/* $NetBSD: db_run.c,v 1.23 2005/06/01 12:25:27 drochner Exp $ */ /* * Mach Operating System * Copyright (c) 1993-1990 Carnegie Mellon University * All Rights Reserved. * * Permission to use, copy, modify and distribute this software and its * documentation is hereby granted, provided that both the copyright * notice and this permission notice appear in all copies of the * software, derivative works or modified versions, and any portions * thereof, and that both notices appear in supporting documentation. * * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. * * Carnegie Mellon requests users of this software to return to * * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU * School of Computer Science * Carnegie Mellon University * Pittsburgh PA 15213-3890 * * any improvements or extensions that they make and grant Carnegie the * rights to redistribute these changes. * * Author: David B. Golub, Carnegie Mellon University * Date: 7/90 */ /* * Commands to run process. */ #include __KERNEL_RCSID(0, "$NetBSD: db_run.c,v 1.23 2005/06/01 12:25:27 drochner Exp $"); #include "opt_ddb.h" #include #include #include #include #include #include int db_inst_count; int db_load_count; int db_store_count; #ifdef SOFTWARE_SSTEP static void db_set_temp_breakpoint(db_breakpoint_t, db_addr_t); static void db_delete_temp_breakpoint(db_breakpoint_t); static struct db_breakpoint db_not_taken_bkpt; static struct db_breakpoint db_taken_bkpt; #endif #if defined(DDB) #include #include #include #include #include static int db_run_mode; #define STEP_NONE 0 #define STEP_ONCE 1 #define STEP_RETURN 2 #define STEP_CALLT 3 #define STEP_CONTINUE 4 #define STEP_INVISIBLE 5 #define STEP_COUNT 6 static boolean_t db_sstep_print; static int db_loop_count; static int db_call_depth; boolean_t db_stop_at_pc(db_regs_t *regs, boolean_t *is_breakpoint) { db_addr_t pc; db_breakpoint_t bkpt; pc = PC_REGS(regs); #ifdef FIXUP_PC_AFTER_BREAK if (*is_breakpoint) { /* * Breakpoint trap. Regardless if we treat this as a * real breakpoint (e.g. software single-step), fix up the PC. */ FIXUP_PC_AFTER_BREAK(regs); pc = PC_REGS(regs); } #endif #ifdef SOFTWARE_SSTEP /* * If we stopped at one of the single-step breakpoints, say it's not * really a breakpoint so that we don't skip over the real instruction. */ if (db_taken_bkpt.address == pc || db_not_taken_bkpt.address == pc) *is_breakpoint = FALSE; #endif /* SOFTWARE_SSTEP */ db_clear_single_step(regs); db_clear_breakpoints(); db_clear_watchpoints(); /* * Now check for a breakpoint at this address. */ bkpt = db_find_breakpoint_here(pc); if (bkpt) { if (--bkpt->count == 0) { bkpt->count = bkpt->init_count; *is_breakpoint = TRUE; return (TRUE); /* stop here */ } } else if (*is_breakpoint) { #ifdef PC_ADVANCE PC_ADVANCE(regs); #else PC_REGS(regs) += BKPT_SIZE; #endif } *is_breakpoint = FALSE; if (db_run_mode == STEP_INVISIBLE) { db_run_mode = STEP_CONTINUE; return (FALSE); /* continue */ } if (db_run_mode == STEP_COUNT) { return (FALSE); /* continue */ } if (db_run_mode == STEP_ONCE) { if (--db_loop_count > 0) { if (db_sstep_print) { db_printf("\t\t"); db_print_loc_and_inst(pc); db_printf("\n"); } return (FALSE); /* continue */ } } if (db_run_mode == STEP_RETURN) { db_expr_t ins = db_get_value(pc, sizeof(int), FALSE); /* continue until matching return */ if (!inst_trap_return(ins) && (!inst_return(ins) || --db_call_depth != 0)) { if (db_sstep_print) { if (inst_call(ins) || inst_return(ins)) { int i; db_printf("[after %6d] ", db_inst_count); for (i = db_call_depth; --i > 0; ) db_printf(" "); db_print_loc_and_inst(pc); db_printf("\n"); } } if (inst_call(ins)) db_call_depth++; return (FALSE); /* continue */ } } if (db_run_mode == STEP_CALLT) { db_expr_t ins = db_get_value(pc, sizeof(int), FALSE); /* continue until call or return */ if (!inst_call(ins) && !inst_return(ins) && !inst_trap_return(ins)) { return (FALSE); /* continue */ } } db_run_mode = STEP_NONE; return (TRUE); } void db_restart_at_pc(db_regs_t *regs, boolean_t watchpt) { db_addr_t pc = PC_REGS(regs); #ifdef SOFTWARE_SSTEP db_addr_t brpc; #endif if ((db_run_mode == STEP_COUNT) || (db_run_mode == STEP_RETURN) || (db_run_mode == STEP_CALLT)) { db_expr_t ins; /* * We are about to execute this instruction, * so count it now. */ ins = db_get_value(pc, sizeof(int), FALSE); db_inst_count++; db_load_count += inst_load(ins); db_store_count += inst_store(ins); #ifdef SOFTWARE_SSTEP /* * Account for instructions in delay slots. */ brpc = next_instr_address(pc, TRUE); if ((brpc != pc) && (inst_branch(ins) || inst_call(ins) || inst_return(ins))) { ins = db_get_value(brpc, sizeof(int), FALSE); db_inst_count++; db_load_count += inst_load(ins); db_store_count += inst_store(ins); } #endif } if (db_run_mode == STEP_CONTINUE) { if (watchpt || db_find_breakpoint_here(pc)) { /* * Step over breakpoint/watchpoint. */ db_run_mode = STEP_INVISIBLE; db_set_single_step(regs); } else { db_set_breakpoints(); db_set_watchpoints(); } } else { db_set_single_step(regs); } } void db_single_step(db_regs_t *regs) { if (db_run_mode == STEP_CONTINUE) { db_run_mode = STEP_INVISIBLE; db_set_single_step(regs); } } /* single-step */ /*ARGSUSED*/ void db_single_step_cmd(db_expr_t addr, int have_addr, db_expr_t count, const char *modif) { boolean_t print = FALSE; if (count == -1) count = 1; if (modif[0] == 'p') print = TRUE; db_run_mode = STEP_ONCE; db_loop_count = count; db_sstep_print = print; db_inst_count = 0; db_load_count = 0; db_store_count = 0; db_cmd_loop_done = 1; } /* trace and print until call/return */ /*ARGSUSED*/ void db_trace_until_call_cmd(db_expr_t addr, int have_addr, db_expr_t count, const char *modif) { boolean_t print = FALSE; if (modif[0] == 'p') print = TRUE; db_run_mode = STEP_CALLT; db_sstep_print = print; db_inst_count = 0; db_load_count = 0; db_store_count = 0; db_cmd_loop_done = 1; } /*ARGSUSED*/ void db_trace_until_matching_cmd(db_expr_t addr, int have_addr, db_expr_t count, const char *modif) { boolean_t print = FALSE; if (modif[0] == 'p') print = TRUE; db_run_mode = STEP_RETURN; db_call_depth = 1; db_sstep_print = print; db_inst_count = 0; db_load_count = 0; db_store_count = 0; db_cmd_loop_done = 1; } /* continue */ /*ARGSUSED*/ void db_continue_cmd(db_expr_t addr, int have_addr, db_expr_t count, const char *modif) { if (modif[0] == 'c') db_run_mode = STEP_COUNT; else db_run_mode = STEP_CONTINUE; db_inst_count = 0; db_load_count = 0; db_store_count = 0; db_cmd_loop_done = 1; } #endif /* DDB */ #ifdef SOFTWARE_SSTEP /* * Software implementation of single-stepping. * If your machine does not have a trace mode * similar to the vax or sun ones you can use * this implementation, done for the mips. * Just define the above conditional and provide * the functions/macros defined below. * * boolean_t inst_branch(int inst) * boolean_t inst_call(int inst) * returns TRUE if the instruction might branch * * boolean_t inst_unconditional_flow_transfer(int inst) * returns TRUE if the instruction is an unconditional * transter of flow (i.e. unconditional branch) * * db_addr_t branch_taken(int inst, db_addr_t pc, db_regs_t *regs) * returns the target address of the branch * * db_addr_t next_instr_address(db_addr_t pc, boolean_t bd) * returns the address of the first instruction following the * one at "pc", which is either in the taken path of the branch * (bd == TRUE) or not. This is for machines (e.g. mips) with * branch delays. * * A single-step may involve at most 2 breakpoints - * one for branch-not-taken and one for branch taken. * If one of these addresses does not already have a breakpoint, * we allocate a breakpoint and save it here. * These breakpoints are deleted on return. */ #if !defined(DDB) /* XXX - don't check for existing breakpoints in KGDB-only case */ #define db_find_breakpoint_here(pc) (0) #endif void db_set_single_step(db_regs_t *regs) { db_addr_t pc = PC_REGS(regs), brpc = pc; boolean_t unconditional; unsigned int inst; /* * User was stopped at pc, e.g. the instruction * at pc was not executed. */ inst = db_get_value(pc, sizeof(int), FALSE); if (inst_branch(inst) || inst_call(inst) || inst_return(inst)) { brpc = branch_taken(inst, pc, regs); if (brpc != pc) { /* self-branches are hopeless */ db_set_temp_breakpoint(&db_taken_bkpt, brpc); } else db_taken_bkpt.address = 0; pc = next_instr_address(pc, TRUE); } /* * Check if this control flow instruction is an * unconditional transfer. */ unconditional = inst_unconditional_flow_transfer(inst); pc = next_instr_address(pc, FALSE); /* * We only set the sequential breakpoint if previous * instruction was not an unconditional change of flow * control. If the previous instruction is an * unconditional change of flow control, setting a * breakpoint in the next sequential location may set * a breakpoint in data or in another routine, which * could screw up in either the program or the debugger. * (Consider, for instance, that the next sequential * instruction is the start of a routine needed by the * debugger.) * * Also, don't set both the taken and not-taken breakpoints * in the same place even if the MD code would otherwise * have us do so. */ if (unconditional == FALSE && db_find_breakpoint_here(pc) == 0 && pc != brpc) db_set_temp_breakpoint(&db_not_taken_bkpt, pc); else db_not_taken_bkpt.address = 0; } void db_clear_single_step(db_regs_t *regs) { if (db_taken_bkpt.address != 0) db_delete_temp_breakpoint(&db_taken_bkpt); if (db_not_taken_bkpt.address != 0) db_delete_temp_breakpoint(&db_not_taken_bkpt); } void db_set_temp_breakpoint(db_breakpoint_t bkpt, db_addr_t addr) { bkpt->map = NULL; bkpt->address = addr; /* bkpt->flags = BKPT_TEMP; - this is not used */ bkpt->init_count = 1; bkpt->count = 1; bkpt->bkpt_inst = db_get_value(bkpt->address, BKPT_SIZE, FALSE); db_put_value(bkpt->address, BKPT_SIZE, BKPT_SET(bkpt->bkpt_inst)); } void db_delete_temp_breakpoint(db_breakpoint_t bkpt) { db_put_value(bkpt->address, BKPT_SIZE, bkpt->bkpt_inst); bkpt->address = 0; } #endif /* SOFTWARE_SSTEP */