/* $NetBSD: ahb.c,v 1.23 1998/08/17 00:26:33 mycroft Exp $ */ #include "opt_ddb.h" #undef AHBDEBUG #ifdef DDB #define integrate #else #define integrate static inline #endif /*- * Copyright (c) 1997, 1998 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Charles M. Hannum and by Jason R. Thorpe of the Numerical Aerospace * Simulation Facility, NASA Ames Research Center. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the NetBSD * Foundation, Inc. and its contributors. * 4. Neither the name of The NetBSD Foundation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * Originally written by Julian Elischer (julian@tfs.com) * for TRW Financial Systems for use under the MACH(2.5) operating system. * * TRW Financial Systems, in accordance with their agreement with Carnegie * Mellon University, makes this software available to CMU to distribute * or use in any manner that they see fit as long as this message is kept with * the software. For this reason TFS also grants any other persons or * organisations permission to use or modify this software. * * TFS supplies this software to be publicly redistributed * on the understanding that TFS is not responsible for the correct * functioning of this software in any circumstances. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifndef DDB #define Debugger() panic("should call debugger here (aha1742.c)") #endif /* ! DDB */ #define AHB_ECB_MAX 32 /* store up to 32 ECBs at one time */ #define ECB_HASH_SIZE 32 /* hash table size for phystokv */ #define ECB_HASH_SHIFT 9 #define ECB_HASH(x) ((((long)(x))>>ECB_HASH_SHIFT) & (ECB_HASH_SIZE - 1)) #define AHB_MAXXFER ((AHB_NSEG - 1) << PGSHIFT) struct ahb_softc { struct device sc_dev; bus_space_tag_t sc_iot; bus_space_handle_t sc_ioh; bus_dma_tag_t sc_dmat; void *sc_ih; bus_dmamap_t sc_dmamap_ecb; /* maps the ecbs */ struct ahb_ecb *sc_ecbs; /* all our ecbs */ struct ahb_ecb *sc_ecbhash[ECB_HASH_SIZE]; TAILQ_HEAD(, ahb_ecb) sc_free_ecb; struct ahb_ecb *sc_immed_ecb; /* an outstanding immediete command */ int sc_numecbs; struct scsipi_link sc_link; LIST_HEAD(, scsipi_xfer) sc_queue; struct scsipi_xfer *sc_queuelast; }; /* * Offset of an ECB from the beginning of the ECB DMA mapping. */ #define AHB_ECB_OFF(e) (((u_long)(e)) - ((u_long)&sc->sc_ecbs[0])) struct ahb_probe_data { int sc_irq; int sc_scsi_dev; }; void ahb_send_mbox __P((struct ahb_softc *, int, struct ahb_ecb *)); void ahb_send_immed __P((struct ahb_softc *, u_long, struct ahb_ecb *)); int ahbintr __P((void *)); void ahb_free_ecb __P((struct ahb_softc *, struct ahb_ecb *)); struct ahb_ecb *ahb_get_ecb __P((struct ahb_softc *, int)); struct ahb_ecb *ahb_ecb_phys_kv __P((struct ahb_softc *, physaddr)); void ahb_done __P((struct ahb_softc *, struct ahb_ecb *)); int ahb_find __P((bus_space_tag_t, bus_space_handle_t, struct ahb_probe_data *)); int ahb_init __P((struct ahb_softc *)); void ahbminphys __P((struct buf *)); int ahb_scsi_cmd __P((struct scsipi_xfer *)); int ahb_poll __P((struct ahb_softc *, struct scsipi_xfer *, int)); void ahb_timeout __P((void *)); int ahb_create_ecbs __P((struct ahb_softc *, struct ahb_ecb *, int)); void ahb_enqueue __P((struct ahb_softc *, struct scsipi_xfer *, int)); struct scsipi_xfer *ahb_dequeue __P((struct ahb_softc *)); integrate void ahb_reset_ecb __P((struct ahb_softc *, struct ahb_ecb *)); integrate int ahb_init_ecb __P((struct ahb_softc *, struct ahb_ecb *)); struct scsipi_adapter ahb_switch = { ahb_scsi_cmd, ahbminphys, 0, 0, }; /* the below structure is so we have a default dev struct for our link struct */ struct scsipi_device ahb_dev = { NULL, /* Use default error handler */ NULL, /* have a queue, served by this */ NULL, /* have no async handler */ NULL, /* Use default 'done' routine */ }; int ahbmatch __P((struct device *, struct cfdata *, void *)); void ahbattach __P((struct device *, struct device *, void *)); struct cfattach ahb_ca = { sizeof(struct ahb_softc), ahbmatch, ahbattach }; #define AHB_ABORT_TIMEOUT 2000 /* time to wait for abort (mSec) */ /* * Check the slots looking for a board we recognise * If we find one, note it's address (slot) and call * the actual probe routine to check it out. */ int ahbmatch(parent, match, aux) struct device *parent; struct cfdata *match; void *aux; { struct eisa_attach_args *ea = aux; bus_space_tag_t iot = ea->ea_iot; bus_space_handle_t ioh; int rv; /* must match one of our known ID strings */ if (strcmp(ea->ea_idstring, "ADP0000") && strcmp(ea->ea_idstring, "ADP0001") && strcmp(ea->ea_idstring, "ADP0002") && strcmp(ea->ea_idstring, "ADP0400")) return (0); if (bus_space_map(iot, EISA_SLOT_ADDR(ea->ea_slot) + AHB_EISA_SLOT_OFFSET, AHB_EISA_IOSIZE, 0, &ioh)) return (0); rv = !ahb_find(iot, ioh, NULL); bus_space_unmap(iot, ioh, AHB_EISA_IOSIZE); return (rv); } /* * Attach all the sub-devices we can find */ void ahbattach(parent, self, aux) struct device *parent, *self; void *aux; { struct eisa_attach_args *ea = aux; struct ahb_softc *sc = (void *)self; bus_space_tag_t iot = ea->ea_iot; bus_space_handle_t ioh; eisa_chipset_tag_t ec = ea->ea_ec; eisa_intr_handle_t ih; const char *model, *intrstr; struct ahb_probe_data apd; if (!strcmp(ea->ea_idstring, "ADP0000")) model = EISA_PRODUCT_ADP0000; else if (!strcmp(ea->ea_idstring, "ADP0001")) model = EISA_PRODUCT_ADP0001; else if (!strcmp(ea->ea_idstring, "ADP0002")) model = EISA_PRODUCT_ADP0002; else if (!strcmp(ea->ea_idstring, "ADP0400")) model = EISA_PRODUCT_ADP0400; else model = "unknown model!"; printf(": %s\n", model); if (bus_space_map(iot, EISA_SLOT_ADDR(ea->ea_slot) + AHB_EISA_SLOT_OFFSET, AHB_EISA_IOSIZE, 0, &ioh)) panic("ahbattach: could not map I/O addresses"); sc->sc_iot = iot; sc->sc_ioh = ioh; sc->sc_dmat = ea->ea_dmat; if (ahb_find(iot, ioh, &apd)) panic("ahbattach: ahb_find failed!"); TAILQ_INIT(&sc->sc_free_ecb); LIST_INIT(&sc->sc_queue); if (ahb_init(sc) != 0) { /* Error during initialization! */ return; } /* * fill in the prototype scsipi_link. */ sc->sc_link.scsipi_scsi.channel = SCSI_CHANNEL_ONLY_ONE; sc->sc_link.adapter_softc = sc; sc->sc_link.scsipi_scsi.adapter_target = apd.sc_scsi_dev; sc->sc_link.adapter = &ahb_switch; sc->sc_link.device = &ahb_dev; sc->sc_link.openings = 4; sc->sc_link.scsipi_scsi.max_target = 7; sc->sc_link.type = BUS_SCSI; if (eisa_intr_map(ec, apd.sc_irq, &ih)) { printf("%s: couldn't map interrupt (%d)\n", sc->sc_dev.dv_xname, apd.sc_irq); return; } intrstr = eisa_intr_string(ec, ih); sc->sc_ih = eisa_intr_establish(ec, ih, IST_LEVEL, IPL_BIO, ahbintr, sc); if (sc->sc_ih == NULL) { printf("%s: couldn't establish interrupt", sc->sc_dev.dv_xname); if (intrstr != NULL) printf(" at %s", intrstr); printf("\n"); return; } if (intrstr != NULL) printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr); /* * ask the adapter what subunits are present */ config_found(self, &sc->sc_link, scsiprint); } /* * Insert a scsipi_xfer into the software queue. We overload xs->free_list * to avoid having to allocate additional resources (since we're used * only during resource shortages anyhow. */ void ahb_enqueue(sc, xs, infront) struct ahb_softc *sc; struct scsipi_xfer *xs; int infront; { if (infront || sc->sc_queue.lh_first == NULL) { if (sc->sc_queue.lh_first == NULL) sc->sc_queuelast = xs; LIST_INSERT_HEAD(&sc->sc_queue, xs, free_list); return; } LIST_INSERT_AFTER(sc->sc_queuelast, xs, free_list); sc->sc_queuelast = xs; } /* * Pull a scsipi_xfer off the front of the software queue. */ struct scsipi_xfer * ahb_dequeue(sc) struct ahb_softc *sc; { struct scsipi_xfer *xs; xs = sc->sc_queue.lh_first; LIST_REMOVE(xs, free_list); if (sc->sc_queue.lh_first == NULL) sc->sc_queuelast = NULL; return (xs); } /* * Function to send a command out through a mailbox */ void ahb_send_mbox(sc, opcode, ecb) struct ahb_softc *sc; int opcode; struct ahb_ecb *ecb; { bus_space_tag_t iot = sc->sc_iot; bus_space_handle_t ioh = sc->sc_ioh; int wait = 300; /* 1ms should be enough */ while (--wait) { if ((bus_space_read_1(iot, ioh, G2STAT) & (G2STAT_BUSY | G2STAT_MBOX_EMPTY)) == (G2STAT_MBOX_EMPTY)) break; delay(10); } if (!wait) { printf("%s: board not responding\n", sc->sc_dev.dv_xname); Debugger(); } /* * don't know if this will work. * XXX WHAT DOES THIS COMMENT MEAN?! --thorpej */ bus_space_write_4(iot, ioh, MBOXOUT0, sc->sc_dmamap_ecb->dm_segs[0].ds_addr + AHB_ECB_OFF(ecb)); bus_space_write_1(iot, ioh, ATTN, opcode | ecb->xs->sc_link->scsipi_scsi.target); if ((ecb->xs->flags & SCSI_POLL) == 0) timeout(ahb_timeout, ecb, (ecb->timeout * hz) / 1000); } /* * Function to send an immediate type command to the adapter */ void ahb_send_immed(sc, cmd, ecb) struct ahb_softc *sc; u_long cmd; struct ahb_ecb *ecb; { bus_space_tag_t iot = sc->sc_iot; bus_space_handle_t ioh = sc->sc_ioh; int wait = 100; /* 1 ms enough? */ while (--wait) { if ((bus_space_read_1(iot, ioh, G2STAT) & (G2STAT_BUSY | G2STAT_MBOX_EMPTY)) == (G2STAT_MBOX_EMPTY)) break; delay(10); } if (!wait) { printf("%s: board not responding\n", sc->sc_dev.dv_xname); Debugger(); } bus_space_write_4(iot, ioh, MBOXOUT0, cmd); /* don't know this will work */ bus_space_write_1(iot, ioh, G2CNTRL, G2CNTRL_SET_HOST_READY); bus_space_write_1(iot, ioh, ATTN, OP_IMMED | ecb->xs->sc_link->scsipi_scsi.target); if ((ecb->xs->flags & SCSI_POLL) == 0) timeout(ahb_timeout, ecb, (ecb->timeout * hz) / 1000); } /* * Catch an interrupt from the adaptor */ int ahbintr(arg) void *arg; { struct ahb_softc *sc = arg; bus_space_tag_t iot = sc->sc_iot; bus_space_handle_t ioh = sc->sc_ioh; struct ahb_ecb *ecb; u_char ahbstat; u_long mboxval; #ifdef AHBDEBUG printf("%s: ahbintr ", sc->sc_dev.dv_xname); #endif /* AHBDEBUG */ if ((bus_space_read_1(iot, ioh, G2STAT) & G2STAT_INT_PEND) == 0) return 0; for (;;) { /* * First get all the information and then * acknowlege the interrupt */ ahbstat = bus_space_read_1(iot, ioh, G2INTST); mboxval = bus_space_read_4(iot, ioh, MBOXIN0); bus_space_write_1(iot, ioh, G2CNTRL, G2CNTRL_CLEAR_EISA_INT); #ifdef AHBDEBUG printf("status = 0x%x ", ahbstat); #endif /* AHBDEBUG */ /* * Process the completed operation */ switch (ahbstat & G2INTST_INT_STAT) { case AHB_ECB_OK: case AHB_ECB_RECOVERED: case AHB_ECB_ERR: ecb = ahb_ecb_phys_kv(sc, mboxval); if (!ecb) { printf("%s: BAD ECB RETURNED!\n", sc->sc_dev.dv_xname); goto next; /* whatever it was, it'll timeout */ } break; case AHB_IMMED_ERR: ecb = sc->sc_immed_ecb; sc->sc_immed_ecb = 0; ecb->flags |= ECB_IMMED_FAIL; break; case AHB_IMMED_OK: ecb = sc->sc_immed_ecb; sc->sc_immed_ecb = 0; break; default: printf("%s: unexpected interrupt %x\n", sc->sc_dev.dv_xname, ahbstat); goto next; } untimeout(ahb_timeout, ecb); ahb_done(sc, ecb); next: if ((bus_space_read_1(iot, ioh, G2STAT) & G2STAT_INT_PEND) == 0) return 1; } } integrate void ahb_reset_ecb(sc, ecb) struct ahb_softc *sc; struct ahb_ecb *ecb; { ecb->flags = 0; } /* * A ecb (and hence a mbx-out is put onto the * free list. */ void ahb_free_ecb(sc, ecb) struct ahb_softc *sc; struct ahb_ecb *ecb; { int s; s = splbio(); ahb_reset_ecb(sc, ecb); TAILQ_INSERT_HEAD(&sc->sc_free_ecb, ecb, chain); /* * If there were none, wake anybody waiting for one to come free, * starting with queued entries. */ if (ecb->chain.tqe_next == 0) wakeup(&sc->sc_free_ecb); splx(s); } /* * Create a set of ecbs and add them to the free list. */ integrate int ahb_init_ecb(sc, ecb) struct ahb_softc *sc; struct ahb_ecb *ecb; { bus_dma_tag_t dmat = sc->sc_dmat; int hashnum, error; /* * Create the DMA map for this ECB. */ error = bus_dmamap_create(dmat, AHB_MAXXFER, AHB_NSEG, AHB_MAXXFER, 0, BUS_DMA_NOWAIT|BUS_DMA_ALLOCNOW, &ecb->dmamap_xfer); if (error) { printf("%s: can't create ecb dmamap_xfer\n", sc->sc_dev.dv_xname); return (error); } /* * put in the phystokv hash table * Never gets taken out. */ ecb->hashkey = sc->sc_dmamap_ecb->dm_segs[0].ds_addr + AHB_ECB_OFF(ecb); hashnum = ECB_HASH(ecb->hashkey); ecb->nexthash = sc->sc_ecbhash[hashnum]; sc->sc_ecbhash[hashnum] = ecb; ahb_reset_ecb(sc, ecb); return (0); } int ahb_create_ecbs(sc, ecbstore, count) struct ahb_softc *sc; struct ahb_ecb *ecbstore; int count; { struct ahb_ecb *ecb; int i, error; bzero(ecbstore, sizeof(struct ahb_ecb) * count); for (i = 0; i < count; i++) { ecb = &ecbstore[i]; if ((error = ahb_init_ecb(sc, ecb)) != 0) { printf("%s: unable to initialize ecb, error = %d\n", sc->sc_dev.dv_xname, error); goto out; } TAILQ_INSERT_TAIL(&sc->sc_free_ecb, ecb, chain); } out: return (i); } /* * Get a free ecb * * If there are none, see if we can allocate a new one. If so, put it in the * hash table too otherwise either return an error or sleep. */ struct ahb_ecb * ahb_get_ecb(sc, flags) struct ahb_softc *sc; int flags; { struct ahb_ecb *ecb; int s; s = splbio(); /* * If we can and have to, sleep waiting for one to come free * but only if we can't allocate a new one. */ for (;;) { ecb = sc->sc_free_ecb.tqh_first; if (ecb) { TAILQ_REMOVE(&sc->sc_free_ecb, ecb, chain); break; } if ((flags & SCSI_NOSLEEP) != 0) goto out; tsleep(&sc->sc_free_ecb, PRIBIO, "ahbecb", 0); } ecb->flags |= ECB_ALLOC; out: splx(s); return ecb; } /* * given a physical address, find the ecb that it corresponds to. */ struct ahb_ecb * ahb_ecb_phys_kv(sc, ecb_phys) struct ahb_softc *sc; physaddr ecb_phys; { int hashnum = ECB_HASH(ecb_phys); struct ahb_ecb *ecb = sc->sc_ecbhash[hashnum]; while (ecb) { if (ecb->hashkey == ecb_phys) break; ecb = ecb->nexthash; } return ecb; } /* * We have a ecb which has been processed by the adaptor, now we look to see * how the operation went. */ void ahb_done(sc, ecb) struct ahb_softc *sc; struct ahb_ecb *ecb; { bus_dma_tag_t dmat = sc->sc_dmat; struct scsipi_sense_data *s1, *s2; struct scsipi_xfer *xs = ecb->xs; SC_DEBUG(xs->sc_link, SDEV_DB2, ("ahb_done\n")); bus_dmamap_sync(dmat, sc->sc_dmamap_ecb, AHB_ECB_OFF(ecb), sizeof(struct ahb_ecb), BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE); /* * If we were a data transfer, unload the map that described * the data buffer. */ if (xs->datalen) { bus_dmamap_sync(dmat, ecb->dmamap_xfer, 0, ecb->dmamap_xfer->dm_mapsize, (xs->flags & SCSI_DATA_IN) ? BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(dmat, ecb->dmamap_xfer); } /* * Otherwise, put the results of the operation * into the xfer and call whoever started it */ if ((ecb->flags & ECB_ALLOC) == 0) { printf("%s: exiting ecb not allocated!\n", sc->sc_dev.dv_xname); Debugger(); } if (ecb->flags & ECB_IMMED) { if (ecb->flags & ECB_IMMED_FAIL) xs->error = XS_DRIVER_STUFFUP; goto done; } if (xs->error == XS_NOERROR) { if (ecb->ecb_status.host_stat != HS_OK) { switch (ecb->ecb_status.host_stat) { case HS_TIMED_OUT: /* No response */ xs->error = XS_SELTIMEOUT; break; default: /* Other scsi protocol messes */ printf("%s: host_stat %x\n", sc->sc_dev.dv_xname, ecb->ecb_status.host_stat); xs->error = XS_DRIVER_STUFFUP; } } else if (ecb->ecb_status.target_stat != SCSI_OK) { switch (ecb->ecb_status.target_stat) { case SCSI_CHECK: s1 = &ecb->ecb_sense; s2 = &xs->sense.scsi_sense; *s2 = *s1; xs->error = XS_SENSE; break; case SCSI_BUSY: xs->error = XS_BUSY; break; default: printf("%s: target_stat %x\n", sc->sc_dev.dv_xname, ecb->ecb_status.target_stat); xs->error = XS_DRIVER_STUFFUP; } } else xs->resid = 0; } done: ahb_free_ecb(sc, ecb); xs->flags |= ITSDONE; scsipi_done(xs); /* * If there are queue entries in the software queue, try to * run the first one. We should be more or less guaranteed * to succeed, since we just freed an ECB. * * NOTE: ahb_scsi_cmd() relies on our calling it with * the first entry in the queue. */ if ((xs = sc->sc_queue.lh_first) != NULL) (void) ahb_scsi_cmd(xs); } /* * Start the board, ready for normal operation */ int ahb_find(iot, ioh, sc) bus_space_tag_t iot; bus_space_handle_t ioh; struct ahb_probe_data *sc; { u_char intdef; int i, irq, busid; int wait = 1000; /* 1 sec enough? */ bus_space_write_1(iot, ioh, PORTADDR, PORTADDR_ENHANCED); #define NO_NO 1 #ifdef NO_NO /* * reset board, If it doesn't respond, assume * that it's not there.. good for the probe */ bus_space_write_1(iot, ioh, G2CNTRL, G2CNTRL_HARD_RESET); delay(1000); bus_space_write_1(iot, ioh, G2CNTRL, 0); delay(10000); while (--wait) { if ((bus_space_read_1(iot, ioh, G2STAT) & G2STAT_BUSY) == 0) break; delay(1000); } if (!wait) { #ifdef AHBDEBUG printf("ahb_find: No answer from aha1742 board\n"); #endif /* AHBDEBUG */ return ENXIO; } i = bus_space_read_1(iot, ioh, MBOXIN0); if (i) { printf("self test failed, val = 0x%x\n", i); return EIO; } /* Set it again, just to be sure. */ bus_space_write_1(iot, ioh, PORTADDR, PORTADDR_ENHANCED); #endif while (bus_space_read_1(iot, ioh, G2STAT) & G2STAT_INT_PEND) { printf("."); bus_space_write_1(iot, ioh, G2CNTRL, G2CNTRL_CLEAR_EISA_INT); delay(10000); } intdef = bus_space_read_1(iot, ioh, INTDEF); switch (intdef & 0x07) { case INT9: irq = 9; break; case INT10: irq = 10; break; case INT11: irq = 11; break; case INT12: irq = 12; break; case INT14: irq = 14; break; case INT15: irq = 15; break; default: printf("illegal int setting %x\n", intdef); return EIO; } bus_space_write_1(iot, ioh, INTDEF, (intdef | INTEN)); /* make sure we can interrupt */ /* who are we on the scsi bus? */ busid = (bus_space_read_1(iot, ioh, SCSIDEF) & HSCSIID); /* if we want to return data, do so now */ if (sc) { sc->sc_irq = irq; sc->sc_scsi_dev = busid; } /* * Note that we are going and return (to probe) */ return 0; } int ahb_init(sc) struct ahb_softc *sc; { bus_dma_segment_t seg; int i, error, rseg; #define ECBSIZE (AHB_ECB_MAX * sizeof(struct ahb_ecb)) /* * Allocate the ECBs. */ if ((error = bus_dmamem_alloc(sc->sc_dmat, ECBSIZE, NBPG, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) { printf("%s: unable to allocate ecbs, error = %d\n", sc->sc_dev.dv_xname, error); return (error); } if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg, ECBSIZE, (caddr_t *)&sc->sc_ecbs, BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) { printf("%s: unable to map ecbs, error = %d\n", sc->sc_dev.dv_xname, error); return (error); } /* * Create and load the DMA map used for the ecbs. */ if ((error = bus_dmamap_create(sc->sc_dmat, ECBSIZE, 1, ECBSIZE, 0, BUS_DMA_NOWAIT, &sc->sc_dmamap_ecb)) != 0) { printf("%s: unable to create ecb DMA map, error = %d\n", sc->sc_dev.dv_xname, error); return (error); } if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_dmamap_ecb, sc->sc_ecbs, ECBSIZE, NULL, BUS_DMA_NOWAIT)) != 0) { printf("%s: unable to load ecb DMA map, error = %d\n", sc->sc_dev.dv_xname, error); return (error); } #undef ECBSIZE /* * Initialize the ecbs. */ i = ahb_create_ecbs(sc, sc->sc_ecbs, AHB_ECB_MAX); if (i == 0) { printf("%s: unable to create ecbs\n", sc->sc_dev.dv_xname); return (ENOMEM); } else if (i != AHB_ECB_MAX) { printf("%s: WARNING: only %d of %d ecbs created\n", sc->sc_dev.dv_xname, i, AHB_ECB_MAX); } return (0); } void ahbminphys(bp) struct buf *bp; { if (bp->b_bcount > AHB_MAXXFER) bp->b_bcount = AHB_MAXXFER; minphys(bp); } /* * start a scsi operation given the command and the data address. Also needs * the unit, target and lu. */ int ahb_scsi_cmd(xs) struct scsipi_xfer *xs; { struct scsipi_link *sc_link = xs->sc_link; struct ahb_softc *sc = sc_link->adapter_softc; bus_dma_tag_t dmat = sc->sc_dmat; struct ahb_ecb *ecb; int error, seg, flags, s; int fromqueue = 0, dontqueue = 0; SC_DEBUG(sc_link, SDEV_DB2, ("ahb_scsi_cmd\n")); s = splbio(); /* protect the queue */ /* * If we're running the queue from ahb_done(), we've been * called with the first queue entry as our argument. */ if (xs == sc->sc_queue.lh_first) { xs = ahb_dequeue(sc); fromqueue = 1; goto get_ecb; } /* Polled requests can't be queued for later. */ dontqueue = xs->flags & SCSI_POLL; /* * If there are jobs in the queue, run them first. */ if (sc->sc_queue.lh_first != NULL) { /* * If we can't queue, we have to abort, since * we have to preserve order. */ if (dontqueue) { splx(s); xs->error = XS_DRIVER_STUFFUP; return (TRY_AGAIN_LATER); } /* * Swap with the first queue entry. */ ahb_enqueue(sc, xs, 0); xs = ahb_dequeue(sc); fromqueue = 1; } get_ecb: /* * get a ecb (mbox-out) to use. If the transfer * is from a buf (possibly from interrupt time) * then we can't allow it to sleep */ flags = xs->flags; if ((ecb = ahb_get_ecb(sc, flags)) == NULL) { /* * If we can't queue, we lose. */ if (dontqueue) { splx(s); xs->error = XS_DRIVER_STUFFUP; return (TRY_AGAIN_LATER); } /* * Stuff ourselves into the queue, in front * if we came off in the first place. */ ahb_enqueue(sc, xs, fromqueue); splx(s); return (SUCCESSFULLY_QUEUED); } splx(s); /* done playing with the queue */ ecb->xs = xs; ecb->timeout = xs->timeout; /* * If it's a reset, we need to do an 'immediate' * command, and store its ecb for later * if there is already an immediate waiting, * then WE must wait */ if (flags & SCSI_RESET) { ecb->flags |= ECB_IMMED; if (sc->sc_immed_ecb) return TRY_AGAIN_LATER; sc->sc_immed_ecb = ecb; s = splbio(); ahb_send_immed(sc, AHB_TARG_RESET, ecb); splx(s); if ((flags & SCSI_POLL) == 0) return SUCCESSFULLY_QUEUED; /* * If we can't use interrupts, poll on completion */ if (ahb_poll(sc, xs, ecb->timeout)) ahb_timeout(ecb); return COMPLETE; } /* * Put all the arguments for the xfer in the ecb */ ecb->opcode = ECB_SCSI_OP; ecb->opt1 = ECB_SES /*| ECB_DSB*/ | ECB_ARS; ecb->opt2 = sc_link->scsipi_scsi.lun | ECB_NRB; bcopy(xs->cmd, &ecb->scsi_cmd, ecb->scsi_cmd_length = xs->cmdlen); ecb->sense_ptr = sc->sc_dmamap_ecb->dm_segs[0].ds_addr + AHB_ECB_OFF(ecb) + offsetof(struct ahb_ecb, ecb_sense); ecb->req_sense_length = sizeof(ecb->ecb_sense); ecb->status = sc->sc_dmamap_ecb->dm_segs[0].ds_addr + AHB_ECB_OFF(ecb) + offsetof(struct ahb_ecb, ecb_status); ecb->ecb_status.host_stat = 0x00; ecb->ecb_status.target_stat = 0x00; if (xs->datalen) { /* * Map the DMA transfer. */ #ifdef TFS if (flags & SCSI_DATA_UIO) { error = bus_dmamap_load_uio(sc->sc_dmat, ecb->dmamap_xfer, (struct uio *)xs->data, (flags & SCSI_NOSLEEP) ? BUS_DMA_NOWAIT : BUS_DMA_WAITOK); } else #endif /* TFS */ { error = bus_dmamap_load(sc->sc_dmat, ecb->dmamap_xfer, xs->data, xs->datalen, NULL, (flags & SCSI_NOSLEEP) ? BUS_DMA_NOWAIT : BUS_DMA_WAITOK); } if (error) { if (error == EFBIG) { printf("%s: ahb_scsi_cmd, more than %d" " dma segments\n", sc->sc_dev.dv_xname, AHB_NSEG); } else { printf("%s: ahb_scsi_cmd, error %d loading" " dma map\n", sc->sc_dev.dv_xname, error); } goto bad; } bus_dmamap_sync(dmat, ecb->dmamap_xfer, 0, ecb->dmamap_xfer->dm_mapsize, (flags & SCSI_DATA_IN) ? BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE); /* * Load the hardware scatter/gather map with the * contents of the DMA map. */ for (seg = 0; seg < ecb->dmamap_xfer->dm_nsegs; seg++) { ecb->ahb_dma[seg].seg_addr = ecb->dmamap_xfer->dm_segs[seg].ds_addr; ecb->ahb_dma[seg].seg_len = ecb->dmamap_xfer->dm_segs[seg].ds_len; } ecb->data_addr = sc->sc_dmamap_ecb->dm_segs[0].ds_addr + AHB_ECB_OFF(ecb) + offsetof(struct ahb_ecb, ahb_dma); ecb->data_length = ecb->dmamap_xfer->dm_nsegs * sizeof(struct ahb_dma_seg); ecb->opt1 |= ECB_S_G; } else { /* No data xfer, use non S/G values */ ecb->data_addr = (physaddr)0; ecb->data_length = 0; } ecb->link_addr = (physaddr)0; bus_dmamap_sync(sc->sc_dmat, sc->sc_dmamap_ecb, AHB_ECB_OFF(ecb), sizeof(struct ahb_ecb), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); s = splbio(); ahb_send_mbox(sc, OP_START_ECB, ecb); splx(s); /* * Usually return SUCCESSFULLY QUEUED */ if ((flags & SCSI_POLL) == 0) return SUCCESSFULLY_QUEUED; /* * If we can't use interrupts, poll on completion */ if (ahb_poll(sc, xs, ecb->timeout)) { ahb_timeout(ecb); if (ahb_poll(sc, xs, ecb->timeout)) ahb_timeout(ecb); } return COMPLETE; bad: xs->error = XS_DRIVER_STUFFUP; ahb_free_ecb(sc, ecb); return COMPLETE; } /* * Function to poll for command completion when in poll mode */ int ahb_poll(sc, xs, count) struct ahb_softc *sc; struct scsipi_xfer *xs; int count; { /* in msec */ bus_space_tag_t iot = sc->sc_iot; bus_space_handle_t ioh = sc->sc_ioh; while (count) { /* * If we had interrupts enabled, would we * have got an interrupt? */ if (bus_space_read_1(iot, ioh, G2STAT) & G2STAT_INT_PEND) ahbintr(sc); if (xs->flags & ITSDONE) return 0; delay(1000); count--; } return 1; } void ahb_timeout(arg) void *arg; { struct ahb_ecb *ecb = arg; struct scsipi_xfer *xs = ecb->xs; struct scsipi_link *sc_link = xs->sc_link; struct ahb_softc *sc = sc_link->adapter_softc; int s; scsi_print_addr(sc_link); printf("timed out"); s = splbio(); if (ecb->flags & ECB_IMMED) { printf("\n"); ecb->flags |= ECB_IMMED_FAIL; /* XXX Must reset! */ } else /* * If it has been through before, then * a previous abort has failed, don't * try abort again */ if (ecb->flags & ECB_ABORT) { /* abort timed out */ printf(" AGAIN\n"); /* XXX Must reset! */ } else { /* abort the operation that has timed out */ printf("\n"); ecb->xs->error = XS_TIMEOUT; ecb->timeout = AHB_ABORT_TIMEOUT; ecb->flags |= ECB_ABORT; ahb_send_mbox(sc, OP_ABORT_ECB, ecb); } splx(s); }