSUM_UDPv4: /* Checksum was okay. */ UDP_CSUM_COUNTER_INCR(&udp_hwcsum_ok); break; default: /* * Need to compute it ourselves. Maybe skip checksum * on loopback interfaces. */ if (__predict_true(!(m_get_rcvif_NOMPSAFE(m)->if_flags & IFF_LOOPBACK) || udp_do_loopback_cksum)) { UDP_CSUM_COUNTER_INCR(&udp_swcsum); if (in4_cksum(m, IPPROTO_UDP, iphlen, len) != 0) goto badcsum; } break; } return 0; badcsum: UDP_STATINC(UDP_STAT_BADSUM); return -1; } void udp_input(struct mbuf *m, ...) { va_list ap; struct sockaddr_in src, dst; struct ip *ip; struct udphdr *uh; int iphlen; int len; int n; u_int16_t ip_len; va_start(ap, m); iphlen = va_arg(ap, int); (void)va_arg(ap, int); /* ignore value, advance ap */ va_end(ap); MCLAIM(m, &udp_rx_mowner); UDP_STATINC(UDP_STAT_IPACKETS); /* * Get IP and UDP header together in first mbuf. */ ip = mtod(m, struct ip *); IP6_EXTHDR_GET(uh, struct udphdr *, m, iphlen, sizeof(struct udphdr)); if (uh == NULL) { UDP_STATINC(UDP_STAT_HDROPS); return; } /* * Enforce alignment requirements that are violated in * some cases, see kern/50766 for details. */ if (UDP_HDR_ALIGNED_P(uh) == 0) { m = m_copyup(m, iphlen + sizeof(struct udphdr), 0); if (m == NULL) { UDP_STATINC(UDP_STAT_HDROPS); return; } ip = mtod(m, struct ip *); uh = (struct udphdr *)(mtod(m, char *) + iphlen); } KASSERT(UDP_HDR_ALIGNED_P(uh)); /* destination port of 0 is illegal, based on RFC768. */ if (uh->uh_dport == 0) goto bad; /* * Make mbuf data length reflect UDP length. * If not enough data to reflect UDP length, drop. */ ip_len = ntohs(ip->ip_len); len = ntohs((u_int16_t)uh->uh_ulen); if (ip_len != iphlen + len) { if (ip_len < iphlen + len || len < sizeof(struct udphdr)) { UDP_STATINC(UDP_STAT_BADLEN); goto bad; } m_adj(m, iphlen + len - ip_len); } /* * Checksum extended UDP header and data. */ if (udp4_input_checksum(m, uh, iphlen, len)) goto badcsum; /* construct source and dst sockaddrs. */ sockaddr_in_init(&src, &ip->ip_src, uh->uh_sport); sockaddr_in_init(&dst, &ip->ip_dst, uh->uh_dport); if ((n = udp4_realinput(&src, &dst, &m, iphlen)) == -1) { UDP_STATINC(UDP_STAT_HDROPS); return; } if (m == NULL) { /* * packet has been processed by ESP stuff - * e.g. dropped NAT-T-keep-alive-packet ... */ return; } ip = mtod(m, struct ip *); #ifdef INET6 if (IN_MULTICAST(ip->ip_dst.s_addr) || n == 0) { struct sockaddr_in6 src6, dst6; memset(&src6, 0, sizeof(src6)); src6.sin6_family = AF_INET6; src6.sin6_len = sizeof(struct sockaddr_in6); in6_in_2_v4mapin6(&ip->ip_src, &src6.sin6_addr); src6.sin6_port = uh->uh_sport; memset(&dst6, 0, sizeof(dst6)); dst6.sin6_family = AF_INET6; dst6.sin6_len = sizeof(struct sockaddr_in6); in6_in_2_v4mapin6(&ip->ip_dst, &dst6.sin6_addr); dst6.sin6_port = uh->uh_dport; n += udp6_realinput(AF_INET, &src6, &dst6, m, iphlen); } #endif if (n == 0) { if (m->m_flags & (M_BCAST | M_MCAST)) { UDP_STATINC(UDP_STAT_NOPORTBCAST); goto bad; } UDP_STATINC(UDP_STAT_NOPORT); #ifdef IPKDB if (checkipkdb(&ip->ip_src, uh->uh_sport, uh->uh_dport, m, iphlen + sizeof(struct udphdr), m->m_pkthdr.len - iphlen - sizeof(struct udphdr))) { /* * It was a debugger connect packet, * just drop it now */ goto bad; } #endif icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_PORT, 0, 0); m = NULL; } bad: if (m) m_freem(m); return; badcsum: m_freem(m); } #endif #ifdef INET static void udp4_sendup(struct mbuf *m, int off /* offset of data portion */, struct sockaddr *src, struct socket *so) { struct mbuf *opts = NULL; struct mbuf *n; struct inpcb *inp; KASSERT(so != NULL); KASSERT(so->so_proto->pr_domain->dom_family == AF_INET); inp = sotoinpcb(so); KASSERT(inp != NULL); #if defined(IPSEC) /* check AH/ESP integrity. */ if (ipsec_used && ipsec4_in_reject(m, inp)) { IPSEC_STATINC(IPSEC_STAT_IN_POLVIO); if ((n = m_copypacket(m, M_DONTWAIT)) != NULL) icmp_error(n, ICMP_UNREACH, ICMP_UNREACH_ADMIN_PROHIBIT, 0, 0); return; } #endif /*IPSEC*/ if ((n = m_copypacket(m, M_DONTWAIT)) != NULL) { if (inp->inp_flags & INP_CONTROLOPTS || SOOPT_TIMESTAMP(so->so_options)) { struct ip *ip = mtod(n, struct ip *); ip_savecontrol(inp, &opts, ip, n); } m_adj(n, off); if (sbappendaddr(&so->so_rcv, src, n, opts) == 0) { m_freem(n); if (opts) m_freem(opts); so->so_rcv.sb_overflowed++; UDP_STATINC(UDP_STAT_FULLSOCK); } else sorwakeup(so); } } #endif #ifdef INET static int udp4_realinput(struct sockaddr_in *src, struct sockaddr_in *dst, struct mbuf **mp, int off /* offset of udphdr */) { u_int16_t *sport, *dport; int rcvcnt; struct in_addr *src4, *dst4; struct inpcb_hdr *inph; struct inpcb *inp; struct mbuf *m = *mp; rcvcnt = 0; off += sizeof(struct udphdr); /* now, offset of payload */ if (src->sin_family != AF_INET || dst->sin_family != AF_INET) goto bad; src4 = &src->sin_addr; sport = &src->sin_port; dst4 = &dst->sin_addr; dport = &dst->sin_port; if (IN_MULTICAST(dst4->s_addr) || in_broadcast(*dst4, m_get_rcvif_NOMPSAFE(m))) { /* * Deliver a multicast or broadcast datagram to *all* sockets * for which the local and remote addresses and ports match * those of the incoming datagram. This allows more than * one process to receive multi/broadcasts on the same port. * (This really ought to be done for unicast datagrams as * well, but that would cause problems with existing * applications that open both address-specific sockets and * a wildcard socket listening to the same port -- they would * end up receiving duplicates of every unicast datagram. * Those applications open the multiple sockets to overcome an * inadequacy of the UDP socket interface, but for backwards * compatibility we avoid the problem here rather than * fixing the interface. Maybe 4.5BSD will remedy this?) */ /* * KAME note: traditionally we dropped udpiphdr from mbuf here. * we need udpiphdr for IPsec processing so we do that later. */ /* * Locate pcb(s) for datagram. */ TAILQ_FOREACH(inph, &udbtable.inpt_queue, inph_queue) { inp = (struct inpcb *)inph; if (inp->inp_af != AF_INET) continue; if (inp->inp_lport != *dport) continue; if (!in_nullhost(inp->inp_laddr)) { if (!in_hosteq(inp->inp_laddr, *dst4)) continue; } if (!in_nullhost(inp->inp_faddr)) { if (!in_hosteq(inp->inp_faddr, *src4) || inp->inp_fport != *sport) continue; } udp4_sendup(m, off, (struct sockaddr *)src, inp->inp_socket); rcvcnt++; /* * Don't look for additional matches if this one does * not have either the SO_REUSEPORT or SO_REUSEADDR * socket options set. This heuristic avoids searching * through all pcbs in the common case of a non-shared * port. It assumes that an application will never * clear these options after setting them. */ if ((inp->inp_socket->so_options & (SO_REUSEPORT|SO_REUSEADDR)) == 0) break; } } else { /* * Locate pcb for datagram. */ inp = in_pcblookup_connect(&udbtable, *src4, *sport, *dst4, *dport, 0); if (inp == 0) { UDP_STATINC(UDP_STAT_PCBHASHMISS); inp = in_pcblookup_bind(&udbtable, *dst4, *dport); if (inp == 0) return rcvcnt; } #ifdef IPSEC /* Handle ESP over UDP */ if (inp->inp_flags & INP_ESPINUDP_ALL) { struct sockaddr *sa = (struct sockaddr *)src; switch(udp4_espinudp(mp, off, sa, inp->inp_socket)) { case -1: /* Error, m was freeed */ rcvcnt = -1; goto bad; break; case 1: /* ESP over UDP */ rcvcnt++; goto bad; break; case 0: /* plain UDP */ default: /* Unexpected */ /* * Normal UDP processing will take place * m may have changed. */ m = *mp; break; } } #endif /* * Check the minimum TTL for socket. */ if (mtod(m, struct ip *)->ip_ttl < inp->inp_ip_minttl) goto bad; udp4_sendup(m, off, (struct sockaddr *)src, inp->inp_socket); rcvcnt++; } bad: return rcvcnt; } #endif #ifdef INET /* * Notify a udp user of an asynchronous error; * just wake up so that he can collect error status. */ static void udp_notify(struct inpcb *inp, int errno) { inp->inp_socket->so_error = errno; sorwakeup(inp->inp_socket); sowwakeup(inp->inp_socket); } void * udp_ctlinput(int cmd, const struct sockaddr *sa, void *v) { struct ip *ip = v; struct udphdr *uh; void (*notify)(struct inpcb *, int) = udp_notify; int errno; if (sa->sa_family != AF_INET || sa->sa_len != sizeof(struct sockaddr_in)) return NULL; if ((unsigned)cmd >= PRC_NCMDS) return NULL; errno = inetctlerrmap[cmd]; if (PRC_IS_REDIRECT(cmd)) notify = in_rtchange, ip = 0; else if (cmd == PRC_HOSTDEAD) ip = 0; else if (errno == 0) return NULL; if (ip) { uh = (struct udphdr *)((char *)ip + (ip->ip_hl << 2)); in_pcbnotify(&udbtable, satocsin(sa)->sin_addr, uh->uh_dport, ip->ip_src, uh->uh_sport, errno, notify); /* XXX mapped address case */ } else in_pcbnotifyall(&udbtable, satocsin(sa)->sin_addr, errno, notify); return NULL; } int udp_ctloutput(int op, struct socket *so, struct sockopt *sopt) { int s; int error = 0; struct inpcb *inp; int family; int optval; family = so->so_proto->pr_domain->dom_family; s = splsoftnet(); switch (family) { #ifdef INET case PF_INET: if (sopt->sopt_level != IPPROTO_UDP) { error = ip_ctloutput(op, so, sopt); goto end; } break; #endif #ifdef INET6 case PF_INET6: if (sopt->sopt_level != IPPROTO_UDP) { error = ip6_ctloutput(op, so, sopt); goto end; } break; #endif default: error = EAFNOSUPPORT; goto end; } switch (op) { case PRCO_SETOPT: inp = sotoinpcb(so); switch (sopt->sopt_name) { case UDP_ENCAP: error = sockopt_getint(sopt, &optval); if (error) break; switch(optval) { case 0: inp->inp_flags &= ~INP_ESPINUDP_ALL; break; case UDP_ENCAP_ESPINUDP: inp->inp_flags &= ~INP_ESPINUDP_ALL; inp->inp_flags |= INP_ESPINUDP; break; case UDP_ENCAP_ESPINUDP_NON_IKE: inp->inp_flags &= ~INP_ESPINUDP_ALL; inp->inp_flags |= INP_ESPINUDP_NON_IKE; break; default: error = EINVAL; break; } break; default: error = ENOPROTOOPT; break; } break; default: error = EINVAL; break; } end: splx(s); return error; } int udp_output(struct mbuf *m, struct inpcb *inp, struct mbuf *control, struct lwp *l) { struct udpiphdr *ui; struct route *ro; struct ip_pktopts pktopts; kauth_cred_t cred; int len = m->m_pkthdr.len; int error, flags = 0; MCLAIM(m, &udp_tx_mowner); /* * Calculate data length and get a mbuf * for UDP and IP headers. */ M_PREPEND(m, sizeof(struct udpiphdr), M_DONTWAIT); if (m == 0) { error = ENOBUFS; goto release; } /* * Compute the packet length of the IP header, and * punt if the length looks bogus. */ if (len + sizeof(struct udpiphdr) > IP_MAXPACKET) { error = EMSGSIZE; goto release; } if (l == NULL) cred = NULL; else cred = l->l_cred; /* Setup IP outgoing packet options */ memset(&pktopts, 0, sizeof(pktopts)); error = ip_setpktopts(control, &pktopts, &flags, inp, cred, IPPROTO_UDP); if (error != 0) goto release; if (control != NULL) { m_freem(control); control = NULL; } /* * Fill in mbuf with extended UDP header * and addresses and length put into network format. */ ui = mtod(m, struct udpiphdr *); ui->ui_pr = IPPROTO_UDP; ui->ui_src = pktopts.ippo_laddr.sin_addr; ui->ui_dst = inp->inp_faddr; ui->ui_sport = inp->inp_lport; ui->ui_dport = inp->inp_fport; ui->ui_ulen = htons((u_int16_t)len + sizeof(struct udphdr)); ro = &inp->inp_route; /* * Set up checksum and output datagram. */ if (udpcksum) { /* * XXX Cache pseudo-header checksum part for * XXX "connected" UDP sockets. */ ui->ui_sum = in_cksum_phdr(ui->ui_src.s_addr, ui->ui_dst.s_addr, htons((u_int16_t)len + sizeof(struct udphdr) + IPPROTO_UDP)); m->m_pkthdr.csum_flags = M_CSUM_UDPv4; m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum); } else ui->ui_sum = 0; ((struct ip *)ui)->ip_len = htons(sizeof (struct udpiphdr) + len); ((struct ip *)ui)->ip_ttl = inp->inp_ip.ip_ttl; /* XXX */ ((struct ip *)ui)->ip_tos = inp->inp_ip.ip_tos; /* XXX */ UDP_STATINC(UDP_STAT_OPACKETS); flags |= inp->inp_socket->so_options & (SO_DONTROUTE|SO_BROADCAST); return ip_output(m, inp->inp_options, ro, flags, pktopts.ippo_imo, inp); release: if (control != NULL) m_freem(control); m_freem(m); return error; } static int udp_attach(struct socket *so, int proto) { struct inpcb *inp; int error; KASSERT(sotoinpcb(so) == NULL); /* Assign the lock (must happen even if we will error out). */ sosetlock(so); #ifdef MBUFTRACE so->so_mowner = &udp_mowner; so->so_rcv.sb_mowner = &udp_rx_mowner; so->so_snd.sb_mowner = &udp_tx_mowner; #endif if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) { error = soreserve(so, udp_sendspace, udp_recvspace); if (error) { return error; } } error = in_pcballoc(so, &udbtable); if (error) { return error; } inp = sotoinpcb(so); inp->inp_ip.ip_ttl = ip_defttl; KASSERT(solocked(so)); return error; } static void udp_detach(struct socket *so) { struct inpcb *inp; KASSERT(solocked(so)); inp = sotoinpcb(so); KASSERT(inp != NULL); in_pcbdetach(inp); } static int udp_accept(struct socket *so, struct sockaddr *nam) { KASSERT(solocked(so)); panic("udp_accept"); return EOPNOTSUPP; } static int udp_bind(struct socket *so, struct sockaddr *nam, struct lwp *l) { struct inpcb *inp = sotoinpcb(so); struct sockaddr_in *sin = (struct sockaddr_in *)nam; int error = 0; int s; KASSERT(solocked(so)); KASSERT(inp != NULL); KASSERT(nam != NULL); s = splsoftnet(); error = in_pcbbind(inp, sin, l); splx(s); return error; } static int udp_listen(struct socket *so, struct lwp *l) { KASSERT(solocked(so)); return EOPNOTSUPP; } static int udp_connect(struct socket *so, struct sockaddr *nam, struct lwp *l) { struct inpcb *inp = sotoinpcb(so); int error = 0; int s; KASSERT(solocked(so)); KASSERT(inp != NULL); KASSERT(nam != NULL); s = splsoftnet(); error = in_pcbconnect(inp, (struct sockaddr_in *)nam, l); if (! error) soisconnected(so); splx(s); return error; } static int udp_connect2(struct socket *so, struct socket *so2) { KASSERT(solocked(so)); return EOPNOTSUPP; } static int udp_disconnect(struct socket *so) { struct inpcb *inp = sotoinpcb(so); int s; KASSERT(solocked(so)); KASSERT(inp != NULL); s = splsoftnet(); /*soisdisconnected(so);*/ so->so_state &= ~SS_ISCONNECTED; /* XXX */ in_pcbdisconnect(inp); inp->inp_laddr = zeroin_addr; /* XXX */ in_pcbstate(inp, INP_BOUND); /* XXX */ splx(s); return 0; } static int udp_shutdown(struct socket *so) { int s; KASSERT(solocked(so)); s = splsoftnet(); socantsendmore(so); splx(s); return 0; } static int udp_abort(struct socket *so) { KASSERT(solocked(so)); panic("udp_abort"); return EOPNOTSUPP; } static int udp_ioctl(struct socket *so, u_long cmd, void *nam, struct ifnet *ifp) { return in_control(so, cmd, nam, ifp); } static int udp_stat(struct socket *so, struct stat *ub) { KASSERT(solocked(so)); /* stat: don't bother with a blocksize. */ return 0; } static int udp_peeraddr(struct socket *so, struct sockaddr *nam) { int s; KASSERT(solocked(so)); KASSERT(sotoinpcb(so) != NULL); KASSERT(nam != NULL); s = splsoftnet(); in_setpeeraddr(sotoinpcb(so), (struct sockaddr_in *)nam); splx(s); return 0; } static int udp_sockaddr(struct socket *so, struct sockaddr *nam) { int s; KASSERT(solocked(so)); KASSERT(sotoinpcb(so) != NULL); KASSERT(nam != NULL); s = splsoftnet(); in_setsockaddr(sotoinpcb(so), (struct sockaddr_in *)nam); splx(s); return 0; } static int udp_rcvd(struct socket *so, int flags, struct lwp *l) { KASSERT(solocked(so)); return EOPNOTSUPP; } static int udp_recvoob(struct socket *so, struct mbuf *m, int flags) { KASSERT(solocked(so)); return EOPNOTSUPP; } static int udp_send(struct socket *so, struct mbuf *m, struct sockaddr *nam, struct mbuf *control, struct lwp *l) { struct inpcb *inp = sotoinpcb(so); int error = 0; struct in_addr laddr; /* XXX */ int s; KASSERT(solocked(so)); KASSERT(inp != NULL); KASSERT(m != NULL); memset(&laddr, 0, sizeof laddr); s = splsoftnet(); if (nam) { laddr = inp->inp_laddr; /* XXX */ if ((so->so_state & SS_ISCONNECTED) != 0) { error = EISCONN; goto die; } error = in_pcbconnect(inp, (struct sockaddr_in *)nam, l); if (error) goto die; } else { if ((so->so_state & SS_ISCONNECTED) == 0) { error = ENOTCONN; goto die; } } error = udp_output(m, inp, control, l); m = NULL; control = NULL; if (nam) { in_pcbdisconnect(inp); inp->inp_laddr = laddr; /* XXX */ in_pcbstate(inp, INP_BOUND); /* XXX */ } die: if (m != NULL) m_freem(m); if (control != NULL) m_freem(control); splx(s); return error; } static int udp_sendoob(struct socket *so, struct mbuf *m, struct mbuf *control) { KASSERT(solocked(so)); m_freem(m); m_freem(control); return EOPNOTSUPP; } static int udp_purgeif(struct socket *so, struct ifnet *ifp) { int s; s = splsoftnet(); mutex_enter(softnet_lock); in_pcbpurgeif0(&udbtable, ifp); #ifdef NET_MPSAFE mutex_exit(softnet_lock); #endif in_purgeif(ifp); #ifdef NET_MPSAFE mutex_enter(softnet_lock); #endif in_pcbpurgeif(&udbtable, ifp); mutex_exit(softnet_lock); splx(s); return 0; } static int sysctl_net_inet_udp_stats(SYSCTLFN_ARGS) { return (NETSTAT_SYSCTL(udpstat_percpu, UDP_NSTATS)); } /* * Sysctl for udp variables. */ static void sysctl_net_inet_udp_setup(struct sysctllog **clog) { sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT, CTLTYPE_NODE, "inet", NULL, NULL, 0, NULL, 0, CTL_NET, PF_INET, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT, CTLTYPE_NODE, "udp", SYSCTL_DESCR("UDPv4 related settings"), NULL, 0, NULL, 0, CTL_NET, PF_INET, IPPROTO_UDP, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "checksum", SYSCTL_DESCR("Compute UDP checksums"), NULL, 0, &udpcksum, 0, CTL_NET, PF_INET, IPPROTO_UDP, UDPCTL_CHECKSUM, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "sendspace", SYSCTL_DESCR("Default UDP send buffer size"), NULL, 0, &udp_sendspace, 0, CTL_NET, PF_INET, IPPROTO_UDP, UDPCTL_SENDSPACE, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "recvspace", SYSCTL_DESCR("Default UDP receive buffer size"), NULL, 0, &udp_recvspace, 0, CTL_NET, PF_INET, IPPROTO_UDP, UDPCTL_RECVSPACE, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "do_loopback_cksum", SYSCTL_DESCR("Perform UDP checksum on loopback"), NULL, 0, &udp_do_loopback_cksum, 0, CTL_NET, PF_INET, IPPROTO_UDP, UDPCTL_LOOPBACKCKSUM, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT, CTLTYPE_STRUCT, "pcblist", SYSCTL_DESCR("UDP protocol control block list"), sysctl_inpcblist, 0, &udbtable, 0, CTL_NET, PF_INET, IPPROTO_UDP, CTL_CREATE, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT, CTLTYPE_STRUCT, "stats", SYSCTL_DESCR("UDP statistics"), sysctl_net_inet_udp_stats, 0, NULL, 0, CTL_NET, PF_INET, IPPROTO_UDP, UDPCTL_STATS, CTL_EOL); } #endif void udp_statinc(u_int stat) { KASSERT(stat < UDP_NSTATS); UDP_STATINC(stat); } #if defined(INET) && defined(IPSEC) /* * Returns: * 1 if the packet was processed * 0 if normal UDP processing should take place * -1 if an error occurent and m was freed */ static int udp4_espinudp(struct mbuf **mp, int off, struct sockaddr *src, struct socket *so) { size_t len; void *data; struct inpcb *inp; size_t skip = 0; size_t minlen; size_t iphdrlen; struct ip *ip; struct m_tag *tag; struct udphdr *udphdr; u_int16_t sport, dport; struct mbuf *m = *mp; /* * Collapse the mbuf chain if the first mbuf is too short * The longest case is: UDP + non ESP marker + ESP */ minlen = off + sizeof(u_int64_t) + sizeof(struct esp); if (minlen > m->m_pkthdr.len) minlen = m->m_pkthdr.len; if (m->m_len < minlen) { if ((*mp = m_pullup(m, minlen)) == NULL) { printf("udp4_espinudp: m_pullup failed\n"); return -1; } m = *mp; } len = m->m_len - off; data = mtod(m, char *) + off; inp = sotoinpcb(so); /* Ignore keepalive packets */ if ((len == 1) && (*(unsigned char *)data == 0xff)) { m_free(m); *mp = NULL; /* avoid any further processiong by caller ... */ return 1; } /* * Check that the payload is long enough to hold * an ESP header and compute the length of encapsulation * header to remove */ if (inp->inp_flags & INP_ESPINUDP) { u_int32_t *st = (u_int32_t *)data; if ((len <= sizeof(struct esp)) || (*st == 0)) return 0; /* Normal UDP processing */ skip = sizeof(struct udphdr); } if (inp->inp_flags & INP_ESPINUDP_NON_IKE) { u_int32_t *st = (u_int32_t *)data; if ((len <= sizeof(u_int64_t) + sizeof(struct esp)) || ((st[0] | st[1]) != 0)) return 0; /* Normal UDP processing */ skip = sizeof(struct udphdr) + sizeof(u_int64_t); } /* * Get the UDP ports. They are handled in network * order everywhere in IPSEC_NAT_T code. */ udphdr = (struct udphdr *)((char *)data - skip); sport = udphdr->uh_sport; dport = udphdr->uh_dport; /* * Remove the UDP header (and possibly the non ESP marker) * IP header lendth is iphdrlen * Before: * <--- off ---> * +----+------+-----+ * | IP | UDP | ESP | * +----+------+-----+ * <-skip-> * After: * +----+-----+ * | IP | ESP | * +----+-----+ * <-skip-> */ iphdrlen = off - sizeof(struct udphdr); memmove(mtod(m, char *) + skip, mtod(m, void *), iphdrlen); m_adj(m, skip); ip = mtod(m, struct ip *); ip->ip_len = htons(ntohs(ip->ip_len) - skip); ip->ip_p = IPPROTO_ESP; /* * We have modified the packet - it is now ESP, so we should not * return to UDP processing ... * * Add a PACKET_TAG_IPSEC_NAT_T_PORT tag to remember * the source UDP port. This is required if we want * to select the right SPD for multiple hosts behind * same NAT */ if ((tag = m_tag_get(PACKET_TAG_IPSEC_NAT_T_PORTS, sizeof(sport) + sizeof(dport), M_DONTWAIT)) == NULL) { printf("udp4_espinudp: m_tag_get failed\n"); m_freem(m); return -1; } ((u_int16_t *)(tag + 1))[0] = sport; ((u_int16_t *)(tag + 1))[1] = dport; m_tag_prepend(m, tag); if (ipsec_used) ipsec4_common_input(m, iphdrlen, IPPROTO_ESP); /* XXX: else */ /* We handled it, it shouldn't be handled by UDP */ *mp = NULL; /* avoid free by caller ... */ return 1; } #endif PR_WRAP_USRREQS(udp) #define udp_attach udp_attach_wrapper #define udp_detach udp_detach_wrapper #define udp_accept udp_accept_wrapper #define udp_bind udp_bind_wrapper #define udp_listen udp_listen_wrapper #define udp_connect udp_connect_wrapper #define udp_connect2 udp_connect2_wrapper #define udp_disconnect udp_disconnect_wrapper #define udp_shutdown udp_shutdown_wrapper #define udp_abort udp_abort_wrapper #define udp_ioctl udp_ioctl_wrapper #define udp_stat udp_stat_wrapper #define udp_peeraddr udp_peeraddr_wrapper #define udp_sockaddr udp_sockaddr_wrapper #define udp_rcvd udp_rcvd_wrapper #define udp_recvoob udp_recvoob_wrapper #define udp_send udp_send_wrapper #define udp_sendoob udp_sendoob_wrapper #define udp_purgeif udp_purgeif_wrapper const struct pr_usrreqs udp_usrreqs = { .pr_attach = udp_attach, .pr_detach = udp_detach, .pr_accept = udp_accept, .pr_bind = udp_bind, .pr_listen = udp_listen, .pr_connect = udp_connect, .pr_connect2 = udp_connect2, .pr_disconnect = udp_disconnect, .pr_shutdown = udp_shutdown, .pr_abort = udp_abort, .pr_ioctl = udp_ioctl, .pr_stat = udp_stat, .pr_peeraddr = udp_peeraddr, .pr_sockaddr = udp_sockaddr, .pr_rcvd = udp_rcvd, .pr_recvoob = udp_recvoob, .pr_send = udp_send, .pr_sendoob = udp_sendoob, .pr_purgeif = udp_purgeif, };