/* atof_ieee.c - turn a Flonum into an IEEE floating point number Copyright (C) 1987 Free Software Foundation, Inc. This file is part of GAS, the GNU Assembler. GAS is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 1, or (at your option) any later version. GAS is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GAS; see the file COPYING. If not, write to the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */ #include "flonum.h" #ifdef USG #define bzero(s,n) memset(s,0,n) #define bcopy(from,to,n) memcpy((to),(from),(n)) #endif extern FLONUM_TYPE generic_floating_point_number; /* Flonums returned here. */ #define NULL (0) extern char EXP_CHARS[]; /* Precision in LittleNums. */ #define MAX_PRECISION (6) #define F_PRECISION (2) #define D_PRECISION (4) #define X_PRECISION (6) #define P_PRECISION (6) /* Length in LittleNums of guard bits. */ #define GUARD (2) static unsigned long int mask [] = { 0x00000000, 0x00000001, 0x00000003, 0x00000007, 0x0000000f, 0x0000001f, 0x0000003f, 0x0000007f, 0x000000ff, 0x000001ff, 0x000003ff, 0x000007ff, 0x00000fff, 0x00001fff, 0x00003fff, 0x00007fff, 0x0000ffff, 0x0001ffff, 0x0003ffff, 0x0007ffff, 0x000fffff, 0x001fffff, 0x003fffff, 0x007fffff, 0x00ffffff, 0x01ffffff, 0x03ffffff, 0x07ffffff, 0x0fffffff, 0x1fffffff, 0x3fffffff, 0x7fffffff, 0xffffffff }; static int bits_left_in_littlenum; static int littlenums_left; static LITTLENUM_TYPE * littlenum_pointer; static int next_bits (number_of_bits) int number_of_bits; { int return_value; if(!littlenums_left) return 0; if (number_of_bits >= bits_left_in_littlenum) { return_value = mask [bits_left_in_littlenum] & *littlenum_pointer; number_of_bits -= bits_left_in_littlenum; return_value <<= number_of_bits; if(--littlenums_left) { bits_left_in_littlenum = LITTLENUM_NUMBER_OF_BITS - number_of_bits; littlenum_pointer --; return_value |= (*littlenum_pointer>>bits_left_in_littlenum) & mask[number_of_bits]; } } else { bits_left_in_littlenum -= number_of_bits; return_value = mask [number_of_bits] & (*littlenum_pointer>>bits_left_in_littlenum); } return (return_value); } /* Num had better be less than LITTLENUM_NUMBER_OF_BITS */ static int unget_bits(num) { if(!littlenums_left) { ++littlenum_pointer; ++littlenums_left; bits_left_in_littlenum=num; } else if(bits_left_in_littlenum+num>LITTLENUM_NUMBER_OF_BITS) { bits_left_in_littlenum= num-(LITTLENUM_NUMBER_OF_BITS-bits_left_in_littlenum); ++littlenum_pointer; ++littlenums_left; } else bits_left_in_littlenum+=num; } static void make_invalid_floating_point_number (words) LITTLENUM_TYPE * words; { as_warn("cannot create floating-point number"); words[0]= ((unsigned)-1)>>1; /* Zero the leftmost bit */ words[1]= -1; words[2]= -1; words[3]= -1; words[4]= -1; words[5]= -1; } /***********************************************************************\ * Warning: this returns 16-bit LITTLENUMs. It is up to the caller * * to figure out any alignment problems and to conspire for the * * bytes/word to be emitted in the right order. Bigendians beware! * * * \***********************************************************************/ /* Note that atof-ieee always has X and P precisions enabled. it is up to md_atof to filter them out if the target machine does not support them. */ char * /* Return pointer past text consumed. */ atof_ieee (str, what_kind, words) char * str; /* Text to convert to binary. */ char what_kind; /* 'd', 'f', 'g', 'h' */ LITTLENUM_TYPE * words; /* Build the binary here. */ { static LITTLENUM_TYPE bits [MAX_PRECISION + MAX_PRECISION + GUARD]; /* Extra bits for zeroed low-order bits. */ /* The 1st MAX_PRECISION are zeroed, */ /* the last contain flonum bits. */ char * return_value; int precision; /* Number of 16-bit words in the format. */ long int exponent_bits; return_value = str; generic_floating_point_number.low = bits + MAX_PRECISION; generic_floating_point_number.high = NULL; generic_floating_point_number.leader = NULL; generic_floating_point_number.exponent = NULL; generic_floating_point_number.sign = '\0'; /* Use more LittleNums than seems */ /* necessary: the highest flonum may have */ /* 15 leading 0 bits, so could be useless. */ bzero (bits, sizeof(LITTLENUM_TYPE) * MAX_PRECISION); switch(what_kind) { case 'f': case 'F': case 's': case 'S': precision = F_PRECISION; exponent_bits = 8; break; case 'd': case 'D': case 'r': case 'R': precision = D_PRECISION; exponent_bits = 11; break; case 'x': case 'X': case 'e': case 'E': precision = X_PRECISION; exponent_bits = 15; break; case 'p': case 'P': precision = P_PRECISION; exponent_bits= -1; break; default: make_invalid_floating_point_number (words); return NULL; } generic_floating_point_number.high = generic_floating_point_number.low + precision - 1 + GUARD; if (atof_generic (& return_value, ".", EXP_CHARS, & generic_floating_point_number)) { /* as_warn("Error converting floating point number (Exponent overflow?)"); */ make_invalid_floating_point_number (words); return NULL; } gen_to_words(words, precision, exponent_bits); return return_value; } /* Turn generic_floating_point_number into a real float/double/extended */ gen_to_words(words,precision,exponent_bits) LITTLENUM_TYPE *words; long int exponent_bits; int precision; { int return_value=0; long int exponent_1; long int exponent_2; long int exponent_3; long int exponent_4; int exponent_skippage; LITTLENUM_TYPE word1; LITTLENUM_TYPE * lp; if (generic_floating_point_number.low > generic_floating_point_number.leader) { /* 0.0e0 seen. */ if(generic_floating_point_number.sign=='+') words[0]=0x0000; else words[0]=0x8000; bzero (&words[1], sizeof(LITTLENUM_TYPE) * (precision-1)); return return_value; } /* NaN: Do the right thing */ if(generic_floating_point_number.sign==0) { if(precision==F_PRECISION) { words[0]=0x7fff; words[1]=0xffff; } else { words[0]=0x7fff; words[1]=0xffff; words[2]=0xffff; words[3]=0xffff; } return return_value; } else if(generic_floating_point_number.sign=='P') { /* +INF: Do the right thing */ if(precision==F_PRECISION) { words[0]=0x7f80; words[1]=0; } else { words[0]=0x7ff0; words[1]=0; words[2]=0; words[3]=0; } return return_value; } else if(generic_floating_point_number.sign=='N') { /* Negative INF */ if(precision==F_PRECISION) { words[0]=0xff80; words[1]=0x0; } else { words[0]=0xfff0; words[1]=0x0; words[2]=0x0; words[3]=0x0; } return return_value; } /* * The floating point formats we support have: * Bit 15 is sign bit. * Bits 14:n are excess-whatever exponent. * Bits n-1:0 (if any) are most significant bits of fraction. * Bits 15:0 of the next word(s) are the next most significant bits. * * So we need: number of bits of exponent, number of bits of * mantissa. */ bits_left_in_littlenum = LITTLENUM_NUMBER_OF_BITS; littlenum_pointer = generic_floating_point_number.leader; littlenums_left = 1+generic_floating_point_number.leader - generic_floating_point_number.low; /* Seek (and forget) 1st significant bit */ for (exponent_skippage = 0;! next_bits(1); exponent_skippage ++) ; exponent_1 = generic_floating_point_number.exponent + generic_floating_point_number.leader + 1 - generic_floating_point_number.low; /* Radix LITTLENUM_RADIX, point just higher than generic_floating_point_number.leader. */ exponent_2 = exponent_1 * LITTLENUM_NUMBER_OF_BITS; /* Radix 2. */ exponent_3 = exponent_2 - exponent_skippage; /* Forget leading zeros, forget 1st bit. */ exponent_4 = exponent_3 + ((1 << (exponent_bits - 1)) - 2); /* Offset exponent. */ lp = words; /* Word 1. Sign, exponent and perhaps high bits. */ word1 = (generic_floating_point_number.sign == '+') ? 0 : (1<<(LITTLENUM_NUMBER_OF_BITS-1)); /* Assume 2's complement integers. */ if(exponent_4<1 && exponent_4>=-62) { int prec_bits; int num_bits; unget_bits(1); num_bits= -exponent_4; prec_bits=LITTLENUM_NUMBER_OF_BITS*precision-(exponent_bits+1+num_bits); if(precision==X_PRECISION && exponent_bits==15) prec_bits-=LITTLENUM_NUMBER_OF_BITS+1; if(num_bits>=LITTLENUM_NUMBER_OF_BITS-exponent_bits) { /* Bigger than one littlenum */ num_bits-=(LITTLENUM_NUMBER_OF_BITS-1)-exponent_bits; *lp++=word1; if(num_bits+exponent_bits+1>=precision*LITTLENUM_NUMBER_OF_BITS) { /* Exponent overflow */ make_invalid_floating_point_number(words); return return_value; } if(precision==X_PRECISION && exponent_bits==15) { *lp++=0; *lp++=0; num_bits-=LITTLENUM_NUMBER_OF_BITS-1; } while(num_bits>=LITTLENUM_NUMBER_OF_BITS) { num_bits-=LITTLENUM_NUMBER_OF_BITS; *lp++=0; } if(num_bits) *lp++=next_bits(LITTLENUM_NUMBER_OF_BITS-(num_bits)); } else { if(precision==X_PRECISION && exponent_bits==15) { *lp++=word1; *lp++=0; if(num_bits==LITTLENUM_NUMBER_OF_BITS) { *lp++=0; *lp++=next_bits(LITTLENUM_NUMBER_OF_BITS-1); } else if(num_bits==LITTLENUM_NUMBER_OF_BITS-1) *lp++=0; else *lp++=next_bits(LITTLENUM_NUMBER_OF_BITS-1-num_bits); num_bits=0; } else { word1|= next_bits ((LITTLENUM_NUMBER_OF_BITS-1) - (exponent_bits+num_bits)); *lp++=word1; } } while(lpLITTLENUM_NUMBER_OF_BITS) { int n = 0; int tmp_bits; n=0; tmp_bits=prec_bits; while(tmp_bits>LITTLENUM_NUMBER_OF_BITS) { if(lp[n]!=(LITTLENUM_TYPE)-1) break; --n; tmp_bits-=LITTLENUM_NUMBER_OF_BITS; } if(tmp_bits>LITTLENUM_NUMBER_OF_BITS || (lp[n]&mask[tmp_bits])!=mask[tmp_bits]) { unsigned long int carry; for (carry = 1; carry && (lp >= words); lp --) { carry = * lp + carry; * lp = carry; carry >>= LITTLENUM_NUMBER_OF_BITS; } } } else if((*lp&mask[prec_bits])!=mask[prec_bits]) lp++; } return return_value; } else if (exponent_4 & ~ mask [exponent_bits]) { /* * Exponent overflow. Lose immediately. */ /* * We leave return_value alone: admit we read the * number, but return a floating exception * because we can't encode the number. */ make_invalid_floating_point_number (words); return return_value; } else { word1 |= (exponent_4 << ((LITTLENUM_NUMBER_OF_BITS-1) - exponent_bits)) | next_bits ((LITTLENUM_NUMBER_OF_BITS-1) - exponent_bits); } * lp ++ = word1; /* X_PRECISION is special: it has 16 bits of zero in the middle, followed by a 1 bit. */ if(exponent_bits==15 && precision==X_PRECISION) { *lp++=0; *lp++= 1<<(LITTLENUM_NUMBER_OF_BITS)|next_bits(LITTLENUM_NUMBER_OF_BITS-1); } /* The rest of the words are just mantissa bits. */ while(lp < words + precision) *lp++ = next_bits (LITTLENUM_NUMBER_OF_BITS); if (next_bits (1)) { unsigned long int carry; /* * Since the NEXT bit is a 1, round UP the mantissa. * The cunning design of these hidden-1 floats permits * us to let the mantissa overflow into the exponent, and * it 'does the right thing'. However, we lose if the * highest-order bit of the lowest-order word flips. * Is that clear? */ /* #if (sizeof(carry)) < ((sizeof(bits[0]) * BITS_PER_CHAR) + 2) Please allow at least 1 more bit in carry than is in a LITTLENUM. We need that extra bit to hold a carry during a LITTLENUM carry propagation. Another extra bit (kept 0) will assure us that we don't get a sticky sign bit after shifting right, and that permits us to propagate the carry without any masking of bits. #endif */ for (carry = 1, lp --; carry && (lp >= words); lp --) { carry = * lp + carry; * lp = carry; carry >>= LITTLENUM_NUMBER_OF_BITS; } if ( (word1 ^ *words) & (1 << (LITTLENUM_NUMBER_OF_BITS - 1)) ) { /* We leave return_value alone: admit we read the * number, but return a floating exception * because we can't encode the number. */ *words&= ~ (1 << (LITTLENUM_NUMBER_OF_BITS - 1)); /* make_invalid_floating_point_number (words); */ /* return return_value; */ } } return (return_value); } /* This routine is a real kludge. Someone really should do it better, but I'm too lazy, and I don't understand this stuff all too well anyway (JF) */ void int_to_gen(x) long x; { char buf[20]; char *bufp; sprintf(buf,"%ld",x); bufp= &buf[0]; if(atof_generic(&bufp,".", EXP_CHARS, &generic_floating_point_number)) as_warn("Error converting number to floating point (Exponent overflow?)"); } #ifdef TEST char * print_gen(gen) FLONUM_TYPE *gen; { FLONUM_TYPE f; LITTLENUM_TYPE arr[10]; double dv; float fv; static char sbuf[40]; if(gen) { f=generic_floating_point_number; generic_floating_point_number= *gen; } gen_to_words(&arr[0],4,11); bcopy(&arr[0],&dv,sizeof(double)); sprintf(sbuf,"%x %x %x %x %.14G ",arr[0],arr[1],arr[2],arr[3],dv); gen_to_words(&arr[0],2,8); bcopy(&arr[0],&fv,sizeof(float)); sprintf(sbuf+strlen(sbuf),"%x %x %.12g\n",arr[0],arr[1],fv); if(gen) generic_floating_point_number=f; return sbuf; } #endif