/* $NetBSD: mb86960.c,v 1.53 2002/10/04 15:22:29 tsutsui Exp $ */ /* * All Rights Reserved, Copyright (C) Fujitsu Limited 1995 * * This software may be used, modified, copied, distributed, and sold, in * both source and binary form provided that the above copyright, these * terms and the following disclaimer are retained. The name of the author * and/or the contributor may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND THE CONTRIBUTOR ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR THE CONTRIBUTOR BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION. * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * Portions copyright (C) 1993, David Greenman. This software may be used, * modified, copied, distributed, and sold, in both source and binary form * provided that the above copyright and these terms are retained. Under no * circumstances is the author responsible for the proper functioning of this * software, nor does the author assume any responsibility for damages * incurred with its use. */ #include __KERNEL_RCSID(0, "$NetBSD: mb86960.c,v 1.53 2002/10/04 15:22:29 tsutsui Exp $"); /* * Device driver for Fujitsu MB86960A/MB86965A based Ethernet cards. * Contributed by M.S. * * This version is intended to be a generic template for various * MB86960A/MB86965A based Ethernet cards. It currently supports * Fujitsu FMV-180 series (i.e., FMV-181 and FMV-182) and Allied- * Telesis AT1700 series and RE2000 series. There are some * unnecessary hooks embedded, which are primarily intended to support * other types of Ethernet cards, but the author is not sure whether * they are useful. */ #include "opt_inet.h" #include "opt_ns.h" #include "bpfilter.h" #include "rnd.h" #include #include #include #include #include #include #include #include #if NRND > 0 #include #endif #include #include #include #include #include #ifdef INET #include #include #include #include #include #endif #ifdef NS #include #include #endif #if NBPFILTER > 0 #include #include #endif #include #include #include #ifndef __BUS_SPACE_HAS_STREAM_METHODS #define bus_space_write_multi_stream_2 bus_space_write_multi_2 #define bus_space_read_multi_stream_2 bus_space_read_multi_2 #endif /* __BUS_SPACE_HAS_STREAM_METHODS */ /* Standard driver entry points. These can be static. */ void mb86960_init __P((struct mb86960_softc *)); int mb86960_ioctl __P((struct ifnet *, u_long, caddr_t)); void mb86960_start __P((struct ifnet *)); void mb86960_reset __P((struct mb86960_softc *)); void mb86960_watchdog __P((struct ifnet *)); /* Local functions. Order of declaration is confused. FIXME. */ int mb86960_get_packet __P((struct mb86960_softc *, int)); void mb86960_stop __P((struct mb86960_softc *)); void mb86960_tint __P((struct mb86960_softc *, u_char)); void mb86960_rint __P((struct mb86960_softc *, u_char)); static __inline__ void mb86960_xmit __P((struct mb86960_softc *)); void mb86960_write_mbufs __P((struct mb86960_softc *, struct mbuf *)); static __inline__ void mb86960_droppacket __P((struct mb86960_softc *)); void mb86960_getmcaf __P((struct ethercom *, u_char *)); void mb86960_setmode __P((struct mb86960_softc *)); void mb86960_loadmar __P((struct mb86960_softc *)); int mb86960_mediachange __P((struct ifnet *)); void mb86960_mediastatus __P((struct ifnet *, struct ifmediareq *)); #if FE_DEBUG >= 1 void mb86960_dump __P((int, struct mb86960_softc *)); #endif void mb86960_attach(sc, type, myea) struct mb86960_softc *sc; enum mb86960_type type; u_int8_t *myea; { bus_space_tag_t bst = sc->sc_bst; bus_space_handle_t bsh = sc->sc_bsh; sc->type = type; /* Register values which depend on board design. */ sc->proto_dlcr4 = FE_D4_LBC_DISABLE | FE_D4_CNTRL; sc->proto_dlcr5 = 0; sc->proto_bmpr13 = FE_B13_TPTYPE_UTP | FE_B13_PORT_AUTO; switch (sc->type) { case MB86960_TYPE_86960: sc->proto_dlcr7 = FE_D7_BYTSWP_LH | FE_D7_ED_TEST; /* XXX */ break; case MB86960_TYPE_86965: sc->proto_dlcr7 = FE_D7_BYTSWP_LH; break; } /* * Program the 86960 as follows: * SRAM: 32KB, 100ns, byte-wide access. * Transmission buffer: 4KB x 2. * System bus interface: 16 bits. * We cannot change these values but TXBSIZE, because they * are hard-wired on the board. Modifying TXBSIZE will affect * the driver performance. */ sc->proto_dlcr6 = FE_D6_BUFSIZ_32KB | FE_D6_TXBSIZ_2x4KB | FE_D6_BBW_BYTE | FE_D6_SBW_WORD | FE_D6_SRAM_100ns; /* * Minimum initialization of the hardware. * We write into registers; hope I/O ports have no * overlap with other boards. */ /* Initialize 86960. */ bus_space_write_1(bst, bsh, FE_DLCR6, sc->proto_dlcr6 | FE_D6_DLC_DISABLE); delay(200); #ifdef DIAGNOSTIC if (myea == NULL) { printf("%s: ethernet address shouldn't be NULL\n", sc->sc_dev.dv_xname); panic("NULL ethernet address"); } #endif memcpy(sc->sc_enaddr, myea, sizeof(sc->sc_enaddr)); /* Disable all interrupts. */ bus_space_write_1(bst, bsh, FE_DLCR2, 0); bus_space_write_1(bst, bsh, FE_DLCR3, 0); } /* * Install interface into kernel networking data structures */ void mb86960_config(sc, media, nmedia, defmedia) struct mb86960_softc *sc; int *media, nmedia, defmedia; { struct cfdata *cf = sc->sc_dev.dv_cfdata; struct ifnet *ifp = &sc->sc_ec.ec_if; int i; /* Stop the 86960. */ mb86960_stop(sc); /* Initialize ifnet structure. */ strcpy(ifp->if_xname, sc->sc_dev.dv_xname); ifp->if_softc = sc; ifp->if_start = mb86960_start; ifp->if_ioctl = mb86960_ioctl; ifp->if_watchdog = mb86960_watchdog; ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST; IFQ_SET_READY(&ifp->if_snd); #if FE_DEBUG >= 3 log(LOG_INFO, "%s: mb86960_config()\n", sc->sc_dev.dv_xname); mb86960_dump(LOG_INFO, sc); #endif #if FE_SINGLE_TRANSMISSION /* Override txb config to allocate minimum. */ sc->proto_dlcr6 &= ~FE_D6_TXBSIZ sc->proto_dlcr6 |= FE_D6_TXBSIZ_2x2KB; #endif /* Modify hardware config if it is requested. */ if ((cf->cf_flags & FE_FLAGS_OVERRIDE_DLCR6) != 0) sc->proto_dlcr6 = cf->cf_flags & FE_FLAGS_DLCR6_VALUE; /* Find TX buffer size, based on the hardware dependent proto. */ switch (sc->proto_dlcr6 & FE_D6_TXBSIZ) { case FE_D6_TXBSIZ_2x2KB: sc->txb_size = 2048; break; case FE_D6_TXBSIZ_2x4KB: sc->txb_size = 4096; break; case FE_D6_TXBSIZ_2x8KB: sc->txb_size = 8192; break; default: /* Oops, we can't work with single buffer configuration. */ #if FE_DEBUG >= 2 log(LOG_WARNING, "%s: strange TXBSIZ config; fixing\n", sc->sc_dev.dv_xname); #endif sc->proto_dlcr6 &= ~FE_D6_TXBSIZ; sc->proto_dlcr6 |= FE_D6_TXBSIZ_2x2KB; sc->txb_size = 2048; break; } /* Initialize media goo. */ ifmedia_init(&sc->sc_media, 0, mb86960_mediachange, mb86960_mediastatus); if (media != NULL) { for (i = 0; i < nmedia; i++) ifmedia_add(&sc->sc_media, media[i], 0, NULL); ifmedia_set(&sc->sc_media, defmedia); } else { ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL); ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL); } /* Attach the interface. */ if_attach(ifp); ether_ifattach(ifp, sc->sc_enaddr); #if NRND > 0 rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname, RND_TYPE_NET, 0); #endif /* Print additional info when attached. */ printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname, ether_sprintf(sc->sc_enaddr)); #if FE_DEBUG >= 3 { int buf, txb, bbw, sbw, ram; buf = txb = bbw = sbw = ram = -1; switch (sc->proto_dlcr6 & FE_D6_BUFSIZ) { case FE_D6_BUFSIZ_8KB: buf = 8; break; case FE_D6_BUFSIZ_16KB: buf = 16; break; case FE_D6_BUFSIZ_32KB: buf = 32; break; case FE_D6_BUFSIZ_64KB: buf = 64; break; } switch (sc->proto_dlcr6 & FE_D6_TXBSIZ) { case FE_D6_TXBSIZ_2x2KB: txb = 2; break; case FE_D6_TXBSIZ_2x4KB: txb = 4; break; case FE_D6_TXBSIZ_2x8KB: txb = 8; break; } switch (sc->proto_dlcr6 & FE_D6_BBW) { case FE_D6_BBW_BYTE: bbw = 8; break; case FE_D6_BBW_WORD: bbw = 16; break; } switch (sc->proto_dlcr6 & FE_D6_SBW) { case FE_D6_SBW_BYTE: sbw = 8; break; case FE_D6_SBW_WORD: sbw = 16; break; } switch (sc->proto_dlcr6 & FE_D6_SRAM) { case FE_D6_SRAM_100ns: ram = 100; break; case FE_D6_SRAM_150ns: ram = 150; break; } printf("%s: SRAM %dKB %dbit %dns, TXB %dKBx2, %dbit I/O\n", sc->sc_dev.dv_xname, buf, bbw, ram, txb, sbw); } #endif /* The attach is successful. */ sc->sc_flags |= FE_FLAGS_ATTACHED; } /* * Media change callback. */ int mb86960_mediachange(ifp) struct ifnet *ifp; { struct mb86960_softc *sc = ifp->if_softc; if (sc->sc_mediachange) return ((*sc->sc_mediachange)(sc)); return (0); } /* * Media status callback. */ void mb86960_mediastatus(ifp, ifmr) struct ifnet *ifp; struct ifmediareq *ifmr; { struct mb86960_softc *sc = ifp->if_softc; if ((sc->sc_flags & FE_FLAGS_ENABLED) == 0) { ifmr->ifm_active = IFM_ETHER | IFM_NONE; ifmr->ifm_status = 0; return; } if (sc->sc_mediastatus) (*sc->sc_mediastatus)(sc, ifmr); } /* * Reset interface. */ void mb86960_reset(sc) struct mb86960_softc *sc; { int s; s = splnet(); mb86960_stop(sc); mb86960_init(sc); splx(s); } /* * Stop everything on the interface. * * All buffered packets, both transmitting and receiving, * if any, will be lost by stopping the interface. */ void mb86960_stop(sc) struct mb86960_softc *sc; { bus_space_tag_t bst = sc->sc_bst; bus_space_handle_t bsh = sc->sc_bsh; #if FE_DEBUG >= 3 log(LOG_INFO, "%s: top of mb86960_stop()\n", sc->sc_dev.dv_xname); mb86960_dump(LOG_INFO, sc); #endif /* Disable interrupts. */ bus_space_write_1(bst, bsh, FE_DLCR2, 0x00); bus_space_write_1(bst, bsh, FE_DLCR3, 0x00); /* Stop interface hardware. */ delay(200); bus_space_write_1(bst, bsh, FE_DLCR6, sc->proto_dlcr6 | FE_D6_DLC_DISABLE); delay(200); /* Clear all interrupt status. */ bus_space_write_1(bst, bsh, FE_DLCR0, 0xFF); bus_space_write_1(bst, bsh, FE_DLCR1, 0xFF); /* Put the chip in stand-by mode. */ delay(200); bus_space_write_1(bst, bsh, FE_DLCR7, sc->proto_dlcr7 | FE_D7_POWER_DOWN); delay(200); /* MAR loading can be delayed. */ sc->filter_change = 0; /* Call a hook. */ if (sc->stop_card) (*sc->stop_card)(sc); #if FE_DEBUG >= 3 log(LOG_INFO, "%s: end of mb86960_stop()\n", sc->sc_dev.dv_xname); mb86960_dump(LOG_INFO, sc); #endif } /* * Device timeout/watchdog routine. Entered if the device neglects to * generate an interrupt after a transmit has been started on it. */ void mb86960_watchdog(ifp) struct ifnet *ifp; { struct mb86960_softc *sc = ifp->if_softc; log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname); #if FE_DEBUG >= 3 mb86960_dump(LOG_INFO, sc); #endif /* Record how many packets are lost by this accident. */ sc->sc_ec.ec_if.if_oerrors += sc->txb_sched + sc->txb_count; mb86960_reset(sc); } /* * Drop (skip) a packet from receive buffer in 86960 memory. */ static __inline__ void mb86960_droppacket(sc) struct mb86960_softc *sc; { bus_space_tag_t bst = sc->sc_bst; bus_space_handle_t bsh = sc->sc_bsh; bus_space_write_1(bst, bsh, FE_BMPR14, FE_B14_FILTER | FE_B14_SKIP); } /* * Initialize device. */ void mb86960_init(sc) struct mb86960_softc *sc; { bus_space_tag_t bst = sc->sc_bst; bus_space_handle_t bsh = sc->sc_bsh; struct ifnet *ifp = &sc->sc_ec.ec_if; int i; #if FE_DEBUG >= 3 log(LOG_INFO, "%s: top of mb86960_init()\n", sc->sc_dev.dv_xname); mb86960_dump(LOG_INFO, sc); #endif /* Reset transmitter flags. */ ifp->if_flags &= ~IFF_OACTIVE; ifp->if_timer = 0; sc->txb_free = sc->txb_size; sc->txb_count = 0; sc->txb_sched = 0; /* Do any card-specific initialization, if applicable. */ if (sc->init_card) (*sc->init_card)(sc); #if FE_DEBUG >= 3 log(LOG_INFO, "%s: after init hook\n", sc->sc_dev.dv_xname); mb86960_dump(LOG_INFO, sc); #endif /* * Make sure to disable the chip, also. * This may also help re-programming the chip after * hot insertion of PCMCIAs. */ bus_space_write_1(bst, bsh, FE_DLCR6, sc->proto_dlcr6 | FE_D6_DLC_DISABLE); delay(200); /* Power up the chip and select register bank for DLCRs. */ bus_space_write_1(bst, bsh, FE_DLCR7, sc->proto_dlcr7 | FE_D7_RBS_DLCR | FE_D7_POWER_UP); delay(200); /* Feed the station address. */ bus_space_write_region_1(bst, bsh, FE_DLCR8, sc->sc_enaddr, ETHER_ADDR_LEN); /* Select the BMPR bank for runtime register access. */ bus_space_write_1(bst, bsh, FE_DLCR7, sc->proto_dlcr7 | FE_D7_RBS_BMPR | FE_D7_POWER_UP); /* Initialize registers. */ bus_space_write_1(bst, bsh, FE_DLCR0, 0xFF); /* Clear all bits. */ bus_space_write_1(bst, bsh, FE_DLCR1, 0xFF); /* ditto. */ bus_space_write_1(bst, bsh, FE_DLCR2, 0x00); bus_space_write_1(bst, bsh, FE_DLCR3, 0x00); bus_space_write_1(bst, bsh, FE_DLCR4, sc->proto_dlcr4); bus_space_write_1(bst, bsh, FE_DLCR5, sc->proto_dlcr5); bus_space_write_1(bst, bsh, FE_BMPR10, 0x00); bus_space_write_1(bst, bsh, FE_BMPR11, FE_B11_CTRL_SKIP); bus_space_write_1(bst, bsh, FE_BMPR12, 0x00); bus_space_write_1(bst, bsh, FE_BMPR13, sc->proto_bmpr13); bus_space_write_1(bst, bsh, FE_BMPR14, FE_B14_FILTER); bus_space_write_1(bst, bsh, FE_BMPR15, 0x00); #if FE_DEBUG >= 3 log(LOG_INFO, "%s: just before enabling DLC\n", sc->sc_dev.dv_xname); mb86960_dump(LOG_INFO, sc); #endif /* Enable interrupts. */ bus_space_write_1(bst, bsh, FE_DLCR2, FE_TMASK); bus_space_write_1(bst, bsh, FE_DLCR3, FE_RMASK); /* Enable transmitter and receiver. */ delay(200); bus_space_write_1(bst, bsh, FE_DLCR6, sc->proto_dlcr6 | FE_D6_DLC_ENABLE); delay(200); #if FE_DEBUG >= 3 log(LOG_INFO, "%s: just after enabling DLC\n", sc->sc_dev.dv_xname); mb86960_dump(LOG_INFO, sc); #endif /* * Make sure to empty the receive buffer. * * This may be redundant, but *if* the receive buffer were full * at this point, the driver would hang. I have experienced * some strange hangups just after UP. I hope the following * code solve the problem. * * I have changed the order of hardware initialization. * I think the receive buffer cannot have any packets at this * point in this version. The following code *must* be * redundant now. FIXME. */ for (i = 0; i < FE_MAX_RECV_COUNT; i++) { if (bus_space_read_1(bst, bsh, FE_DLCR5) & FE_D5_BUFEMP) break; mb86960_droppacket(sc); } #if FE_DEBUG >= 1 if (i >= FE_MAX_RECV_COUNT) log(LOG_ERR, "%s: cannot empty receive buffer\n", sc->sc_dev.dv_xname); #endif #if FE_DEBUG >= 3 if (i < FE_MAX_RECV_COUNT) log(LOG_INFO, "%s: receive buffer emptied (%d)\n", sc->sc_dev.dv_xname, i); #endif #if FE_DEBUG >= 3 log(LOG_INFO, "%s: after ERB loop\n", sc->sc_dev.dv_xname); mb86960_dump(LOG_INFO, sc); #endif /* Do we need this here? */ bus_space_write_1(bst, bsh, FE_DLCR0, 0xFF); /* Clear all bits. */ bus_space_write_1(bst, bsh, FE_DLCR1, 0xFF); /* ditto. */ #if FE_DEBUG >= 3 log(LOG_INFO, "%s: after FIXME\n", sc->sc_dev.dv_xname); mb86960_dump(LOG_INFO, sc); #endif /* Set 'running' flag. */ ifp->if_flags |= IFF_RUNNING; /* * At this point, the interface is runnung properly, * except that it receives *no* packets. we then call * mb86960_setmode() to tell the chip what packets to be * received, based on the if_flags and multicast group * list. It completes the initialization process. */ mb86960_setmode(sc); #if FE_DEBUG >= 3 log(LOG_INFO, "%s: after setmode\n", sc->sc_dev.dv_xname); mb86960_dump(LOG_INFO, sc); #endif /* ...and attempt to start output. */ mb86960_start(ifp); #if FE_DEBUG >= 3 log(LOG_INFO, "%s: end of mb86960_init()\n", sc->sc_dev.dv_xname); mb86960_dump(LOG_INFO, sc); #endif } /* * This routine actually starts the transmission on the interface */ static __inline__ void mb86960_xmit(sc) struct mb86960_softc *sc; { bus_space_tag_t bst = sc->sc_bst; bus_space_handle_t bsh = sc->sc_bsh; /* * Set a timer just in case we never hear from the board again. * We use longer timeout for multiple packet transmission. * I'm not sure this timer value is appropriate. FIXME. */ sc->sc_ec.ec_if.if_timer = 1 + sc->txb_count; /* Update txb variables. */ sc->txb_sched = sc->txb_count; sc->txb_count = 0; sc->txb_free = sc->txb_size; #if FE_DELAYED_PADDING /* Omit the postponed padding process. */ sc->txb_padding = 0; #endif /* Start transmitter, passing packets in TX buffer. */ bus_space_write_1(bst, bsh, FE_BMPR10, sc->txb_sched | FE_B10_START); } /* * Start output on interface. * We make two assumptions here: * 1) that the current priority is set to splnet _before_ this code * is called *and* is returned to the appropriate priority after * return * 2) that the IFF_OACTIVE flag is checked before this code is called * (i.e. that the output part of the interface is idle) */ void mb86960_start(ifp) struct ifnet *ifp; { struct mb86960_softc *sc = ifp->if_softc; struct mbuf *m; #if FE_DEBUG >= 1 /* Just a sanity check. */ if ((sc->txb_count == 0) != (sc->txb_free == sc->txb_size)) { /* * Txb_count and txb_free co-works to manage the * transmission buffer. Txb_count keeps track of the * used potion of the buffer, while txb_free does unused * potion. So, as long as the driver runs properly, * txb_count is zero if and only if txb_free is same * as txb_size (which represents whole buffer.) */ log(LOG_ERR, "%s: inconsistent txb variables (%d, %d)\n", sc->sc_dev.dv_xname, sc->txb_count, sc->txb_free); /* * So, what should I do, then? * * We now know txb_count and txb_free contradicts. We * cannot, however, tell which is wrong. More * over, we cannot peek 86960 transmission buffer or * reset the transmission buffer. (In fact, we can * reset the entire interface. I don't want to do it.) * * If txb_count is incorrect, leaving it as is will cause * sending of gabages after next interrupt. We have to * avoid it. Hence, we reset the txb_count here. If * txb_free was incorrect, resetting txb_count just loose * some packets. We can live with it. */ sc->txb_count = 0; } #endif #if FE_DEBUG >= 1 /* * First, see if there are buffered packets and an idle * transmitter - should never happen at this point. */ if ((sc->txb_count > 0) && (sc->txb_sched == 0)) { log(LOG_ERR, "%s: transmitter idle with %d buffered packets\n", sc->sc_dev.dv_xname, sc->txb_count); mb86960_xmit(sc); } #endif /* * Stop accepting more transmission packets temporarily, when * a filter change request is delayed. Updating the MARs on * 86960 flushes the transmisstion buffer, so it is delayed * until all buffered transmission packets have been sent * out. */ if (sc->filter_change) { /* * Filter change requst is delayed only when the DLC is * working. DLC soon raise an interrupt after finishing * the work. */ goto indicate_active; } for (;;) { /* * See if there is room to put another packet in the buffer. * We *could* do better job by peeking the send queue to * know the length of the next packet. Current version just * tests against the worst case (i.e., longest packet). FIXME. * * When adding the packet-peek feature, don't forget adding a * test on txb_count against QUEUEING_MAX. * There is a little chance the packet count exceeds * the limit. Assume transmission buffer is 8KB (2x8KB * configuration) and an application sends a bunch of small * (i.e., minimum packet sized) packets rapidly. An 8KB * buffer can hold 130 blocks of 62 bytes long... */ if (sc->txb_free < (ETHER_MAX_LEN - ETHER_CRC_LEN) + FE_DATA_LEN_LEN) { /* No room. */ goto indicate_active; } #if FE_SINGLE_TRANSMISSION if (sc->txb_count > 0) { /* Just one packet per a transmission buffer. */ goto indicate_active; } #endif /* * Get the next mbuf chain for a packet to send. */ IFQ_DEQUEUE(&ifp->if_snd, m); if (m == 0) { /* No more packets to send. */ goto indicate_inactive; } #if NBPFILTER > 0 /* Tap off here if there is a BPF listener. */ if (ifp->if_bpf) bpf_mtap(ifp->if_bpf, m); #endif /* * Copy the mbuf chain into the transmission buffer. * txb_* variables are updated as necessary. */ mb86960_write_mbufs(sc, m); m_freem(m); /* Start transmitter if it's idle. */ if (sc->txb_sched == 0) mb86960_xmit(sc); } indicate_inactive: /* * We are using the !OACTIVE flag to indicate to * the outside world that we can accept an * additional packet rather than that the * transmitter is _actually_ active. Indeed, the * transmitter may be active, but if we haven't * filled all the buffers with data then we still * want to accept more. */ ifp->if_flags &= ~IFF_OACTIVE; return; indicate_active: /* * The transmitter is active, and there are no room for * more outgoing packets in the transmission buffer. */ ifp->if_flags |= IFF_OACTIVE; return; } /* * Transmission interrupt handler * The control flow of this function looks silly. FIXME. */ void mb86960_tint(sc, tstat) struct mb86960_softc *sc; u_char tstat; { bus_space_tag_t bst = sc->sc_bst; bus_space_handle_t bsh = sc->sc_bsh; struct ifnet *ifp = &sc->sc_ec.ec_if; int left; int col; /* * Handle "excessive collision" interrupt. */ if (tstat & FE_D0_COLL16) { /* * Find how many packets (including this collided one) * are left unsent in transmission buffer. */ left = bus_space_read_1(bst, bsh, FE_BMPR10); #if FE_DEBUG >= 2 log(LOG_WARNING, "%s: excessive collision (%d/%d)\n", sc->sc_dev.dv_xname, left, sc->txb_sched); #endif #if FE_DEBUG >= 3 mb86960_dump(LOG_INFO, sc); #endif /* * Update statistics. */ ifp->if_collisions += 16; ifp->if_oerrors++; ifp->if_opackets += sc->txb_sched - left; /* * Collision statistics has been updated. * Clear the collision flag on 86960 now to avoid confusion. */ bus_space_write_1(bst, bsh, FE_DLCR0, FE_D0_COLLID); /* * Restart transmitter, skipping the * collided packet. * * We *must* skip the packet to keep network running * properly. Excessive collision error is an * indication of the network overload. If we * tried sending the same packet after excessive * collision, the network would be filled with * out-of-time packets. Packets belonging * to reliable transport (such as TCP) are resent * by some upper layer. */ bus_space_write_1(bst, bsh, FE_BMPR11, FE_B11_CTRL_SKIP | FE_B11_MODE1); sc->txb_sched = left - 1; } /* * Handle "transmission complete" interrupt. */ if (tstat & FE_D0_TXDONE) { /* * Add in total number of collisions on last * transmission. We also clear "collision occurred" flag * here. * * 86960 has a design flow on collision count on multiple * packet transmission. When we send two or more packets * with one start command (that's what we do when the * transmission queue is clauded), 86960 informs us number * of collisions occurred on the last packet on the * transmission only. Number of collisions on previous * packets are lost. I have told that the fact is clearly * stated in the Fujitsu document. * * I considered not to mind it seriously. Collision * count is not so important, anyway. Any comments? FIXME. */ if (bus_space_read_1(bst, bsh, FE_DLCR0) & FE_D0_COLLID) { /* Clear collision flag. */ bus_space_write_1(bst, bsh, FE_DLCR0, FE_D0_COLLID); /* Extract collision count from 86960. */ col = bus_space_read_1(bst, bsh, FE_DLCR4) & FE_D4_COL; if (col == 0) { /* * Status register indicates collisions, * while the collision count is zero. * This can happen after multiple packet * transmission, indicating that one or more * previous packet(s) had been collided. * * Since the accurate number of collisions * has been lost, we just guess it as 1; * Am I too optimistic? FIXME. */ col = 1; } else col >>= FE_D4_COL_SHIFT; ifp->if_collisions += col; #if FE_DEBUG >= 4 log(LOG_WARNING, "%s: %d collision%s (%d)\n", sc->sc_dev.dv_xname, col, col == 1 ? "" : "s", sc->txb_sched); #endif } /* * Update total number of successfully * transmitted packets. */ ifp->if_opackets += sc->txb_sched; sc->txb_sched = 0; } if (sc->txb_sched == 0) { /* * The transmitter is no more active. * Reset output active flag and watchdog timer. */ ifp->if_flags &= ~IFF_OACTIVE; ifp->if_timer = 0; /* * If more data is ready to transmit in the buffer, start * transmitting them. Otherwise keep transmitter idle, * even if more data is queued. This gives receive * process a slight priority. */ if (sc->txb_count > 0) mb86960_xmit(sc); } } /* * Ethernet interface receiver interrupt. */ void mb86960_rint(sc, rstat) struct mb86960_softc *sc; u_char rstat; { bus_space_tag_t bst = sc->sc_bst; bus_space_handle_t bsh = sc->sc_bsh; struct ifnet *ifp = &sc->sc_ec.ec_if; int len; u_char status; int i; /* * Update statistics if this interrupt is caused by an error. */ if (rstat & (FE_D1_OVRFLO | FE_D1_CRCERR | FE_D1_ALGERR | FE_D1_SRTPKT)) { #if FE_DEBUG >= 3 char sbuf[sizeof(FE_D1_ERRBITS) + 64]; bitmask_snprintf(rstat, FE_D1_ERRBITS, sbuf, sizeof(sbuf)); log(LOG_WARNING, "%s: receive error: %s\n", sc->sc_dev.dv_xname, sbuf); #endif ifp->if_ierrors++; } /* * MB86960 has a flag indicating "receive queue empty." * We just loop cheking the flag to pull out all received * packets. * * We limit the number of iterrations to avoid infinite loop. * It can be caused by a very slow CPU (some broken * peripheral may insert incredible number of wait cycles) * or, worse, by a broken MB86960 chip. */ for (i = 0; i < FE_MAX_RECV_COUNT; i++) { /* Stop the iterration if 86960 indicates no packets. */ if (bus_space_read_1(bst, bsh, FE_DLCR5) & FE_D5_BUFEMP) break; /* * Extract A receive status byte. * As our 86960 is in 16 bit bus access mode, we have to * use inw() to get the status byte. The significant * value is returned in lower 8 bits. */ status = (u_char)bus_space_read_2(bst, bsh, FE_BMPR8); #if FE_DEBUG >= 4 log(LOG_INFO, "%s: receive status = %02x\n", sc->sc_dev.dv_xname, status); #endif /* * If there was an error, update statistics and drop * the packet, unless the interface is in promiscuous * mode. */ if ((status & 0xF0) != 0x20) { /* XXXX ? */ if ((ifp->if_flags & IFF_PROMISC) == 0) { ifp->if_ierrors++; mb86960_droppacket(sc); continue; } } /* * Extract the packet length. * It is a sum of a header (14 bytes) and a payload. * CRC has been stripped off by the 86960. */ len = bus_space_read_2(bst, bsh, FE_BMPR8); /* * MB86965 checks the packet length and drop big packet * before passing it to us. There are no chance we can * get [crufty] packets. Hence, if the length exceeds * the specified limit, it means some serious failure, * such as out-of-sync on receive buffer management. * * Is this statement true? FIXME. */ if (len > (ETHER_MAX_LEN - ETHER_CRC_LEN) || len < ETHER_HDR_LEN) { #if FE_DEBUG >= 2 log(LOG_WARNING, "%s: received a %s packet? (%u bytes)\n", sc->sc_dev.dv_xname, len < ETHER_HDR_LEN ? "partial" : "big", len); #endif ifp->if_ierrors++; mb86960_droppacket(sc); continue; } /* * Check for a short (RUNT) packet. We *do* check * but do nothing other than print a message. * Short packets are illegal, but does nothing bad * if it carries data for upper layer. */ #if FE_DEBUG >= 2 if (len < (ETHER_MIN_LEN - ETHER_CRC_LEN)) { log(LOG_WARNING, "%s: received a short packet? (%u bytes)\n", sc->sc_dev.dv_xname, len); } #endif /* * Go get a packet. */ if (!mb86960_get_packet(sc, len)) { /* Skip a packet, updating statistics. */ #if FE_DEBUG >= 2 log(LOG_WARNING, "%s: out of mbufs; dropping packet (%u bytes)\n", sc->sc_dev.dv_xname, len); #endif ifp->if_ierrors++; mb86960_droppacket(sc); /* * We stop receiving packets, even if there are * more in the buffer. We hope we can get more * mbufs next time. */ return; } /* Successfully received a packet. Update stat. */ ifp->if_ipackets++; } } /* * Ethernet interface interrupt processor */ int mb86960_intr(arg) void *arg; { struct mb86960_softc *sc = arg; bus_space_tag_t bst = sc->sc_bst; bus_space_handle_t bsh = sc->sc_bsh; struct ifnet *ifp = &sc->sc_ec.ec_if; u_char tstat, rstat; if ((sc->sc_flags & FE_FLAGS_ENABLED) == 0 || (sc->sc_dev.dv_flags & DVF_ACTIVE) == 0) return (0); #if FE_DEBUG >= 4 log(LOG_INFO, "%s: mb86960_intr()\n", sc->sc_dev.dv_xname); mb86960_dump(LOG_INFO, sc); #endif /* * Get interrupt conditions, masking unneeded flags. */ tstat = bus_space_read_1(bst, bsh, FE_DLCR0) & FE_TMASK; rstat = bus_space_read_1(bst, bsh, FE_DLCR1) & FE_RMASK; if (tstat == 0 && rstat == 0) return (0); /* * Loop until there are no more new interrupt conditions. */ for (;;) { /* * Reset the conditions we are acknowledging. */ bus_space_write_1(bst, bsh, FE_DLCR0, tstat); bus_space_write_1(bst, bsh, FE_DLCR1, rstat); /* * Handle transmitter interrupts. Handle these first because * the receiver will reset the board under some conditions. */ if (tstat != 0) mb86960_tint(sc, tstat); /* * Handle receiver interrupts. */ if (rstat != 0) mb86960_rint(sc, rstat); /* * Update the multicast address filter if it is * needed and possible. We do it now, because * we can make sure the transmission buffer is empty, * and there is a good chance that the receive queue * is empty. It will minimize the possibility of * packet lossage. */ if (sc->filter_change && sc->txb_count == 0 && sc->txb_sched == 0) { mb86960_loadmar(sc); ifp->if_flags &= ~IFF_OACTIVE; } /* * If it looks like the transmitter can take more data, * attempt to start output on the interface. This is done * after handling the receiver interrupt to give the * receive operation priority. */ if ((ifp->if_flags & IFF_OACTIVE) == 0) mb86960_start(ifp); #if NRND > 0 if (rstat != 0 || tstat != 0) rnd_add_uint32(&sc->rnd_source, rstat + tstat); #endif /* * Get interrupt conditions, masking unneeded flags. */ tstat = bus_space_read_1(bst, bsh, FE_DLCR0) & FE_TMASK; rstat = bus_space_read_1(bst, bsh, FE_DLCR1) & FE_RMASK; if (tstat == 0 && rstat == 0) return (1); } } /* * Process an ioctl request. This code needs some work - it looks pretty ugly. */ int mb86960_ioctl(ifp, cmd, data) struct ifnet *ifp; u_long cmd; caddr_t data; { struct mb86960_softc *sc = ifp->if_softc; struct ifaddr *ifa = (struct ifaddr *)data; struct ifreq *ifr = (struct ifreq *)data; int s, error = 0; #if FE_DEBUG >= 3 log(LOG_INFO, "%s: ioctl(%lx)\n", sc->sc_dev.dv_xname, cmd); #endif s = splnet(); switch (cmd) { case SIOCSIFADDR: if ((error = mb86960_enable(sc)) != 0) break; ifp->if_flags |= IFF_UP; switch (ifa->ifa_addr->sa_family) { #ifdef INET case AF_INET: mb86960_init(sc); arp_ifinit(ifp, ifa); break; #endif #ifdef NS case AF_NS: { struct ns_addr *ina = &IA_SNS(ifa)->sns_addr; if (ns_nullhost(*ina)) ina->x_host = *(union ns_host *)LLADDR(ifp->if_sadl); else { memcpy(LLADDR(ifp->if_sadl), ina->x_host.c_host, ETHER_ADDR_LEN); } /* Set new address. */ mb86960_init(sc); break; } #endif default: mb86960_init(sc); break; } break; case SIOCSIFFLAGS: if ((ifp->if_flags & IFF_UP) == 0 && (ifp->if_flags & IFF_RUNNING) != 0) { /* * If interface is marked down and it is running, then * stop it. */ mb86960_stop(sc); ifp->if_flags &= ~IFF_RUNNING; mb86960_disable(sc); } else if ((ifp->if_flags & IFF_UP) != 0 && (ifp->if_flags & IFF_RUNNING) == 0) { /* * If interface is marked up and it is stopped, then * start it. */ if ((error = mb86960_enable(sc)) != 0) break; mb86960_init(sc); } else if ((ifp->if_flags & IFF_UP) != 0) { /* * Reset the interface to pick up changes in any other * flags that affect hardware registers. */ mb86960_setmode(sc); } #if FE_DEBUG >= 1 /* "ifconfig fe0 debug" to print register dump. */ if (ifp->if_flags & IFF_DEBUG) { log(LOG_INFO, "%s: SIOCSIFFLAGS(DEBUG)\n", sc->sc_dev.dv_xname); mb86960_dump(LOG_DEBUG, sc); } #endif break; case SIOCADDMULTI: case SIOCDELMULTI: if ((sc->sc_flags & FE_FLAGS_ENABLED) == 0) { error = EIO; break; } /* Update our multicast list. */ error = (cmd == SIOCADDMULTI) ? ether_addmulti(ifr, &sc->sc_ec) : ether_delmulti(ifr, &sc->sc_ec); if (error == ENETRESET) { /* * Multicast list has changed; set the hardware filter * accordingly. */ mb86960_setmode(sc); error = 0; } break; case SIOCGIFMEDIA: case SIOCSIFMEDIA: error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd); break; default: error = EINVAL; break; } splx(s); return (error); } /* * Retrieve packet from receive buffer and send to the next level up via * ether_input(). If there is a BPF listener, give a copy to BPF, too. * Returns 0 if success, -1 if error (i.e., mbuf allocation failure). */ int mb86960_get_packet(sc, len) struct mb86960_softc *sc; int len; { bus_space_tag_t bst = sc->sc_bst; bus_space_handle_t bsh = sc->sc_bsh; struct ifnet *ifp = &sc->sc_ec.ec_if; struct mbuf *m; /* Allocate a header mbuf. */ MGETHDR(m, M_DONTWAIT, MT_DATA); if (m == 0) return (0); m->m_pkthdr.rcvif = ifp; m->m_pkthdr.len = len; /* The following silliness is to make NFS happy. */ #define EROUND ((sizeof(struct ether_header) + 3) & ~3) #define EOFF (EROUND - sizeof(struct ether_header)) /* * Our strategy has one more problem. There is a policy on * mbuf cluster allocation. It says that we must have at * least MINCLSIZE (208 bytes) to allocate a cluster. For a * packet of a size between (MHLEN - 2) to (MINCLSIZE - 2), * our code violates the rule... * On the other hand, the current code is short, simle, * and fast, however. It does no harmful thing, just waists * some memory. Any comments? FIXME. */ /* Attach a cluster if this packet doesn't fit in a normal mbuf. */ if (len > MHLEN - EOFF) { MCLGET(m, M_DONTWAIT); if ((m->m_flags & M_EXT) == 0) { m_freem(m); return (0); } } /* * The following assumes there is room for the ether header in the * header mbuf. */ m->m_data += EOFF; /* Set the length of this packet. */ m->m_len = len; /* Get a packet. */ bus_space_read_multi_stream_2(bst, bsh, FE_BMPR8, mtod(m, u_int16_t *), (len + 1) >> 1); #if NBPFILTER > 0 /* * Check if there's a BPF listener on this interface. If so, hand off * the raw packet to bpf. */ if (ifp->if_bpf) bpf_mtap(ifp->if_bpf, m); #endif (*ifp->if_input)(ifp, m); return (1); } /* * Write an mbuf chain to the transmission buffer memory using 16 bit PIO. * Returns number of bytes actually written, including length word. * * If an mbuf chain is too long for an Ethernet frame, it is not sent. * Packets shorter than Ethernet minimum are legal, and we pad them * before sending out. An exception is "partial" packets which are * shorter than mandatory Ethernet header. * * I wrote a code for an experimental "delayed padding" technique. * When employed, it postpones the padding process for short packets. * If xmit() occurred at the moment, the padding process is omitted, and * garbages are sent as pad data. If next packet is stored in the * transmission buffer before xmit(), write_mbuf() pads the previous * packet before transmitting new packet. This *may* gain the * system performance (slightly). */ void mb86960_write_mbufs(sc, m) struct mb86960_softc *sc; struct mbuf *m; { bus_space_tag_t bst = sc->sc_bst; bus_space_handle_t bsh = sc->sc_bsh; u_char *data; u_short savebyte; /* WARNING: Architecture dependent! */ int totlen, len, wantbyte; #if FE_DEBUG >= 2 struct mbuf *mp; #endif /* XXX thorpej 960116 - quiet bogus compiler warning. */ savebyte = 0; #if FE_DELAYED_PADDING /* Do the "delayed padding." */ len = sc->txb_padding >> 1; if (len > 0) { while (--len >= 0) bus_space_write_2(bst, bsh, FE_BMPR8, 0); sc->txb_padding = 0; } #endif /* We need to use m->m_pkthdr.len, so require the header */ if ((m->m_flags & M_PKTHDR) == 0) panic("mb86960_write_mbufs: no header mbuf"); #if FE_DEBUG >= 2 /* First, count up the total number of bytes to copy. */ for (totlen = 0, mp = m; mp != 0; mp = mp->m_next) totlen += mp->m_len; /* Check if this matches the one in the packet header. */ if (totlen != m->m_pkthdr.len) log(LOG_WARNING, "%s: packet length mismatch? (%d/%d)\n", sc->sc_dev.dv_xname, totlen, m->m_pkthdr.len); #else /* Just use the length value in the packet header. */ totlen = m->m_pkthdr.len; #endif #if FE_DEBUG >= 1 /* * Should never send big packets. If such a packet is passed, * it should be a bug of upper layer. We just ignore it. * ... Partial (too short) packets, neither. */ if (totlen > (ETHER_MAX_LEN - ETHER_CRC_LEN) || totlen < ETHER_HDR_LEN) { log(LOG_ERR, "%s: got a %s packet (%u bytes) to send\n", sc->sc_dev.dv_xname, totlen < ETHER_HDR_LEN ? "partial" : "big", totlen); sc->sc_ec.ec_if.if_oerrors++; return; } #endif /* * Put the length word for this frame. * Does 86960 accept odd length? -- Yes. * Do we need to pad the length to minimum size by ourselves? * -- Generally yes. But for (or will be) the last * packet in the transmission buffer, we can skip the * padding process. It may gain performance slightly. FIXME. */ bus_space_write_2(bst, bsh, FE_BMPR8, max(totlen, (ETHER_MIN_LEN - ETHER_CRC_LEN))); /* * Update buffer status now. * Truncate the length up to an even number, since we use outw(). */ totlen = (totlen + 1) & ~1; sc->txb_free -= FE_DATA_LEN_LEN + max(totlen, (ETHER_MIN_LEN - ETHER_CRC_LEN)); sc->txb_count++; #if FE_DELAYED_PADDING /* Postpone the packet padding if necessary. */ if (totlen < (ETHER_MIN_LEN - ETHER_CRC_LEN)) sc->txb_padding = (ETHER_MIN_LEN - ETHER_CRC_LEN) - totlen; #endif /* * Transfer the data from mbuf chain to the transmission buffer. * MB86960 seems to require that data be transferred as words, and * only words. So that we require some extra code to patch * over odd-length mbufs. */ wantbyte = 0; for (; m != 0; m = m->m_next) { /* Ignore empty mbuf. */ len = m->m_len; if (len == 0) continue; /* Find the actual data to send. */ data = mtod(m, caddr_t); /* Finish the last byte. */ if (wantbyte) { bus_space_write_2(bst, bsh, FE_BMPR8, savebyte | (*data << 8)); data++; len--; wantbyte = 0; } /* Output contiguous words. */ if (len > 1) bus_space_write_multi_stream_2(bst, bsh, FE_BMPR8, (u_int16_t *)data, len >> 1); /* Save remaining byte, if there is one. */ if (len & 1) { data += len & ~1; savebyte = *data; wantbyte = 1; } } /* Spit the last byte, if the length is odd. */ if (wantbyte) bus_space_write_2(bst, bsh, FE_BMPR8, savebyte); #if ! FE_DELAYED_PADDING /* * Pad the packet to the minimum length if necessary. */ len = ((ETHER_MIN_LEN - ETHER_CRC_LEN) >> 1) - (totlen >> 1); while (--len >= 0) bus_space_write_2(bst, bsh, FE_BMPR8, 0); #endif } /* * Compute the multicast address filter from the * list of multicast addresses we need to listen to. */ void mb86960_getmcaf(ec, af) struct ethercom *ec; u_char *af; { struct ifnet *ifp = &ec->ec_if; struct ether_multi *enm; u_int32_t crc; struct ether_multistep step; /* * Set up multicast address filter by passing all multicast addresses * through a crc generator, and then using the high order 6 bits as an * index into the 64 bit logical address filter. The high order bit * selects the word, while the rest of the bits select the bit within * the word. */ if ((ifp->if_flags & IFF_PROMISC) != 0) goto allmulti; af[0] = af[1] = af[2] = af[3] = af[4] = af[5] = af[6] = af[7] = 0x00; ETHER_FIRST_MULTI(step, ec, enm); while (enm != NULL) { if (memcmp(enm->enm_addrlo, enm->enm_addrhi, sizeof(enm->enm_addrlo)) != 0) { /* * We must listen to a range of multicast addresses. * For now, just accept all multicasts, rather than * trying to set only those filter bits needed to match * the range. (At this time, the only use of address * ranges is for IP multicast routing, for which the * range is big enough to require all bits set.) */ goto allmulti; } crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN); /* Just want the 6 most significant bits. */ crc >>= 26; /* Turn on the corresponding bit in the filter. */ af[crc >> 3] |= 1 << (crc & 7); ETHER_NEXT_MULTI(step, enm); } ifp->if_flags &= ~IFF_ALLMULTI; return; allmulti: ifp->if_flags |= IFF_ALLMULTI; af[0] = af[1] = af[2] = af[3] = af[4] = af[5] = af[6] = af[7] = 0xff; } /* * Calculate a new "multicast packet filter" and put the 86960 * receiver in appropriate mode. */ void mb86960_setmode(sc) struct mb86960_softc *sc; { bus_space_tag_t bst = sc->sc_bst; bus_space_handle_t bsh = sc->sc_bsh; int flags = sc->sc_ec.ec_if.if_flags; /* * If the interface is not running, we postpone the update * process for receive modes and multicast address filter * until the interface is restarted. It reduces some * complicated job on maintaining chip states. (Earlier versions * of this driver had a bug on that point...) * * To complete the trick, mb86960_init() calls mb86960_setmode() after * restarting the interface. */ if ((flags & IFF_RUNNING) == 0) return; /* * Promiscuous mode is handled separately. */ if ((flags & IFF_PROMISC) != 0) { /* * Program 86960 to receive all packets on the segment * including those directed to other stations. * Multicast filter stored in MARs are ignored * under this setting, so we don't need to update it. * * Promiscuous mode is used solely by BPF, and BPF only * listens to valid (no error) packets. So, we ignore * errornous ones even in this mode. */ bus_space_write_1(bst, bsh, FE_DLCR5, sc->proto_dlcr5 | FE_D5_AFM0 | FE_D5_AFM1); sc->filter_change = 0; #if FE_DEBUG >= 3 log(LOG_INFO, "%s: promiscuous mode\n", sc->sc_dev.dv_xname); #endif return; } /* * Turn the chip to the normal (non-promiscuous) mode. */ bus_space_write_1(bst, bsh, FE_DLCR5, sc->proto_dlcr5 | FE_D5_AFM1); /* * Find the new multicast filter value. */ mb86960_getmcaf(&sc->sc_ec, sc->filter); sc->filter_change = 1; #if FE_DEBUG >= 3 log(LOG_INFO, "%s: address filter: [%02x %02x %02x %02x %02x %02x %02x %02x]\n", sc->sc_dev.dv_xname, sc->filter[0], sc->filter[1], sc->filter[2], sc->filter[3], sc->filter[4], sc->filter[5], sc->filter[6], sc->filter[7]); #endif /* * We have to update the multicast filter in the 86960, A.S.A.P. * * Note that the DLC (Data Linc Control unit, i.e. transmitter * and receiver) must be stopped when feeding the filter, and * DLC trushes all packets in both transmission and receive * buffers when stopped. * * ... Are the above sentenses correct? I have to check the * manual of the MB86960A. FIXME. * * To reduce the packet lossage, we delay the filter update * process until buffers are empty. */ if (sc->txb_sched == 0 && sc->txb_count == 0 && (bus_space_read_1(bst, bsh, FE_DLCR1) & FE_D1_PKTRDY) == 0) { /* * Buffers are (apparently) empty. Load * the new filter value into MARs now. */ mb86960_loadmar(sc); } else { /* * Buffers are not empty. Mark that we have to update * the MARs. The new filter will be loaded by mb86960_intr() * later. */ #if FE_DEBUG >= 4 log(LOG_INFO, "%s: filter change delayed\n", sc->sc_dev.dv_xname); #endif } } /* * Load a new multicast address filter into MARs. * * The caller must have splnet'ed befor mb86960_loadmar. * This function starts the DLC upon return. So it can be called only * when the chip is working, i.e., from the driver's point of view, when * a device is RUNNING. (I mistook the point in previous versions.) */ void mb86960_loadmar(sc) struct mb86960_softc *sc; { bus_space_tag_t bst = sc->sc_bst; bus_space_handle_t bsh = sc->sc_bsh; /* Stop the DLC (transmitter and receiver). */ bus_space_write_1(bst, bsh, FE_DLCR6, sc->proto_dlcr6 | FE_D6_DLC_DISABLE); /* Select register bank 1 for MARs. */ bus_space_write_1(bst, bsh, FE_DLCR7, sc->proto_dlcr7 | FE_D7_RBS_MAR | FE_D7_POWER_UP); /* Copy filter value into the registers. */ bus_space_write_region_1(bst, bsh, FE_MAR8, sc->filter, FE_FILTER_LEN); /* Restore the bank selection for BMPRs (i.e., runtime registers). */ bus_space_write_1(bst, bsh, FE_DLCR7, sc->proto_dlcr7 | FE_D7_RBS_BMPR | FE_D7_POWER_UP); /* Restart the DLC. */ bus_space_write_1(bst, bsh, FE_DLCR6, sc->proto_dlcr6 | FE_D6_DLC_ENABLE); /* We have just updated the filter. */ sc->filter_change = 0; #if FE_DEBUG >= 3 log(LOG_INFO, "%s: address filter changed\n", sc->sc_dev.dv_xname); #endif } /* * Enable power on the interface. */ int mb86960_enable(sc) struct mb86960_softc *sc; { #if FE_DEBUG >= 3 log(LOG_INFO, "%s: mb86960_enable()\n", sc->sc_dev.dv_xname); #endif if ((sc->sc_flags & FE_FLAGS_ENABLED) == 0 && sc->sc_enable != NULL) { if ((*sc->sc_enable)(sc) != 0) { printf("%s: device enable failed\n", sc->sc_dev.dv_xname); return (EIO); } } sc->sc_flags |= FE_FLAGS_ENABLED; return (0); } /* * Disable power on the interface. */ void mb86960_disable(sc) struct mb86960_softc *sc; { #if FE_DEBUG >= 3 log(LOG_INFO, "%s: mb86960_disable()\n", sc->sc_dev.dv_xname); #endif if ((sc->sc_flags & FE_FLAGS_ENABLED) != 0 && sc->sc_disable != NULL) { (*sc->sc_disable)(sc); sc->sc_flags &= ~FE_FLAGS_ENABLED; } } /* * mbe_activate: * * Handle device activation/deactivation requests. */ int mb86960_activate(self, act) struct device *self; enum devact act; { struct mb86960_softc *sc = (struct mb86960_softc *)self; int rv = 0, s; s = splnet(); switch (act) { case DVACT_ACTIVATE: rv = EOPNOTSUPP; break; case DVACT_DEACTIVATE: if_deactivate(&sc->sc_ec.ec_if); break; } splx(s); return (rv); } /* * mb86960_detach: * * Detach a MB86960 interface. */ int mb86960_detach(sc) struct mb86960_softc *sc; { struct ifnet *ifp = &sc->sc_ec.ec_if; /* Succeed now if there's no work to do. */ if ((sc->sc_flags & FE_FLAGS_ATTACHED) == 0) return (0); /* Delete all media. */ ifmedia_delete_instance(&sc->sc_media, IFM_INST_ANY); #if NRND > 0 /* Unhook the entropy source. */ rnd_detach_source(&sc->rnd_source); #endif ether_ifdetach(ifp); if_detach(ifp); mb86960_disable(sc); return (0); } /* * Routines to read all bytes from the config EEPROM (93C06) through MB86965A. */ void mb86965_read_eeprom(iot, ioh, data) bus_space_tag_t iot; bus_space_handle_t ioh; u_int8_t *data; { int addr, op, bit; u_int16_t val; /* Read bytes from EEPROM; two bytes per an iteration. */ for (addr = 0; addr < FE_EEPROM_SIZE / 2; addr++) { /* Reset the EEPROM interface. */ bus_space_write_1(iot, ioh, FE_BMPR16, 0x00); bus_space_write_1(iot, ioh, FE_BMPR17, 0x00); bus_space_write_1(iot, ioh, FE_BMPR16, FE_B16_SELECT); /* Send start bit. */ bus_space_write_1(iot, ioh, FE_BMPR17, FE_B17_DATA); FE_EEPROM_DELAY(); bus_space_write_1(iot, ioh, FE_BMPR16, FE_B16_SELECT | FE_B16_CLOCK); FE_EEPROM_DELAY(); bus_space_write_1(iot, ioh, FE_BMPR16, FE_B16_SELECT); /* Send read command and read address. */ op = 0x80 | addr; /* READ instruction */ for (bit = 8; bit > 0; bit--) { bus_space_write_1(iot, ioh, FE_BMPR17, (op & (1 << (bit - 1))) ? FE_B17_DATA : 0); FE_EEPROM_DELAY(); bus_space_write_1(iot, ioh, FE_BMPR16, FE_B16_SELECT | FE_B16_CLOCK); FE_EEPROM_DELAY(); bus_space_write_1(iot, ioh, FE_BMPR16, FE_B16_SELECT); } bus_space_write_1(iot, ioh, FE_BMPR17, 0x00); /* Read two bytes in each address */ val = 0; for (bit = 16; bit > 0; bit--) { FE_EEPROM_DELAY(); bus_space_write_1(iot, ioh, FE_BMPR16, FE_B16_SELECT | FE_B16_CLOCK); FE_EEPROM_DELAY(); if (bus_space_read_1(iot, ioh, FE_BMPR17) & FE_B17_DATA) val |= 1 << (bit - 1); bus_space_write_1(iot, ioh, FE_BMPR16, FE_B16_SELECT); } data[addr * 2] = val >> 8; data[addr * 2 + 1] = val & 0xff; } /* Make sure the EEPROM is turned off. */ bus_space_write_1(iot, ioh, FE_BMPR16, 0); bus_space_write_1(iot, ioh, FE_BMPR17, 0); #if FE_DEBUG >= 3 /* Report what we got. */ log(LOG_INFO, "mb86965_read_eeprom: " " %02x%02x%02x%02x %02x%02x%02x%02x -" " %02x%02x%02x%02x %02x%02x%02x%02x -" " %02x%02x%02x%02x %02x%02x%02x%02x -" " %02x%02x%02x%02x %02x%02x%02x%02x\n", data[ 0], data[ 1], data[ 2], data[ 3], data[ 4], data[ 5], data[ 6], data[ 7], data[ 8], data[ 9], data[10], data[11], data[12], data[13], data[14], data[15], data[16], data[17], data[18], data[19], data[20], data[21], data[22], data[23], data[24], data[25], data[26], data[27], data[28], data[29], data[30], data[31]); #endif } #if FE_DEBUG >= 1 void mb86960_dump(level, sc) int level; struct mb86960_softc *sc; { bus_space_tag_t bst = sc->sc_bst; bus_space_handle_t bsh = sc->sc_bsh; u_char save_dlcr7; save_dlcr7 = bus_space_read_1(bst, bsh, FE_DLCR7); log(level, "\tDLCR = %02x %02x %02x %02x %02x %02x %02x %02x\n", bus_space_read_1(bst, bsh, FE_DLCR0), bus_space_read_1(bst, bsh, FE_DLCR1), bus_space_read_1(bst, bsh, FE_DLCR2), bus_space_read_1(bst, bsh, FE_DLCR3), bus_space_read_1(bst, bsh, FE_DLCR4), bus_space_read_1(bst, bsh, FE_DLCR5), bus_space_read_1(bst, bsh, FE_DLCR6), bus_space_read_1(bst, bsh, FE_DLCR7)); bus_space_write_1(bst, bsh, FE_DLCR7, (save_dlcr7 & ~FE_D7_RBS) | FE_D7_RBS_DLCR); log(level, "\t %02x %02x %02x %02x %02x %02x %02x %02x\n", bus_space_read_1(bst, bsh, FE_DLCR8), bus_space_read_1(bst, bsh, FE_DLCR9), bus_space_read_1(bst, bsh, FE_DLCR10), bus_space_read_1(bst, bsh, FE_DLCR11), bus_space_read_1(bst, bsh, FE_DLCR12), bus_space_read_1(bst, bsh, FE_DLCR13), bus_space_read_1(bst, bsh, FE_DLCR14), bus_space_read_1(bst, bsh, FE_DLCR15)); bus_space_write_1(bst, bsh, FE_DLCR7, (save_dlcr7 & ~FE_D7_RBS) | FE_D7_RBS_MAR); log(level, "\tMAR = %02x %02x %02x %02x %02x %02x %02x %02x\n", bus_space_read_1(bst, bsh, FE_MAR8), bus_space_read_1(bst, bsh, FE_MAR9), bus_space_read_1(bst, bsh, FE_MAR10), bus_space_read_1(bst, bsh, FE_MAR11), bus_space_read_1(bst, bsh, FE_MAR12), bus_space_read_1(bst, bsh, FE_MAR13), bus_space_read_1(bst, bsh, FE_MAR14), bus_space_read_1(bst, bsh, FE_MAR15)); bus_space_write_1(bst, bsh, FE_DLCR7, (save_dlcr7 & ~FE_D7_RBS) | FE_D7_RBS_BMPR); log(level, "\tBMPR = xx xx %02x %02x %02x %02x %02x %02x %02x %02x xx %02x\n", bus_space_read_1(bst, bsh, FE_BMPR10), bus_space_read_1(bst, bsh, FE_BMPR11), bus_space_read_1(bst, bsh, FE_BMPR12), bus_space_read_1(bst, bsh, FE_BMPR13), bus_space_read_1(bst, bsh, FE_BMPR14), bus_space_read_1(bst, bsh, FE_BMPR15), bus_space_read_1(bst, bsh, FE_BMPR16), bus_space_read_1(bst, bsh, FE_BMPR17), bus_space_read_1(bst, bsh, FE_BMPR19)); bus_space_write_1(bst, bsh, FE_DLCR7, save_dlcr7); } #endif