.\" $NetBSD: queue.3,v 1.26 2003/05/20 10:10:23 wiz Exp $ .\" .\" Copyright (c) 2000, 2002 The NetBSD Foundation, Inc. .\" All rights reserved. .\" .\" Redistribution and use in source and binary forms, with or without .\" modification, are permitted provided that the following conditions .\" are met: .\" 1. Redistributions of source code must retain the above copyright .\" notice, this list of conditions and the following disclaimer. .\" 2. Redistributions in binary form must reproduce the above copyright .\" notice, this list of conditions and the following disclaimer in the .\" documentation and/or other materials provided with the distribution. .\" 3. All advertising materials mentioning features or use of this software .\" must display the following acknowledgement: .\" This product includes software developed by the NetBSD .\" Foundation, Inc. and its contributors. .\" 4. Neither the name of The NetBSD Foundation nor the names of its .\" contributors may be used to endorse or promote products derived .\" from this software without specific prior written permission. .\" .\" THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS .\" ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED .\" TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR .\" PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS .\" BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR .\" CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF .\" SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS .\" INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN .\" CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) .\" ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE .\" POSSIBILITY OF SUCH DAMAGE. .\" .\" Copyright (c) 1993 The Regents of the University of California. .\" All rights reserved. .\" .\" Redistribution and use in source and binary forms, with or without .\" modification, are permitted provided that the following conditions .\" are met: .\" 1. Redistributions of source code must retain the above copyright .\" notice, this list of conditions and the following disclaimer. .\" 2. Redistributions in binary form must reproduce the above copyright .\" notice, this list of conditions and the following disclaimer in the .\" documentation and/or other materials provided with the distribution. .\" 3. All advertising materials mentioning features or use of this software .\" must display the following acknowledgement: .\" This product includes software developed by the University of .\" California, Berkeley and its contributors. .\" 4. Neither the name of the University nor the names of its contributors .\" may be used to endorse or promote products derived from this software .\" without specific prior written permission. .\" .\" THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND .\" ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE .\" IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE .\" ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE .\" FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL .\" DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS .\" OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) .\" HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT .\" LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY .\" OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF .\" SUCH DAMAGE. .\" .\" @(#)queue.3 8.1 (Berkeley) 12/13/93 .\" .Dd June 2, 2002 .Dt QUEUE 3 .Os .Sh NAME .Nm SLIST_ENTRY , .Nm SLIST_HEAD , .Nm SLIST_HEAD_INITIALIZER , .Nm SLIST_INIT , .Nm SLIST_INSERT_AFTER , .Nm SLIST_INSERT_HEAD , .Nm SLIST_REMOVE , .Nm SLIST_REMOVE_HEAD , .Nm SLIST_FOREACH , .Nm SLIST_EMPTY , .Nm SLIST_FIRST , .Nm SLIST_NEXT , .Nm SIMPLEQ_ENTRY , .Nm SIMPLEQ_HEAD , .Nm SIMPLEQ_HEAD_INITIALIZER , .Nm SIMPLEQ_INIT , .Nm SIMPLEQ_INSERT_HEAD , .Nm SIMPLEQ_INSERT_TAIL , .Nm SIMPLEQ_INSERT_AFTER , .Nm SIMPLEQ_REMOVE , .Nm SIMPLEQ_REMOVE_HEAD , .Nm SIMPLEQ_FOREACH , .Nm SIMPLEQ_EMPTY , .Nm SIMPLEQ_FIRST , .Nm SIMPLEQ_NEXT , .Nm LIST_ENTRY , .Nm LIST_HEAD , .Nm LIST_HEAD_INITIALIZER , .Nm LIST_INIT , .Nm LIST_INSERT_AFTER , .Nm LIST_INSERT_BEFORE , .Nm LIST_INSERT_HEAD , .Nm LIST_REMOVE , .Nm LIST_FOREACH , .Nm LIST_EMPTY , .Nm LIST_FIRST , .Nm LIST_NEXT , .Nm TAILQ_ENTRY , .Nm TAILQ_HEAD , .Nm TAILQ_HEAD_INITIALIZER , .Nm TAILQ_INIT , .Nm TAILQ_INSERT_AFTER , .Nm TAILQ_INSERT_BEFORE , .Nm TAILQ_INSERT_HEAD , .Nm TAILQ_INSERT_TAIL , .Nm TAILQ_REMOVE , .Nm TAILQ_FOREACH , .Nm TAILQ_FOREACH_REVERSE , .Nm TAILQ_EMPTY , .Nm TAILQ_FIRST , .Nm TAILQ_NEXT , .Nm CIRCLEQ_ENTRY , .Nm CIRCLEQ_HEAD , .Nm CIRCLEQ_HEAD_INITIALIZER , .Nm CIRCLEQ_INIT , .Nm CIRCLEQ_INSERT_AFTER , .Nm CIRCLEQ_INSERT_BEFORE , .Nm CIRCLEQ_INSERT_HEAD , .Nm CIRCLEQ_INSERT_TAIL , .Nm CIRCLEQ_REMOVE , .Nm CIRCLEQ_FOREACH , .Nm CIRCLEQ_FOREACH_REVERSE , .Nm CIRCLEQ_EMPTY , .Nm CIRCLEQ_FIRST , .Nm CIRCLEQ_LAST , .Nm CIRCLEQ_NEXT , .Nm CIRCLEQ_PREV .Nd "implementations of singly-linked lists, simple queues, lists, tail queues, and circular queues" .Sh SYNOPSIS .In sys/queue.h .sp .Fn SLIST_ENTRY "TYPE" .Fn SLIST_FOREACH "TYPE *var" "SLIST_HEAD *head" "SLIST_ENTRY NAME" .Fn SLIST_HEAD "HEADNAME" "TYPE" .Fn SLIST_HEAD_INITIALIZER "head" .Fn SLIST_INIT "SLIST_HEAD *head" .Fn SLIST_INSERT_AFTER "TYPE *listelm" "TYPE *elm" "SLIST_ENTRY NAME" .Fn SLIST_INSERT_HEAD "SLIST_HEAD *head" "TYPE *elm" "SLIST_ENTRY NAME" .Fn SLIST_REMOVE "SLIST_HEAD *head" "TYPE *elm" "TYPE" "SLIST_ENTRY NAME" .Fn SLIST_REMOVE_HEAD "SLIST_HEAD *head" "SLIST_ENTRY NAME" .Ft int .Fn SLIST_EMPTY "SLIST_HEAD *head" .Ft TYPE * .Fn SLIST_FIRST "SLIST_HEAD *head" .Ft TYPE * .Fn SLIST_NEXT "TYPE *elm" "SLIST_ENTRY NAME" .sp .Fn SIMPLEQ_ENTRY "TYPE" .Fn SIMPLEQ_FOREACH "TYPE *var" "SIMPLEQ_HEAD *head" "SIMPLEQ_ENTRY NAME" .Fn SIMPLEQ_HEAD "HEADNAME" "TYPE" .Fn SIMPLEQ_HEAD_INITIALIZER "head" .Fn SIMPLEQ_INIT "SIMPLEQ_HEAD *head" .Fn SIMPLEQ_INSERT_AFTER "SIMPLEQ_HEAD *head" "TYPE *listelm" "TYPE *elm" "SIMPLEQ_ENTRY NAME" .Fn SIMPLEQ_INSERT_HEAD "SIMPLEQ_HEAD *head" "TYPE *elm" "SIMPLEQ_ENTRY NAME" .Fn SIMPLEQ_INSERT_TAIL "SIMPLEQ_HEAD *head" "TYPE *elm" "SIMPLEQ_ENTRY NAME" .Fn SIMPLEQ_REMOVE "SIMPLEQ_HEAD *head" "TYPE *elm" "TYPE" "SIMPLEQ_ENTRY NAME" .Fn SIMPLEQ_REMOVE_HEAD "SIMPLEQ_HEAD *head" "SIMPLEQ_ENTRY NAME" .Ft int .Fn SIMPLEQ_EMPTY "SIMPLEQ_HEAD *head" .Ft TYPE * .Fn SIMPLEQ_FIRST "SIMPLEQ_HEAD *head" .Ft TYPE * .Fn SIMPLEQ_NEXT "TYPE *elm" "SIMPLEQ_ENTRY NAME" .sp .Fn LIST_ENTRY "TYPE" .Fn LIST_FOREACH "TYPE *var" "LIST_HEAD *head" "LIST_ENTRY NAME" .Fn LIST_HEAD "HEADNAME" "TYPE" .Fn LIST_HEAD_INITIALIZER "head" .Fn LIST_INIT "LIST_HEAD *head" .Fn LIST_INSERT_AFTER "TYPE *listelm" "TYPE *elm" "LIST_ENTRY NAME" .Fn LIST_INSERT_BEFORE "TYPE *listelm" "TYPE *elm" "LIST_ENTRY NAME" .Fn LIST_INSERT_HEAD "LIST_HEAD *head" "TYPE *elm" "LIST_ENTRY NAME" .Fn LIST_REMOVE "TYPE *elm" "LIST_ENTRY NAME" .Ft int .Fn LIST_EMPTY "LIST_HEAD *head" .Ft TYPE * .Fn LIST_FIRST "LIST_HEAD *head" .Ft TYPE * .Fn LIST_NEXT "TYPE *elm" "LIST_ENTRY NAME" .sp .Fn TAILQ_ENTRY "TYPE" .Fn TAILQ_FOREACH "TYPE *var" "TAILQ_HEAD *head" "TAILQ_ENTRY NAME" .Fn TAILQ_FOREACH_REVERSE "TYPE *var" "TAILQ_HEAD *head" "HEADNAME" "TAILQ_ENTRY NAME" .Fn TAILQ_HEAD "HEADNAME" "TYPE" .Fn TAILQ_HEAD_INITIALIZER "head" .Fn TAILQ_INIT "TAILQ_HEAD *head" .Fn TAILQ_INSERT_AFTER "TAILQ_HEAD *head" "TYPE *listelm" "TYPE *elm" "TAILQ_ENTRY NAME" .Fn TAILQ_INSERT_BEFORE "TYPE *listelm" "TYPE *elm" "TAILQ_ENTRY NAME" .Fn TAILQ_INSERT_HEAD "TAILQ_HEAD *head" "TYPE *elm" "TAILQ_ENTRY NAME" .Fn TAILQ_INSERT_TAIL "TAILQ_HEAD *head" "TYPE *elm" "TAILQ_ENTRY NAME" .Fn TAILQ_REMOVE "TAILQ_HEAD *head" "TYPE *elm" "TAILQ_ENTRY NAME" .Ft int .Fn TAILQ_EMPTY "TAILQ_HEAD *head" .Ft TYPE * .Fn TAILQ_FIRST "TAILQ_HEAD *head" .Ft TYPE * .Fn TAILQ_NEXT "TYPE *elm" "TAILQ_ENTRY NAME" .sp .Fn CIRCLEQ_ENTRY "TYPE" .Fn CIRCLEQ_FOREACH "TYPE *var" "CIRCLEQ_HEAD *head" "CIRCLEQ_ENTRY NAME" .Fn CIRCLEQ_FOREACH_REVERSE "TYPE *var" "CIRCLEQ_HEAD *head" "CIRCLEQ_ENTRY NAME" .Fn CIRCLEQ_HEAD "HEADNAME" "TYPE" .Fn CIRCLEQ_HEAD_INITIALIZER "head" .Fn CIRCLEQ_INIT "CIRCLEQ_HEAD *head" .Fn CIRCLEQ_INSERT_AFTER "CIRCLEQ_HEAD *head" "TYPE *listelm" "TYPE *elm" "CIRCLEQ_ENTRY NAME" .Fn CIRCLEQ_INSERT_BEFORE "CIRCLEQ_HEAD *head" "TYPE *listelm" "TYPE *elm" "CIRCLEQ_ENTRY NAME" .Fn CIRCLEQ_INSERT_HEAD "CIRCLEQ_HEAD *head" "TYPE *elm" "CIRCLEQ_ENTRY NAME" .Fn CIRCLEQ_INSERT_TAIL "CIRCLEQ_HEAD *head" "TYPE *elm" "CIRCLEQ_ENTRY NAME" .Fn CIRCLEQ_REMOVE "CIRCLEQ_HEAD *head" "TYPE *elm" "CIRCLEQ_ENTRY NAME" .Ft int .Fn CIRCLEQ_EMPTY "CIRCLEQ_HEAD *head" .Ft TYPE * .Fn CIRCLEQ_FIRST "CIRCLEQ_HEAD *head" .Ft TYPE * .Fn CIRCLEQ_LAST "CIRCLEQ_HEAD *head" .Ft TYPE * .Fn CIRCLEQ_NEXT "TYPE *elm" "CIRCLEQ_ENTRY NAME" .Ft TYPE * .Fn CIRCLEQ_PREV "TYPE *elm" "CIRCLEQ_ENTRY NAME" .Sh DESCRIPTION These macros define and operate on five types of data structures: singly-linked lists, simple queues, lists, tail queues, and circular queues. All five structures support the following functionality: .Bl -enum -compact -offset indent .It Insertion of a new entry at the head of the list. .It Insertion of a new entry before or after any element in the list. .It Removal of any entry in the list. .It Forward traversal through the list. .El .Pp Singly-linked lists are the simplest of the five data structures and support only the above functionality. Singly-linked lists are ideal for applications with large datasets and few or no removals, or for implementing a LIFO queue. .Pp Simple queues add the following functionality: .Bl -enum -compact -offset indent .It Entries can be added at the end of a list. .El However: .Bl -enum -compact -offset indent .It Entries may not be added before any element in the list. .It All list insertions and removals must specify the head of the list. .It Each head entry requires two pointers rather than one. .El .Pp Simple queues are ideal for applications with large datasets and few or no removals, or for implementing a FIFO queue. .Pp All doubly linked types of data structures (lists, tail queues, and circle queues) additionally allow: .Bl -enum -compact -offset indent .It Insertion of a new entry before any element in the list. .It O(1) removal of any entry in the list. .El However: .Bl -enum -compact -offset indent .It Each element requires two pointers rather than one. .It Code size and execution time of operations (except for removal) is about twice that of the singly-linked data-structures. .El .Pp Linked lists are the simplest of the doubly linked data structures and support only the above functionality over singly-linked lists. .Pp Tail queues add the following functionality: .Bl -enum -compact -offset indent .It Entries can be added at the end of a list. .El However: .Bl -enum -compact -offset indent .It All list insertions and removals, except insertion before another element, must specify the head of the list. .It Each head entry requires two pointers rather than one. .It Code size is about 15% greater and operations run about 20% slower than lists. .El .Pp Circular queues add the following functionality: .Bl -enum -compact -offset indent .It Entries can be added at the end of a list. .It They may be traversed backwards, from tail to head. .El However: .Bl -enum -compact -offset indent .It All list insertions and removals must specify the head of the list. .It Each head entry requires two pointers rather than one. .It The termination condition for traversal is more complex. .It Code size is about 40% greater and operations run about 45% slower than lists. .El .Pp In the macro definitions, .Fa TYPE is the name of a user defined structure, that must contain a field of type .Li LIST_ENTRY , .Li SIMPLEQ_ENTRY , .Li SLIST_ENTRY , .Li TAILQ_ENTRY , or .Li CIRCLEQ_ENTRY , named .Fa NAME . The argument .Fa HEADNAME is the name of a user defined structure that must be declared using the macros .Li LIST_HEAD , .Li SIMPLEQ_HEAD , .Li SLIST_HEAD , .Li TAILQ_HEAD , or .Li CIRCLEQ_HEAD . See the examples below for further explanation of how these macros are used. .Sh SINGLY-LINKED LISTS A singly-linked list is headed by a structure defined by the .Nm SLIST_HEAD macro. This structure contains a single pointer to the first element on the list. The elements are singly linked for minimum space and pointer manipulation overhead at the expense of O(n) removal for arbitrary elements. New elements can be added to the list after an existing element or at the head of the list. An .Fa SLIST_HEAD structure is declared as follows: .Bd -literal -offset indent SLIST_HEAD(HEADNAME, TYPE) head; .Ed .Pp where .Fa HEADNAME is the name of the structure to be defined, and .Fa TYPE is the type of the elements to be linked into the list. A pointer to the head of the list can later be declared as: .Bd -literal -offset indent struct HEADNAME *headp; .Ed .Pp (The names .Li head and .Li headp are user selectable.) .Pp The macro .Nm SLIST_HEAD_INITIALIZER evaluates to an initializer for the list .Fa head . .Pp The macro .Nm SLIST_EMPTY evaluates to true if there are no elements in the list. .Pp The macro .Nm SLIST_ENTRY declares a structure that connects the elements in the list. .Pp The macro .Nm SLIST_FIRST returns the first element in the list or NULL if the list is empty. .Pp The macro .Nm SLIST_FOREACH traverses the list referenced by .Fa head in the forward direction, assigning each element in turn to .Fa var . .Pp The macro .Nm SLIST_INIT initializes the list referenced by .Fa head . .Pp The macro .Nm SLIST_INSERT_HEAD inserts the new element .Fa elm at the head of the list. .Pp The macro .Nm SLIST_INSERT_AFTER inserts the new element .Fa elm after the element .Fa listelm . .Pp The macro .Nm SLIST_NEXT returns the next element in the list. .Pp The macro .Nm SLIST_REMOVE removes the element .Fa elm from the list. .Pp The macro .Nm SLIST_REMOVE_HEAD removes the first element from the head of the list. For optimum efficiency, elements being removed from the head of the list should explicitly use this macro instead of the generic .Nm SLIST_REMOVE macro. .Sh SINGLY-LINKED LIST EXAMPLE .Bd -literal SLIST_HEAD(slisthead, entry) head = SLIST_HEAD_INITIALIZER(head); struct slisthead *headp; /* Singly-linked List head. */ struct entry { ... SLIST_ENTRY(entry) entries; /* Singly-linked List. */ ... } *n1, *n2, *n3, *np; SLIST_INIT(\*[Am]head); /* Initialize the list. */ n1 = malloc(sizeof(struct entry)); /* Insert at the head. */ SLIST_INSERT_HEAD(\*[Am]head, n1, entries); n2 = malloc(sizeof(struct entry)); /* Insert after. */ SLIST_INSERT_AFTER(n1, n2, entries); SLIST_REMOVE(\*[Am]head, n2, entry, entries);/* Deletion. */ free(n2); n3 = SLIST_FIRST(\*[Am]head); SLIST_REMOVE_HEAD(\*[Am]head, entries); /* Deletion from the head. */ free(n3); /* Forward traversal. */ SLIST_FOREACH(np, \*[Am]head, entries) np-\*[Gt] ... while (!SLIST_EMPTY(\*[Am]head)) { /* List Deletion. */ n1 = SLIST_FIRST(\*[Am]head); SLIST_REMOVE_HEAD(\*[Am]head, entries); free(n1); } .Ed .Sh SIMPLE QUEUES A simple queue is headed by a structure defined by the .Nm SIMPLEQ_HEAD macro. This structure contains a pair of pointers, one to the first element in the simple queue and the other to the last element in the simple queue. The elements are singly linked for minimum space and pointer manipulation overhead at the expense of O(n) removal for arbitrary elements. New elements can be added to the queue after an existing element, at the head of the queue, or at the end of the queue. A .Fa SIMPLEQ_HEAD structure is declared as follows: .Bd -literal -offset indent SIMPLEQ_HEAD(HEADNAME, TYPE) head; .Ed .sp where .Li HEADNAME is the name of the structure to be defined, and .Li TYPE is the type of the elements to be linked into the simple queue. A pointer to the head of the simple queue can later be declared as: .Bd -literal -offset indent struct HEADNAME *headp; .Ed .sp (The names .Li head and .Li headp are user selectable.) .Pp The macro .Nm SIMPLEQ_ENTRY declares a structure that connects the elements in the simple queue. .Pp The macro .Nm SIMPLEQ_HEAD_INITIALIZER provides a value which can be used to initialize a simple queue head at compile time, and is used at the point that the simple queue head variable is declared, like: .Bd -literal -offset indent struct HEADNAME head = SIMPLEQ_HEAD_INITIALIZER(head); .Ed .Pp The macro .Nm SIMPLEQ_INIT initializes the simple queue referenced by .Fa head . .Pp The macro .Nm SIMPLEQ_INSERT_HEAD inserts the new element .Fa elm at the head of the simple queue. .Pp The macro .Nm SIMPLEQ_INSERT_TAIL inserts the new element .Fa elm at the end of the simple queue. .Pp The macro .Nm SIMPLEQ_INSERT_AFTER inserts the new element .Fa elm after the element .Fa listelm . .Pp The macro .Nm SIMPLEQ_REMOVE removes .Fa elm from the simple queue. .Pp The macro .Nm SIMPLEQ_REMOVE_HEAD removes the first element from the head of the simple queue. For optimum efficiency, elements being removed from the head of the queue should explicitly use this macro instead of the generic .Nm SIMPLQ_REMOVE macro. .Pp The macro .Nm SIMPLEQ_EMPTY return true if the simple queue .Fa head has no elements. .Pp The macro .Nm SIMPLEQ_FIRST returns the first element of the simple queue .Fa head . .Pp The macro .Nm SIMPLEQ_FOREACH traverses the tail queue referenced by .Fa head in the forward direction, assigning each element in turn to .Fa var . .Pp The macro .Nm SIMPLEQ_NEXT returns the element after the element .Fa elm . .Sh SIMPLE QUEUE EXAMPLE .Bd -literal SIMPLEQ_HEAD(simplehead, entry) head; struct simplehead *headp; /* Simple queue head. */ struct entry { ... SIMPLEQ_ENTRY(entry) entries; /* Simple queue. */ ... } *n1, *n2, *np; SIMPLEQ_INIT(\*[Am]head); /* Initialize the queue. */ n1 = malloc(sizeof(struct entry)); /* Insert at the head. */ SIMPLEQ_INSERT_HEAD(\*[Am]head, n1, entries); n1 = malloc(sizeof(struct entry)); /* Insert at the tail. */ SIMPLEQ_INSERT_TAIL(\*[Am]head, n1, entries); n2 = malloc(sizeof(struct entry)); /* Insert after. */ SIMPLEQ_INSERT_AFTER(\*[Am]head, n1, n2, entries); /* Forward traversal. */ SIMPLEQ_FOREACH(np, \*[Am]head, entries) np-\*[Gt] ... /* Delete. */ while (SIMPLEQ_FIRST(\*[Am]head) != NULL) SIMPLEQ_REMOVE_HEAD(\*[Am]head, entries); if (SIMPLEQ_EMPTY(\*[Am]head)) /* Test for emptiness. */ printf("nothing to do\\n"); .Ed .Sh LISTS A list is headed by a structure defined by the .Nm LIST_HEAD macro. This structure contains a single pointer to the first element on the list. The elements are doubly linked so that an arbitrary element can be removed without traversing the list. New elements can be added to the list after an existing element, before an existing element, or at the head of the list. A .Fa LIST_HEAD structure is declared as follows: .Bd -literal -offset indent LIST_HEAD(HEADNAME, TYPE) head; .Ed .sp where .Fa HEADNAME is the name of the structure to be defined, and .Fa TYPE is the type of the elements to be linked into the list. A pointer to the head of the list can later be declared as: .Bd -literal -offset indent struct HEADNAME *headp; .Ed .sp (The names .Li head and .Li headp are user selectable.) .Pp The macro .Nm LIST_ENTRY declares a structure that connects the elements in the list. .Pp The macro .Nm LIST_HEAD_INITIALIZER provides a value which can be used to initialize a list head at compile time, and is used at the point that the list head variable is declared, like: .Bd -literal -offset indent struct HEADNAME head = LIST_HEAD_INITIALIZER(head); .Ed .Pp The macro .Nm LIST_INIT initializes the list referenced by .Fa head . .Pp The macro .Nm LIST_INSERT_HEAD inserts the new element .Fa elm at the head of the list. .Pp The macro .Nm LIST_INSERT_AFTER inserts the new element .Fa elm after the element .Fa listelm . .Pp The macro .Nm LIST_INSERT_BEFORE inserts the new element .Fa elm before the element .Fa listelm . .Pp The macro .Nm LIST_REMOVE removes the element .Fa elm from the list. .Pp The macro .Nm LIST_EMPTY return true if the list .Fa head has no elements. .Pp The macro .Nm LIST_FIRST returns the first element of the list .Fa head . .Pp The macro .Nm LIST_FOREACH traverses the list referenced by .Fa head in the forward direction, assigning each element in turn to .Fa var . .Pp The macro .Nm LIST_NEXT returns the element after the element .Fa elm . .Sh LIST EXAMPLE .Bd -literal LIST_HEAD(listhead, entry) head; struct listhead *headp; /* List head. */ struct entry { ... LIST_ENTRY(entry) entries; /* List. */ ... } *n1, *n2, *np; LIST_INIT(\*[Am]head); /* Initialize the list. */ n1 = malloc(sizeof(struct entry)); /* Insert at the head. */ LIST_INSERT_HEAD(\*[Am]head, n1, entries); n2 = malloc(sizeof(struct entry)); /* Insert after. */ LIST_INSERT_AFTER(n1, n2, entries); n2 = malloc(sizeof(struct entry)); /* Insert before. */ LIST_INSERT_BEFORE(n1, n2, entries); /* Forward traversal. */ LIST_FOREACH(np, \*[Am]head, entries) np-\*[Gt] ... /* Delete. */ while (LIST_FIRST(\*[Am]head) != NULL) LIST_REMOVE(LIST_FIRST(\*[Am]head), entries); if (LIST_EMPTY(\*[Am]head)) /* Test for emptiness. */ printf("nothing to do\\n"); .Ed .Sh TAIL QUEUES A tail queue is headed by a structure defined by the .Nm TAILQ_HEAD macro. This structure contains a pair of pointers, one to the first element in the tail queue and the other to the last element in the tail queue. The elements are doubly linked so that an arbitrary element can be removed without traversing the tail queue. New elements can be added to the queue after an existing element, before an existing element, at the head of the queue, or at the end the queue. A .Fa TAILQ_HEAD structure is declared as follows: .Bd -literal -offset indent TAILQ_HEAD(HEADNAME, TYPE) head; .Ed .sp where .Li HEADNAME is the name of the structure to be defined, and .Li TYPE is the type of the elements to be linked into the tail queue. A pointer to the head of the tail queue can later be declared as: .Bd -literal -offset indent struct HEADNAME *headp; .Ed .sp (The names .Li head and .Li headp are user selectable.) .Pp The macro .Nm TAILQ_ENTRY declares a structure that connects the elements in the tail queue. .Pp The macro .Nm TAILQ_HEAD_INITIALIZER provides a value which can be used to initialize a tail queue head at compile time, and is used at the point that the tail queue head variable is declared, like: .Bd -literal -offset indent struct HEADNAME head = TAILQ_HEAD_INITIALIZER(head); .Ed .Pp The macro .Nm TAILQ_INIT initializes the tail queue referenced by .Fa head . .Pp The macro .Nm TAILQ_INSERT_HEAD inserts the new element .Fa elm at the head of the tail queue. .Pp The macro .Nm TAILQ_INSERT_TAIL inserts the new element .Fa elm at the end of the tail queue. .Pp The macro .Nm TAILQ_INSERT_AFTER inserts the new element .Fa elm after the element .Fa listelm . .Pp The macro .Nm TAILQ_INSERT_BEFORE inserts the new element .Fa elm before the element .Fa listelm . .Pp The macro .Nm TAILQ_REMOVE removes the element .Fa elm from the tail queue. .Pp The macro .Nm TAILQ_EMPTY return true if the tail queue .Fa head has no elements. .Pp The macro .Nm TAILQ_FIRST returns the first element of the tail queue .Fa head . .Pp The macro .Nm TAILQ_FOREACH traverses the tail queue referenced by .Fa head in the forward direction, assigning each element in turn to .Fa var . .Pp The macro .Nm TAILQ_FOREACH_REVERSE traverses the tail queue referenced by .Fa head in the reverse direction, assigning each element in turn to .Fa var . .Pp The macro .Nm TAILQ_NEXT returns the element after the element .Fa elm . .Sh TAIL QUEUE EXAMPLE .Bd -literal TAILQ_HEAD(tailhead, entry) head; struct tailhead *headp; /* Tail queue head. */ struct entry { ... TAILQ_ENTRY(entry) entries; /* Tail queue. */ ... } *n1, *n2, *np; TAILQ_INIT(\*[Am]head); /* Initialize the queue. */ n1 = malloc(sizeof(struct entry)); /* Insert at the head. */ TAILQ_INSERT_HEAD(\*[Am]head, n1, entries); n1 = malloc(sizeof(struct entry)); /* Insert at the tail. */ TAILQ_INSERT_TAIL(\*[Am]head, n1, entries); n2 = malloc(sizeof(struct entry)); /* Insert after. */ TAILQ_INSERT_AFTER(\*[Am]head, n1, n2, entries); n2 = malloc(sizeof(struct entry)); /* Insert before. */ TAILQ_INSERT_BEFORE(n1, n2, entries); /* Forward traversal. */ TAILQ_FOREACH(np, \*[Am]head, entries) np-\*[Gt] ... /* Reverse traversal. */ TAILQ_FOREACH_REVERSE(np, \*[Am]head, tailhead, entries) np-\*[Gt] ... /* Delete. */ while (TAILQ_FIRST(\*[Am]head) != NULL) TAILQ_REMOVE(\*[Am]head, TAILQ_FIRST(\*[Am]head), entries); if (TAILQ_EMPTY(\*[Am]head)) /* Test for emptiness. */ printf("nothing to do\\n"); .Ed .Sh CIRCULAR QUEUES A circular queue is headed by a structure defined by the .Nm CIRCLEQ_HEAD macro. This structure contains a pair of pointers, one to the first element in the circular queue and the other to the last element in the circular queue. The elements are doubly linked so that an arbitrary element can be removed without traversing the queue. New elements can be added to the queue after an existing element, before an existing element, at the head of the queue, or at the end of the queue. A .Fa CIRCLEQ_HEAD structure is declared as follows: .Bd -literal -offset indent CIRCLEQ_HEAD(HEADNAME, TYPE) head; .Ed .sp where .Li HEADNAME is the name of the structure to be defined, and .Li TYPE is the type of the elements to be linked into the circular queue. A pointer to the head of the circular queue can later be declared as: .Bd -literal -offset indent struct HEADNAME *headp; .Ed .sp (The names .Li head and .Li headp are user selectable.) .Pp The macro .Nm CIRCLEQ_ENTRY declares a structure that connects the elements in the circular queue. .Pp The macro .Nm CIRCLEQ_HEAD_INITIALIZER provides a value which can be used to initialize a circular queue head at compile time, and is used at the point that the circular queue head variable is declared, like: .Bd -literal -offset indent struct HEADNAME head = CIRCLEQ_HEAD_INITIALIZER(head); .Ed .Pp The macro .Nm CIRCLEQ_INIT initializes the circular queue referenced by .Fa head . .Pp The macro .Nm CIRCLEQ_INSERT_HEAD inserts the new element .Fa elm at the head of the circular queue. .Pp The macro .Nm CIRCLEQ_INSERT_TAIL inserts the new element .Fa elm at the end of the circular queue. .Pp The macro .Nm CIRCLEQ_INSERT_AFTER inserts the new element .Fa elm after the element .Fa listelm . .Pp The macro .Nm CIRCLEQ_INSERT_BEFORE inserts the new element .Fa elm before the element .Fa listelm . .Pp The macro .Nm CIRCLEQ_REMOVE removes the element .Fa elm from the circular queue. .Pp The macro .Nm CIRCLEQ_EMPTY return true if the circular queue .Fa head has no elements. .Pp The macro .Nm CIRCLEQ_FIRST returns the first element of the circular queue .Fa head . .Pp The macro .Nm CICRLEQ_FOREACH traverses the circle queue referenced by .Fa head in the forward direction, assigning each element in turn to .Fa var . .Pp The macro .Nm CICRLEQ_FOREACH_REVERSE traverses the circle queue referenced by .Fa head in the reverse direction, assigning each element in turn to .Fa var . .Pp The macro .Nm CIRCLEQ_LAST returns the last element of the circular queue .Fa head . .Pp The macro .Nm CIRCLEQ_NEXT returns the element after the element .Fa elm . .Pp The macro .Nm CIRCLEQ_PREV returns the element before the element .Fa elm . .Sh CIRCULAR QUEUE EXAMPLE .Bd -literal CIRCLEQ_HEAD(circleq, entry) head; struct circleq *headp; /* Circular queue head. */ struct entry { ... CIRCLEQ_ENTRY entries; /* Circular queue. */ ... } *n1, *n2, *np; CIRCLEQ_INIT(\*[Am]head); /* Initialize the circular queue. */ n1 = malloc(sizeof(struct entry)); /* Insert at the head. */ CIRCLEQ_INSERT_HEAD(\*[Am]head, n1, entries); n1 = malloc(sizeof(struct entry)); /* Insert at the tail. */ CIRCLEQ_INSERT_TAIL(\*[Am]head, n1, entries); n2 = malloc(sizeof(struct entry)); /* Insert after. */ CIRCLEQ_INSERT_AFTER(\*[Am]head, n1, n2, entries); n2 = malloc(sizeof(struct entry)); /* Insert before. */ CIRCLEQ_INSERT_BEFORE(\*[Am]head, n1, n2, entries); /* Forward traversal. */ CIRCLEQ_FOREACH(np, \*[Am]head, entries) np-\*[Gt] ... /* Reverse traversal. */ CIRCLEQ_FOREACH_REVERSE(np, \*[Am]head, entries) np-\*[Gt] ... /* Delete. */ while (CIRCLEQ_FIRST(\*[Am]head) != (void *)\*[Am]head) CIRCLEQ_REMOVE(\*[Am]head, CIRCLEQ_FIRST(\*[Am]head), entries); if (CIRCLEQ_EMPTY(\*[Am]head)) /* Test for emptiness. */ printf("nothing to do\\n"); .Ed .Sh HISTORY The .Nm queue functions first appeared in .Bx 4.4 . The .Nm SIMPLEQ functions first appeared in .Nx 1.2 .