/* $NetBSD: ieee80211_output.c,v 1.51 2011/12/31 20:41:58 christos Exp $ */ /*- * Copyright (c) 2001 Atsushi Onoe * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #ifdef __FreeBSD__ __FBSDID("$FreeBSD: src/sys/net80211/ieee80211_output.c,v 1.34 2005/08/10 16:22:29 sam Exp $"); #endif #ifdef __NetBSD__ __KERNEL_RCSID(0, "$NetBSD: ieee80211_output.c,v 1.51 2011/12/31 20:41:58 christos Exp $"); #endif #include "opt_inet.h" #ifdef __NetBSD__ #endif /* __NetBSD__ */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef INET #include #include #include #include #include #endif static int ieee80211_fragment(struct ieee80211com *, struct mbuf *, u_int hdrsize, u_int ciphdrsize, u_int mtu); #ifdef IEEE80211_DEBUG /* * Decide if an outbound management frame should be * printed when debugging is enabled. This filters some * of the less interesting frames that come frequently * (e.g. beacons). */ static __inline int doprint(struct ieee80211com *ic, int subtype) { switch (subtype) { case IEEE80211_FC0_SUBTYPE_PROBE_RESP: return (ic->ic_opmode == IEEE80211_M_IBSS); } return 1; } #endif /* * Set the direction field and address fields of an outgoing * non-QoS frame. Note this should be called early on in * constructing a frame as it sets i_fc[1]; other bits can * then be or'd in. */ static void ieee80211_send_setup(struct ieee80211com *ic, struct ieee80211_node *ni, struct ieee80211_frame *wh, int type, const u_int8_t sa[IEEE80211_ADDR_LEN], const u_int8_t da[IEEE80211_ADDR_LEN], const u_int8_t bssid[IEEE80211_ADDR_LEN]) { #define WH4(wh) ((struct ieee80211_frame_addr4 *)wh) wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | type; if ((type & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_DATA) { switch (ic->ic_opmode) { case IEEE80211_M_STA: wh->i_fc[1] = IEEE80211_FC1_DIR_TODS; IEEE80211_ADDR_COPY(wh->i_addr1, bssid); IEEE80211_ADDR_COPY(wh->i_addr2, sa); IEEE80211_ADDR_COPY(wh->i_addr3, da); break; case IEEE80211_M_IBSS: case IEEE80211_M_AHDEMO: wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; IEEE80211_ADDR_COPY(wh->i_addr1, da); IEEE80211_ADDR_COPY(wh->i_addr2, sa); IEEE80211_ADDR_COPY(wh->i_addr3, bssid); break; case IEEE80211_M_HOSTAP: wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS; IEEE80211_ADDR_COPY(wh->i_addr1, da); IEEE80211_ADDR_COPY(wh->i_addr2, bssid); IEEE80211_ADDR_COPY(wh->i_addr3, sa); break; case IEEE80211_M_MONITOR: /* NB: to quiet compiler */ break; } } else { wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; IEEE80211_ADDR_COPY(wh->i_addr1, da); IEEE80211_ADDR_COPY(wh->i_addr2, sa); IEEE80211_ADDR_COPY(wh->i_addr3, bssid); } *(u_int16_t *)&wh->i_dur[0] = 0; /* NB: use non-QoS tid */ *(u_int16_t *)&wh->i_seq[0] = htole16(ni->ni_txseqs[0] << IEEE80211_SEQ_SEQ_SHIFT); ni->ni_txseqs[0]++; #undef WH4 } /* * Send a management frame to the specified node. The node pointer * must have a reference as the pointer will be passed to the driver * and potentially held for a long time. If the frame is successfully * dispatched to the driver, then it is responsible for freeing the * reference (and potentially free'ing up any associated storage). */ static int ieee80211_mgmt_output(struct ieee80211com *ic, struct ieee80211_node *ni, struct mbuf *m, int type, int timer) { struct ifnet *ifp = ic->ic_ifp; struct ieee80211_frame *wh; IASSERT(ni != NULL, ("null node")); /* * Yech, hack alert! We want to pass the node down to the * driver's start routine. If we don't do so then the start * routine must immediately look it up again and that can * cause a lock order reversal if, for example, this frame * is being sent because the station is being timedout and * the frame being sent is a DEAUTH message. We could stick * this in an m_tag and tack that on to the mbuf. However * that's rather expensive to do for every frame so instead * we stuff it in the rcvif field since outbound frames do * not (presently) use this. */ M_PREPEND(m, sizeof(struct ieee80211_frame), M_DONTWAIT); if (m == NULL) return ENOMEM; #ifdef __FreeBSD__ KASSERT(m->m_pkthdr.rcvif == NULL, ("rcvif not null")); #endif m->m_pkthdr.rcvif = (void *)ni; wh = mtod(m, struct ieee80211_frame *); ieee80211_send_setup(ic, ni, wh, IEEE80211_FC0_TYPE_MGT | type, ic->ic_myaddr, ni->ni_macaddr, ni->ni_bssid); if ((m->m_flags & M_LINK0) != 0 && ni->ni_challenge != NULL) { m->m_flags &= ~M_LINK0; IEEE80211_DPRINTF(ic, IEEE80211_MSG_AUTH, "[%s] encrypting frame (%s)\n", ether_sprintf(wh->i_addr1), __func__); wh->i_fc[1] |= IEEE80211_FC1_WEP; } #ifdef IEEE80211_DEBUG /* avoid printing too many frames */ if ((ieee80211_msg_debug(ic) && doprint(ic, type)) || ieee80211_msg_dumppkts(ic)) { printf("[%s] send %s on channel %u\n", ether_sprintf(wh->i_addr1), ieee80211_mgt_subtype_name[ (type & IEEE80211_FC0_SUBTYPE_MASK) >> IEEE80211_FC0_SUBTYPE_SHIFT], ieee80211_chan2ieee(ic, ic->ic_curchan)); } #endif IEEE80211_NODE_STAT(ni, tx_mgmt); IF_ENQUEUE(&ic->ic_mgtq, m); if (timer) { /* * Set the mgt frame timeout. */ ic->ic_mgt_timer = timer; ifp->if_timer = 1; } (*ifp->if_start)(ifp); return 0; } /* * Send a null data frame to the specified node. * * NB: the caller is assumed to have setup a node reference * for use; this is necessary to deal with a race condition * when probing for inactive stations. */ int ieee80211_send_nulldata(struct ieee80211_node *ni) { struct ieee80211com *ic = ni->ni_ic; struct ifnet *ifp = ic->ic_ifp; struct mbuf *m; struct ieee80211_frame *wh; MGETHDR(m, M_NOWAIT, MT_HEADER); if (m == NULL) { /* XXX debug msg */ ic->ic_stats.is_tx_nobuf++; ieee80211_unref_node(&ni); return ENOMEM; } m->m_pkthdr.rcvif = (void *) ni; wh = mtod(m, struct ieee80211_frame *); ieee80211_send_setup(ic, ni, wh, IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_NODATA, ic->ic_myaddr, ni->ni_macaddr, ni->ni_bssid); /* NB: power management bit is never sent by an AP */ if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) && ic->ic_opmode != IEEE80211_M_HOSTAP) wh->i_fc[1] |= IEEE80211_FC1_PWR_MGT; m->m_len = m->m_pkthdr.len = sizeof(struct ieee80211_frame); IEEE80211_NODE_STAT(ni, tx_data); IEEE80211_DPRINTF(ic, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, "[%s] send null data frame on channel %u, pwr mgt %s\n", ether_sprintf(ni->ni_macaddr), ieee80211_chan2ieee(ic, ic->ic_curchan), wh->i_fc[1] & IEEE80211_FC1_PWR_MGT ? "ena" : "dis"); IF_ENQUEUE(&ic->ic_mgtq, m); /* cheat */ (*ifp->if_start)(ifp); return 0; } /* * Assign priority to a frame based on any vlan tag assigned * to the station and/or any Diffserv setting in an IP header. * Finally, if an ACM policy is setup (in station mode) it's * applied. */ int ieee80211_classify(struct ieee80211com *ic, struct mbuf *m, struct ieee80211_node *ni) { int v_wme_ac, d_wme_ac, ac; #ifdef INET struct ether_header *eh; #endif if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0) { ac = WME_AC_BE; goto done; } /* * If node has a vlan tag then all traffic * to it must have a matching tag. */ v_wme_ac = 0; if (ni->ni_vlan != 0) { /* XXX used to check ec_nvlans. */ struct m_tag *mtag = m_tag_find(m, PACKET_TAG_VLAN, NULL); if (mtag == NULL) { IEEE80211_NODE_STAT(ni, tx_novlantag); return 1; } if (EVL_VLANOFTAG(VLAN_TAG_VALUE(mtag)) != EVL_VLANOFTAG(ni->ni_vlan)) { IEEE80211_NODE_STAT(ni, tx_vlanmismatch); return 1; } /* map vlan priority to AC */ switch (EVL_PRIOFTAG(ni->ni_vlan)) { case 1: case 2: v_wme_ac = WME_AC_BK; break; case 0: case 3: v_wme_ac = WME_AC_BE; break; case 4: case 5: v_wme_ac = WME_AC_VI; break; case 6: case 7: v_wme_ac = WME_AC_VO; break; } } #ifdef INET eh = mtod(m, struct ether_header *); if (eh->ether_type == htons(ETHERTYPE_IP)) { const struct ip *ip = (struct ip *) (mtod(m, u_int8_t *) + sizeof (*eh)); /* * IP frame, map the TOS field. */ switch (ip->ip_tos) { case 0x08: case 0x20: d_wme_ac = WME_AC_BK; /* background */ break; case 0x28: case 0xa0: d_wme_ac = WME_AC_VI; /* video */ break; case 0x30: /* voice */ case 0xe0: case 0x88: /* XXX UPSD */ case 0xb8: d_wme_ac = WME_AC_VO; break; default: d_wme_ac = WME_AC_BE; break; } } else { #endif /* INET */ d_wme_ac = WME_AC_BE; #ifdef INET } #endif /* * Use highest priority AC. */ if (v_wme_ac > d_wme_ac) ac = v_wme_ac; else ac = d_wme_ac; /* * Apply ACM policy. */ if (ic->ic_opmode == IEEE80211_M_STA) { static const int acmap[4] = { WME_AC_BK, /* WME_AC_BE */ WME_AC_BK, /* WME_AC_BK */ WME_AC_BE, /* WME_AC_VI */ WME_AC_VI, /* WME_AC_VO */ }; while (ac != WME_AC_BK && ic->ic_wme.wme_wmeBssChanParams.cap_wmeParams[ac].wmep_acm) ac = acmap[ac]; } done: M_WME_SETAC(m, ac); return 0; } /* * Insure there is sufficient contiguous space to encapsulate the * 802.11 data frame. If room isn't already there, arrange for it. * Drivers and cipher modules assume we have done the necessary work * and fail rudely if they don't find the space they need. */ static struct mbuf * ieee80211_mbuf_adjust(struct ieee80211com *ic, int hdrsize, struct ieee80211_key *key, struct mbuf *m) { #define TO_BE_RECLAIMED (sizeof(struct ether_header) - sizeof(struct llc)) int needed_space = hdrsize; int wlen = 0; if (key != NULL) { /* XXX belongs in crypto code? */ needed_space += key->wk_cipher->ic_header; /* XXX frags */ } /* * We know we are called just before stripping an Ethernet * header and prepending an LLC header. This means we know * there will be * sizeof(struct ether_header) - sizeof(struct llc) * bytes recovered to which we need additional space for the * 802.11 header and any crypto header. */ /* XXX check trailing space and copy instead? */ if (M_LEADINGSPACE(m) < needed_space - TO_BE_RECLAIMED) { struct mbuf *n = m_gethdr(M_NOWAIT, m->m_type); if (n == NULL) { IEEE80211_DPRINTF(ic, IEEE80211_MSG_OUTPUT, "%s: cannot expand storage\n", __func__); ic->ic_stats.is_tx_nobuf++; m_freem(m); return NULL; } IASSERT(needed_space <= MHLEN, ("not enough room, need %u got %zu\n", needed_space, MHLEN)); /* * Setup new mbuf to have leading space to prepend the * 802.11 header and any crypto header bits that are * required (the latter are added when the driver calls * back to ieee80211_crypto_encap to do crypto encapsulation). */ /* NB: must be first 'cuz it clobbers m_data */ M_MOVE_PKTHDR(n, m); n->m_len = 0; /* NB: m_gethdr does not set */ n->m_data += needed_space; /* * Pull up Ethernet header to create the expected layout. * We could use m_pullup but that's overkill (i.e. we don't * need the actual data) and it cannot fail so do it inline * for speed. */ /* NB: struct ether_header is known to be contiguous */ n->m_len += sizeof(struct ether_header); m->m_len -= sizeof(struct ether_header); m->m_data += sizeof(struct ether_header); /* * Replace the head of the chain. */ n->m_next = m; m = n; } else { /* We will overwrite the ethernet header in the * 802.11 encapsulation stage. Make sure that it * is writable. */ wlen = sizeof(struct ether_header); } /* * If we're going to s/w encrypt the mbuf chain make sure it is * writable. */ if (key != NULL && (key->wk_flags & IEEE80211_KEY_SWCRYPT) != 0) wlen = M_COPYALL; if (wlen != 0 && m_makewritable(&m, 0, wlen, M_DONTWAIT) != 0) { m_freem(m); return NULL; } return m; #undef TO_BE_RECLAIMED } /* * Return the transmit key to use in sending a unicast frame. * If a unicast key is set we use that. When no unicast key is set * we fall back to the default transmit key. */ static __inline struct ieee80211_key * ieee80211_crypto_getucastkey(struct ieee80211com *ic, struct ieee80211_node *ni) { if (IEEE80211_KEY_UNDEFINED(ni->ni_ucastkey)) { if (ic->ic_def_txkey == IEEE80211_KEYIX_NONE || IEEE80211_KEY_UNDEFINED(ic->ic_nw_keys[ic->ic_def_txkey])) return NULL; return &ic->ic_nw_keys[ic->ic_def_txkey]; } else { return &ni->ni_ucastkey; } } /* * Return the transmit key to use in sending a multicast frame. * Multicast traffic always uses the group key which is installed as * the default tx key. */ static __inline struct ieee80211_key * ieee80211_crypto_getmcastkey(struct ieee80211com *ic, struct ieee80211_node *ni) { if (ic->ic_def_txkey == IEEE80211_KEYIX_NONE || IEEE80211_KEY_UNDEFINED(ic->ic_nw_keys[ic->ic_def_txkey])) return NULL; return &ic->ic_nw_keys[ic->ic_def_txkey]; } /* * Encapsulate an outbound data frame. The mbuf chain is updated. * If an error is encountered NULL is returned. The caller is required * to provide a node reference and pullup the ethernet header in the * first mbuf. */ struct mbuf * ieee80211_encap(struct ieee80211com *ic, struct mbuf *m, struct ieee80211_node *ni) { struct ether_header eh; struct ieee80211_frame *wh; struct ieee80211_key *key; struct llc *llc; int hdrsize, datalen, addqos, txfrag; IASSERT(m->m_len >= sizeof(eh), ("no ethernet header!")); memcpy(&eh, mtod(m, void *), sizeof(struct ether_header)); /* * Insure space for additional headers. First identify * transmit key to use in calculating any buffer adjustments * required. This is also used below to do privacy * encapsulation work. Then calculate the 802.11 header * size and any padding required by the driver. * * Note key may be NULL if we fall back to the default * transmit key and that is not set. In that case the * buffer may not be expanded as needed by the cipher * routines, but they will/should discard it. */ if (ic->ic_flags & IEEE80211_F_PRIVACY) { if (ic->ic_opmode == IEEE80211_M_STA || !IEEE80211_IS_MULTICAST(eh.ether_dhost)) key = ieee80211_crypto_getucastkey(ic, ni); else key = ieee80211_crypto_getmcastkey(ic, ni); if (key == NULL && eh.ether_type != htons(ETHERTYPE_PAE)) { IEEE80211_DPRINTF(ic, IEEE80211_MSG_CRYPTO, "[%s] no default transmit key (%s) deftxkey %u\n", ether_sprintf(eh.ether_dhost), __func__, ic->ic_def_txkey); ic->ic_stats.is_tx_nodefkey++; } } else key = NULL; /* XXX 4-address format */ /* * XXX Some ap's don't handle QoS-encapsulated EAPOL * frames so suppress use. This may be an issue if other * ap's require all data frames to be QoS-encapsulated * once negotiated in which case we'll need to make this * configurable. */ addqos = (ni->ni_flags & IEEE80211_NODE_QOS) && eh.ether_type != htons(ETHERTYPE_PAE); if (addqos) hdrsize = sizeof(struct ieee80211_qosframe); else hdrsize = sizeof(struct ieee80211_frame); if (ic->ic_flags & IEEE80211_F_DATAPAD) hdrsize = roundup(hdrsize, sizeof(u_int32_t)); m = ieee80211_mbuf_adjust(ic, hdrsize, key, m); if (m == NULL) { /* NB: ieee80211_mbuf_adjust handles msgs+statistics */ goto bad; } /* NB: this could be optimized because of ieee80211_mbuf_adjust */ m_adj(m, sizeof(struct ether_header) - sizeof(struct llc)); llc = mtod(m, struct llc *); llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP; llc->llc_control = LLC_UI; llc->llc_snap.org_code[0] = 0; llc->llc_snap.org_code[1] = 0; llc->llc_snap.org_code[2] = 0; llc->llc_snap.ether_type = eh.ether_type; datalen = m->m_pkthdr.len; /* NB: w/o 802.11 header */ M_PREPEND(m, hdrsize, M_DONTWAIT); if (m == NULL) { ic->ic_stats.is_tx_nobuf++; goto bad; } wh = mtod(m, struct ieee80211_frame *); wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_DATA; *(u_int16_t *)wh->i_dur = 0; switch (ic->ic_opmode) { case IEEE80211_M_STA: wh->i_fc[1] = IEEE80211_FC1_DIR_TODS; IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_bssid); IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost); IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost); break; case IEEE80211_M_IBSS: case IEEE80211_M_AHDEMO: wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost); IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost); /* * NB: always use the bssid from ic_bss as the * neighbor's may be stale after an ibss merge */ IEEE80211_ADDR_COPY(wh->i_addr3, ic->ic_bss->ni_bssid); break; case IEEE80211_M_HOSTAP: #ifndef IEEE80211_NO_HOSTAP wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS; IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost); IEEE80211_ADDR_COPY(wh->i_addr2, ni->ni_bssid); IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_shost); #endif /* !IEEE80211_NO_HOSTAP */ break; case IEEE80211_M_MONITOR: goto bad; } if (m->m_flags & M_MORE_DATA) wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA; if (addqos) { struct ieee80211_qosframe *qwh = (struct ieee80211_qosframe *) wh; int ac, tid; ac = M_WME_GETAC(m); /* map from access class/queue to 11e header priorty value */ tid = WME_AC_TO_TID(ac); qwh->i_qos[0] = tid & IEEE80211_QOS_TID; if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[ac].wmep_noackPolicy) qwh->i_qos[0] |= 1 << IEEE80211_QOS_ACKPOLICY_S; qwh->i_qos[1] = 0; qwh->i_fc[0] |= IEEE80211_FC0_SUBTYPE_QOS; *(u_int16_t *)wh->i_seq = htole16(ni->ni_txseqs[tid] << IEEE80211_SEQ_SEQ_SHIFT); ni->ni_txseqs[tid]++; } else { *(u_int16_t *)wh->i_seq = htole16(ni->ni_txseqs[0] << IEEE80211_SEQ_SEQ_SHIFT); ni->ni_txseqs[0]++; } /* check if xmit fragmentation is required */ txfrag = (m->m_pkthdr.len > ic->ic_fragthreshold && !IEEE80211_IS_MULTICAST(wh->i_addr1) && (m->m_flags & M_FF) == 0); /* NB: don't fragment ff's */ if (key != NULL) { /* * IEEE 802.1X: send EAPOL frames always in the clear. * WPA/WPA2: encrypt EAPOL keys when pairwise keys are set. */ if (eh.ether_type != htons(ETHERTYPE_PAE) || ((ic->ic_flags & IEEE80211_F_WPA) && (ic->ic_opmode == IEEE80211_M_STA ? !IEEE80211_KEY_UNDEFINED(*key) : !IEEE80211_KEY_UNDEFINED(ni->ni_ucastkey)))) { wh->i_fc[1] |= IEEE80211_FC1_WEP; if (!ieee80211_crypto_enmic(ic, key, m, txfrag)) { IEEE80211_DPRINTF(ic, IEEE80211_MSG_OUTPUT, "[%s] enmic failed, discard frame\n", ether_sprintf(eh.ether_dhost)); ic->ic_stats.is_crypto_enmicfail++; goto bad; } } } if (txfrag && !ieee80211_fragment(ic, m, hdrsize, key != NULL ? key->wk_cipher->ic_header : 0, ic->ic_fragthreshold)) goto bad; IEEE80211_NODE_STAT(ni, tx_data); IEEE80211_NODE_STAT_ADD(ni, tx_bytes, datalen); return m; bad: if (m != NULL) m_freem(m); return NULL; } /* * Arguments in: * * paylen: payload length (no FCS, no WEP header) * * hdrlen: header length * * rate: MSDU speed, units 500kb/s * * flags: IEEE80211_F_SHPREAMBLE (use short preamble), * IEEE80211_F_SHSLOT (use short slot length) * * Arguments out: * * d: 802.11 Duration field for RTS, * 802.11 Duration field for data frame, * PLCP Length for data frame, * residual octets at end of data slot */ static int ieee80211_compute_duration1(int len, int use_ack, uint32_t icflags, int rate, struct ieee80211_duration *d) { int pre, ctsrate; int ack, bitlen, data_dur, remainder; /* RTS reserves medium for SIFS | CTS | SIFS | (DATA) | SIFS | ACK * DATA reserves medium for SIFS | ACK, * * (XXX or SIFS | ACK | SIFS | DATA | SIFS | ACK, if more fragments) * * XXXMYC: no ACK on multicast/broadcast or control packets */ bitlen = len * 8; pre = IEEE80211_DUR_DS_SIFS; if ((icflags & IEEE80211_F_SHPREAMBLE) != 0) pre += IEEE80211_DUR_DS_SHORT_PREAMBLE + IEEE80211_DUR_DS_FAST_PLCPHDR; else pre += IEEE80211_DUR_DS_LONG_PREAMBLE + IEEE80211_DUR_DS_SLOW_PLCPHDR; d->d_residue = 0; data_dur = (bitlen * 2) / rate; remainder = (bitlen * 2) % rate; if (remainder != 0) { d->d_residue = (rate - remainder) / 16; data_dur++; } switch (rate) { case 2: /* 1 Mb/s */ case 4: /* 2 Mb/s */ /* 1 - 2 Mb/s WLAN: send ACK/CTS at 1 Mb/s */ ctsrate = 2; break; case 11: /* 5.5 Mb/s */ case 22: /* 11 Mb/s */ case 44: /* 22 Mb/s */ /* 5.5 - 11 Mb/s WLAN: send ACK/CTS at 2 Mb/s */ ctsrate = 4; break; default: /* TBD */ return -1; } d->d_plcp_len = data_dur; ack = (use_ack) ? pre + (IEEE80211_DUR_DS_SLOW_ACK * 2) / ctsrate : 0; d->d_rts_dur = pre + (IEEE80211_DUR_DS_SLOW_CTS * 2) / ctsrate + pre + data_dur + ack; d->d_data_dur = ack; return 0; } /* * Arguments in: * * wh: 802.11 header * * paylen: payload length (no FCS, no WEP header) * * rate: MSDU speed, units 500kb/s * * fraglen: fragment length, set to maximum (or higher) for no * fragmentation * * flags: IEEE80211_F_PRIVACY (hardware adds WEP), * IEEE80211_F_SHPREAMBLE (use short preamble), * IEEE80211_F_SHSLOT (use short slot length) * * Arguments out: * * d0: 802.11 Duration fields (RTS/Data), PLCP Length, Service fields * of first/only fragment * * dn: 802.11 Duration fields (RTS/Data), PLCP Length, Service fields * of last fragment * * ieee80211_compute_duration assumes crypto-encapsulation, if any, * has already taken place. */ int ieee80211_compute_duration(const struct ieee80211_frame_min *wh, const struct ieee80211_key *wk, int len, uint32_t icflags, int fraglen, int rate, struct ieee80211_duration *d0, struct ieee80211_duration *dn, int *npktp, int debug) { int ack, rc; int cryptolen, /* crypto overhead: header+trailer */ firstlen, /* first fragment's payload + overhead length */ hdrlen, /* header length w/o driver padding */ lastlen, /* last fragment's payload length w/ overhead */ lastlen0, /* last fragment's payload length w/o overhead */ npkt, /* number of fragments */ overlen, /* non-802.11 header overhead per fragment */ paylen; /* payload length w/o overhead */ hdrlen = ieee80211_anyhdrsize((const void *)wh); /* Account for padding required by the driver. */ if (icflags & IEEE80211_F_DATAPAD) paylen = len - roundup(hdrlen, sizeof(u_int32_t)); else paylen = len - hdrlen; overlen = IEEE80211_CRC_LEN; if (wk != NULL) { cryptolen = wk->wk_cipher->ic_header + wk->wk_cipher->ic_trailer; paylen -= cryptolen; overlen += cryptolen; } npkt = paylen / fraglen; lastlen0 = paylen % fraglen; if (npkt == 0) /* no fragments */ lastlen = paylen + overlen; else if (lastlen0 != 0) { /* a short "tail" fragment */ lastlen = lastlen0 + overlen; npkt++; } else /* full-length "tail" fragment */ lastlen = fraglen + overlen; if (npktp != NULL) *npktp = npkt; if (npkt > 1) firstlen = fraglen + overlen; else firstlen = paylen + overlen; if (debug) { printf("%s: npkt %d firstlen %d lastlen0 %d lastlen %d " "fraglen %d overlen %d len %d rate %d icflags %08x\n", __func__, npkt, firstlen, lastlen0, lastlen, fraglen, overlen, len, rate, icflags); } ack = !IEEE80211_IS_MULTICAST(wh->i_addr1) && (wh->i_fc[1] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL; rc = ieee80211_compute_duration1(firstlen + hdrlen, ack, icflags, rate, d0); if (rc == -1) return rc; if (npkt <= 1) { *dn = *d0; return 0; } return ieee80211_compute_duration1(lastlen + hdrlen, ack, icflags, rate, dn); } /* * Fragment the frame according to the specified mtu. * The size of the 802.11 header (w/o padding) is provided * so we don't need to recalculate it. We create a new * mbuf for each fragment and chain it through m_nextpkt; * we might be able to optimize this by reusing the original * packet's mbufs but that is significantly more complicated. */ static int ieee80211_fragment(struct ieee80211com *ic, struct mbuf *m0, u_int hdrsize, u_int ciphdrsize, u_int mtu) { struct ieee80211_frame *wh, *whf; struct mbuf *m, *prev, *next; u_int totalhdrsize, fragno, fragsize, off, remainder, payload; IASSERT(m0->m_nextpkt == NULL, ("mbuf already chained?")); IASSERT(m0->m_pkthdr.len > mtu, ("pktlen %u mtu %u", m0->m_pkthdr.len, mtu)); wh = mtod(m0, struct ieee80211_frame *); /* NB: mark the first frag; it will be propagated below */ wh->i_fc[1] |= IEEE80211_FC1_MORE_FRAG; totalhdrsize = hdrsize + ciphdrsize; fragno = 1; off = mtu - ciphdrsize; remainder = m0->m_pkthdr.len - off; prev = m0; do { fragsize = totalhdrsize + remainder; if (fragsize > mtu) fragsize = mtu; IASSERT(fragsize < MCLBYTES, ("fragment size %u too big!", fragsize)); if (fragsize > MHLEN) m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); else m = m_gethdr(M_DONTWAIT, MT_DATA); if (m == NULL) goto bad; /* leave room to prepend any cipher header */ m_align(m, fragsize - ciphdrsize); /* * Form the header in the fragment. Note that since * we mark the first fragment with the MORE_FRAG bit * it automatically is propagated to each fragment; we * need only clear it on the last fragment (done below). */ whf = mtod(m, struct ieee80211_frame *); memcpy(whf, wh, hdrsize); *(u_int16_t *)&whf->i_seq[0] |= htole16( (fragno & IEEE80211_SEQ_FRAG_MASK) << IEEE80211_SEQ_FRAG_SHIFT); fragno++; payload = fragsize - totalhdrsize; /* NB: destination is known to be contiguous */ m_copydata(m0, off, payload, mtod(m, u_int8_t *) + hdrsize); m->m_len = hdrsize + payload; m->m_pkthdr.len = hdrsize + payload; m->m_flags |= M_FRAG; /* chain up the fragment */ prev->m_nextpkt = m; prev = m; /* deduct fragment just formed */ remainder -= payload; off += payload; } while (remainder != 0); whf->i_fc[1] &= ~IEEE80211_FC1_MORE_FRAG; /* strip first mbuf now that everything has been copied */ m_adj(m0, -(m0->m_pkthdr.len - (mtu - ciphdrsize))); m0->m_flags |= M_FIRSTFRAG | M_FRAG; ic->ic_stats.is_tx_fragframes++; ic->ic_stats.is_tx_frags += fragno-1; return 1; bad: /* reclaim fragments but leave original frame for caller to free */ for (m = m0->m_nextpkt; m != NULL; m = next) { next = m->m_nextpkt; m->m_nextpkt = NULL; /* XXX paranoid */ m_freem(m); } m0->m_nextpkt = NULL; return 0; } /* * Add a supported rates element id to a frame. */ static u_int8_t * ieee80211_add_rates(u_int8_t *frm, const struct ieee80211_rateset *rs) { int nrates; *frm++ = IEEE80211_ELEMID_RATES; nrates = rs->rs_nrates; if (nrates > IEEE80211_RATE_SIZE) nrates = IEEE80211_RATE_SIZE; *frm++ = nrates; memcpy(frm, rs->rs_rates, nrates); return frm + nrates; } /* * Add an extended supported rates element id to a frame. */ static u_int8_t * ieee80211_add_xrates(u_int8_t *frm, const struct ieee80211_rateset *rs) { /* * Add an extended supported rates element if operating in 11g mode. */ if (rs->rs_nrates > IEEE80211_RATE_SIZE) { int nrates = rs->rs_nrates - IEEE80211_RATE_SIZE; *frm++ = IEEE80211_ELEMID_XRATES; *frm++ = nrates; memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates); frm += nrates; } return frm; } /* * Add an ssid elemet to a frame. */ static u_int8_t * ieee80211_add_ssid(u_int8_t *frm, const u_int8_t *ssid, u_int len) { *frm++ = IEEE80211_ELEMID_SSID; *frm++ = len; memcpy(frm, ssid, len); return frm + len; } /* * Add an erp element to a frame. */ static u_int8_t * ieee80211_add_erp(u_int8_t *frm, struct ieee80211com *ic) { u_int8_t erp; *frm++ = IEEE80211_ELEMID_ERP; *frm++ = 1; erp = 0; if (ic->ic_nonerpsta != 0) erp |= IEEE80211_ERP_NON_ERP_PRESENT; if (ic->ic_flags & IEEE80211_F_USEPROT) erp |= IEEE80211_ERP_USE_PROTECTION; if (ic->ic_flags & IEEE80211_F_USEBARKER) erp |= IEEE80211_ERP_LONG_PREAMBLE; *frm++ = erp; return frm; } static u_int8_t * ieee80211_setup_wpa_ie(struct ieee80211com *ic, u_int8_t *ie) { #define WPA_OUI_BYTES 0x00, 0x50, 0xf2 #define ADDSHORT(frm, v) do { \ frm[0] = (v) & 0xff; \ frm[1] = (v) >> 8; \ frm += 2; \ } while (0) #define ADDSELECTOR(frm, sel) do { \ memcpy(frm, sel, 4); \ frm += 4; \ } while (0) static const u_int8_t oui[4] = { WPA_OUI_BYTES, WPA_OUI_TYPE }; static const u_int8_t cipher_suite[][4] = { { WPA_OUI_BYTES, WPA_CSE_WEP40 }, /* NB: 40-bit */ { WPA_OUI_BYTES, WPA_CSE_TKIP }, { 0x00, 0x00, 0x00, 0x00 }, /* XXX WRAP */ { WPA_OUI_BYTES, WPA_CSE_CCMP }, { 0x00, 0x00, 0x00, 0x00 }, /* XXX CKIP */ { WPA_OUI_BYTES, WPA_CSE_NULL }, }; static const u_int8_t wep104_suite[4] = { WPA_OUI_BYTES, WPA_CSE_WEP104 }; static const u_int8_t key_mgt_unspec[4] = { WPA_OUI_BYTES, WPA_ASE_8021X_UNSPEC }; static const u_int8_t key_mgt_psk[4] = { WPA_OUI_BYTES, WPA_ASE_8021X_PSK }; const struct ieee80211_rsnparms *rsn = &ic->ic_bss->ni_rsn; u_int8_t *frm = ie; u_int8_t *selcnt; *frm++ = IEEE80211_ELEMID_VENDOR; *frm++ = 0; /* length filled in below */ memcpy(frm, oui, sizeof(oui)); /* WPA OUI */ frm += sizeof(oui); ADDSHORT(frm, WPA_VERSION); /* XXX filter out CKIP */ /* multicast cipher */ if (rsn->rsn_mcastcipher == IEEE80211_CIPHER_WEP && rsn->rsn_mcastkeylen >= 13) ADDSELECTOR(frm, wep104_suite); else ADDSELECTOR(frm, cipher_suite[rsn->rsn_mcastcipher]); /* unicast cipher list */ selcnt = frm; ADDSHORT(frm, 0); /* selector count */ if (rsn->rsn_ucastcipherset & (1<rsn_ucastcipherset & (1<rsn_keymgmtset & WPA_ASE_8021X_UNSPEC) { selcnt[0]++; ADDSELECTOR(frm, key_mgt_unspec); } if (rsn->rsn_keymgmtset & WPA_ASE_8021X_PSK) { selcnt[0]++; ADDSELECTOR(frm, key_mgt_psk); } /* optional capabilities */ if (rsn->rsn_caps != 0 && rsn->rsn_caps != RSN_CAP_PREAUTH) ADDSHORT(frm, rsn->rsn_caps); /* calculate element length */ ie[1] = frm - ie - 2; IASSERT(ie[1]+2 <= sizeof(struct ieee80211_ie_wpa), ("WPA IE too big, %u > %zu", ie[1]+2, sizeof(struct ieee80211_ie_wpa))); return frm; #undef ADDSHORT #undef ADDSELECTOR #undef WPA_OUI_BYTES } static u_int8_t * ieee80211_setup_rsn_ie(struct ieee80211com *ic, u_int8_t *ie) { #define RSN_OUI_BYTES 0x00, 0x0f, 0xac #define ADDSHORT(frm, v) do { \ frm[0] = (v) & 0xff; \ frm[1] = (v) >> 8; \ frm += 2; \ } while (0) #define ADDSELECTOR(frm, sel) do { \ memcpy(frm, sel, 4); \ frm += 4; \ } while (0) static const u_int8_t cipher_suite[][4] = { { RSN_OUI_BYTES, RSN_CSE_WEP40 }, /* NB: 40-bit */ { RSN_OUI_BYTES, RSN_CSE_TKIP }, { RSN_OUI_BYTES, RSN_CSE_WRAP }, { RSN_OUI_BYTES, RSN_CSE_CCMP }, { 0x00, 0x00, 0x00, 0x00 }, /* XXX CKIP */ { RSN_OUI_BYTES, RSN_CSE_NULL }, }; static const u_int8_t wep104_suite[4] = { RSN_OUI_BYTES, RSN_CSE_WEP104 }; static const u_int8_t key_mgt_unspec[4] = { RSN_OUI_BYTES, RSN_ASE_8021X_UNSPEC }; static const u_int8_t key_mgt_psk[4] = { RSN_OUI_BYTES, RSN_ASE_8021X_PSK }; const struct ieee80211_rsnparms *rsn = &ic->ic_bss->ni_rsn; u_int8_t *frm = ie; u_int8_t *selcnt; *frm++ = IEEE80211_ELEMID_RSN; *frm++ = 0; /* length filled in below */ ADDSHORT(frm, RSN_VERSION); /* XXX filter out CKIP */ /* multicast cipher */ if (rsn->rsn_mcastcipher == IEEE80211_CIPHER_WEP && rsn->rsn_mcastkeylen >= 13) ADDSELECTOR(frm, wep104_suite); else ADDSELECTOR(frm, cipher_suite[rsn->rsn_mcastcipher]); /* unicast cipher list */ selcnt = frm; ADDSHORT(frm, 0); /* selector count */ if (rsn->rsn_ucastcipherset & (1<rsn_ucastcipherset & (1<rsn_keymgmtset & WPA_ASE_8021X_UNSPEC) { selcnt[0]++; ADDSELECTOR(frm, key_mgt_unspec); } if (rsn->rsn_keymgmtset & WPA_ASE_8021X_PSK) { selcnt[0]++; ADDSELECTOR(frm, key_mgt_psk); } /* optional capabilities */ ADDSHORT(frm, rsn->rsn_caps); /* XXX PMKID */ /* calculate element length */ ie[1] = frm - ie - 2; IASSERT(ie[1]+2 <= sizeof(struct ieee80211_ie_wpa), ("RSN IE too big, %u > %zu", ie[1]+2, sizeof(struct ieee80211_ie_wpa))); return frm; #undef ADDSELECTOR #undef ADDSHORT #undef RSN_OUI_BYTES } /* * Add a WPA/RSN element to a frame. */ static u_int8_t * ieee80211_add_wpa(u_int8_t *frm, struct ieee80211com *ic) { IASSERT(ic->ic_flags & IEEE80211_F_WPA, ("no WPA/RSN!")); if (ic->ic_flags & IEEE80211_F_WPA2) frm = ieee80211_setup_rsn_ie(ic, frm); if (ic->ic_flags & IEEE80211_F_WPA1) frm = ieee80211_setup_wpa_ie(ic, frm); return frm; } #define WME_OUI_BYTES 0x00, 0x50, 0xf2 /* * Add a WME information element to a frame. */ static u_int8_t * ieee80211_add_wme_info(u_int8_t *frm, struct ieee80211_wme_state *wme) { static const struct ieee80211_wme_info info = { .wme_id = IEEE80211_ELEMID_VENDOR, .wme_len = sizeof(struct ieee80211_wme_info) - 2, .wme_oui = { WME_OUI_BYTES }, .wme_type = WME_OUI_TYPE, .wme_subtype = WME_INFO_OUI_SUBTYPE, .wme_version = WME_VERSION, .wme_info = 0, }; memcpy(frm, &info, sizeof(info)); return frm + sizeof(info); } /* * Add a WME parameters element to a frame. */ static u_int8_t * ieee80211_add_wme_param(u_int8_t *frm, struct ieee80211_wme_state *wme) { #define SM(_v, _f) (((_v) << _f##_S) & _f) #define ADDSHORT(frm, v) do { \ frm[0] = (v) & 0xff; \ frm[1] = (v) >> 8; \ frm += 2; \ } while (0) /* NB: this works 'cuz a param has an info at the front */ static const struct ieee80211_wme_info param = { .wme_id = IEEE80211_ELEMID_VENDOR, .wme_len = sizeof(struct ieee80211_wme_param) - 2, .wme_oui = { WME_OUI_BYTES }, .wme_type = WME_OUI_TYPE, .wme_subtype = WME_PARAM_OUI_SUBTYPE, .wme_version = WME_VERSION, }; int i; memcpy(frm, ¶m, sizeof(param)); frm += offsetof(struct ieee80211_wme_info, wme_info); *frm++ = wme->wme_bssChanParams.cap_info; /* AC info */ *frm++ = 0; /* reserved field */ for (i = 0; i < WME_NUM_AC; i++) { const struct wmeParams *ac = &wme->wme_bssChanParams.cap_wmeParams[i]; *frm++ = SM(i, WME_PARAM_ACI) | SM(ac->wmep_acm, WME_PARAM_ACM) | SM(ac->wmep_aifsn, WME_PARAM_AIFSN) ; *frm++ = SM(ac->wmep_logcwmax, WME_PARAM_LOGCWMAX) | SM(ac->wmep_logcwmin, WME_PARAM_LOGCWMIN) ; ADDSHORT(frm, ac->wmep_txopLimit); } return frm; #undef SM #undef ADDSHORT } #undef WME_OUI_BYTES /* * Send a probe request frame with the specified ssid * and any optional information element data. */ int ieee80211_send_probereq(struct ieee80211_node *ni, const u_int8_t sa[IEEE80211_ADDR_LEN], const u_int8_t da[IEEE80211_ADDR_LEN], const u_int8_t bssid[IEEE80211_ADDR_LEN], const u_int8_t *ssid, size_t ssidlen, const void *optie, size_t optielen) { struct ieee80211com *ic = ni->ni_ic; enum ieee80211_phymode mode; struct ieee80211_frame *wh; struct mbuf *m; u_int8_t *frm; /* * Hold a reference on the node so it doesn't go away until after * the xmit is complete all the way in the driver. On error we * will remove our reference. */ IEEE80211_DPRINTF(ic, IEEE80211_MSG_NODE, "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", __func__, __LINE__, ni, ether_sprintf(ni->ni_macaddr), ieee80211_node_refcnt(ni)+1); ieee80211_ref_node(ni); /* * prreq frame format * [tlv] ssid * [tlv] supported rates * [tlv] extended supported rates * [tlv] user-specified ie's */ m = ieee80211_getmgtframe(&frm, 2 + IEEE80211_NWID_LEN + 2 + IEEE80211_RATE_SIZE + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) + (optie != NULL ? optielen : 0) ); if (m == NULL) { ic->ic_stats.is_tx_nobuf++; ieee80211_free_node(ni); return ENOMEM; } frm = ieee80211_add_ssid(frm, ssid, ssidlen); mode = ieee80211_chan2mode(ic, ic->ic_curchan); frm = ieee80211_add_rates(frm, &ic->ic_sup_rates[mode]); frm = ieee80211_add_xrates(frm, &ic->ic_sup_rates[mode]); if (optie != NULL) { memcpy(frm, optie, optielen); frm += optielen; } m->m_pkthdr.len = m->m_len = frm - mtod(m, u_int8_t *); M_PREPEND(m, sizeof(struct ieee80211_frame), M_DONTWAIT); if (m == NULL) return ENOMEM; IASSERT(m->m_pkthdr.rcvif == NULL, ("rcvif not null")); m->m_pkthdr.rcvif = (void *)ni; wh = mtod(m, struct ieee80211_frame *); ieee80211_send_setup(ic, ni, wh, IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_REQ, sa, da, bssid); /* XXX power management? */ IEEE80211_NODE_STAT(ni, tx_probereq); IEEE80211_NODE_STAT(ni, tx_mgmt); IEEE80211_DPRINTF(ic, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, "[%s] send probe req on channel %u\n", ether_sprintf(wh->i_addr1), ieee80211_chan2ieee(ic, ic->ic_curchan)); IF_ENQUEUE(&ic->ic_mgtq, m); (*ic->ic_ifp->if_start)(ic->ic_ifp); return 0; } /* * Send a management frame. The node is for the destination (or ic_bss * when in station mode). Nodes other than ic_bss have their reference * count bumped to reflect our use for an indeterminant time. */ int ieee80211_send_mgmt(struct ieee80211com *ic, struct ieee80211_node *ni, int type, int arg) { #define senderr(_x, _v) do { ic->ic_stats._v++; ret = _x; goto bad; } while (0) struct mbuf *m; u_int8_t *frm; u_int16_t capinfo; int has_challenge, is_shared_key, ret, timer, status; IASSERT(ni != NULL, ("null node")); /* * Hold a reference on the node so it doesn't go away until after * the xmit is complete all the way in the driver. On error we * will remove our reference. */ IEEE80211_DPRINTF(ic, IEEE80211_MSG_NODE, "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", __func__, __LINE__, ni, ether_sprintf(ni->ni_macaddr), ieee80211_node_refcnt(ni)+1); ieee80211_ref_node(ni); timer = 0; switch (type) { case IEEE80211_FC0_SUBTYPE_PROBE_RESP: /* * probe response frame format * [8] time stamp * [2] beacon interval * [2] cabability information * [tlv] ssid * [tlv] supported rates * [tlv] parameter set (FH/DS) * [tlv] parameter set (IBSS) * [tlv] extended rate phy (ERP) * [tlv] extended supported rates * [tlv] WPA * [tlv] WME (optional) */ m = ieee80211_getmgtframe(&frm, 8 + sizeof(u_int16_t) + sizeof(u_int16_t) + 2 + IEEE80211_NWID_LEN + 2 + IEEE80211_RATE_SIZE + 7 /* max(7,3) */ + 6 + 3 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) /* XXX !WPA1+WPA2 fits w/o a cluster */ + (ic->ic_flags & IEEE80211_F_WPA ? 2*sizeof(struct ieee80211_ie_wpa) : 0) + sizeof(struct ieee80211_wme_param) ); if (m == NULL) senderr(ENOMEM, is_tx_nobuf); memset(frm, 0, 8); /* timestamp should be filled later */ frm += 8; *(u_int16_t *)frm = htole16(ic->ic_bss->ni_intval); frm += 2; if (ic->ic_opmode == IEEE80211_M_IBSS) capinfo = IEEE80211_CAPINFO_IBSS; else capinfo = IEEE80211_CAPINFO_ESS; if (ic->ic_flags & IEEE80211_F_PRIVACY) capinfo |= IEEE80211_CAPINFO_PRIVACY; if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE; if (ic->ic_flags & IEEE80211_F_SHSLOT) capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME; *(u_int16_t *)frm = htole16(capinfo); frm += 2; frm = ieee80211_add_ssid(frm, ic->ic_bss->ni_essid, ic->ic_bss->ni_esslen); frm = ieee80211_add_rates(frm, &ni->ni_rates); if (ic->ic_phytype == IEEE80211_T_FH) { *frm++ = IEEE80211_ELEMID_FHPARMS; *frm++ = 5; *frm++ = ni->ni_fhdwell & 0x00ff; *frm++ = (ni->ni_fhdwell >> 8) & 0x00ff; *frm++ = IEEE80211_FH_CHANSET( ieee80211_chan2ieee(ic, ic->ic_curchan)); *frm++ = IEEE80211_FH_CHANPAT( ieee80211_chan2ieee(ic, ic->ic_curchan)); *frm++ = ni->ni_fhindex; } else { *frm++ = IEEE80211_ELEMID_DSPARMS; *frm++ = 1; *frm++ = ieee80211_chan2ieee(ic, ic->ic_curchan); } if (ic->ic_opmode == IEEE80211_M_IBSS) { *frm++ = IEEE80211_ELEMID_IBSSPARMS; *frm++ = 2; *frm++ = 0; *frm++ = 0; /* TODO: ATIM window */ } if (ic->ic_flags & IEEE80211_F_WPA) frm = ieee80211_add_wpa(frm, ic); if (ic->ic_curmode == IEEE80211_MODE_11G) frm = ieee80211_add_erp(frm, ic); frm = ieee80211_add_xrates(frm, &ni->ni_rates); if (ic->ic_flags & IEEE80211_F_WME) frm = ieee80211_add_wme_param(frm, &ic->ic_wme); m->m_pkthdr.len = m->m_len = frm - mtod(m, u_int8_t *); break; case IEEE80211_FC0_SUBTYPE_AUTH: status = arg >> 16; arg &= 0xffff; has_challenge = ((arg == IEEE80211_AUTH_SHARED_CHALLENGE || arg == IEEE80211_AUTH_SHARED_RESPONSE) && ni->ni_challenge != NULL); /* * Deduce whether we're doing open authentication or * shared key authentication. We do the latter if * we're in the middle of a shared key authentication * handshake or if we're initiating an authentication * request and configured to use shared key. */ is_shared_key = has_challenge || arg >= IEEE80211_AUTH_SHARED_RESPONSE || (arg == IEEE80211_AUTH_SHARED_REQUEST && ic->ic_bss->ni_authmode == IEEE80211_AUTH_SHARED); m = ieee80211_getmgtframe(&frm, 3 * sizeof(u_int16_t) + (has_challenge && status == IEEE80211_STATUS_SUCCESS ? sizeof(u_int16_t)+IEEE80211_CHALLENGE_LEN : 0) ); if (m == NULL) senderr(ENOMEM, is_tx_nobuf); ((u_int16_t *)frm)[0] = (is_shared_key) ? htole16(IEEE80211_AUTH_ALG_SHARED) : htole16(IEEE80211_AUTH_ALG_OPEN); ((u_int16_t *)frm)[1] = htole16(arg); /* sequence number */ ((u_int16_t *)frm)[2] = htole16(status);/* status */ if (has_challenge && status == IEEE80211_STATUS_SUCCESS) { ((u_int16_t *)frm)[3] = htole16((IEEE80211_CHALLENGE_LEN << 8) | IEEE80211_ELEMID_CHALLENGE); memcpy(&((u_int16_t *)frm)[4], ni->ni_challenge, IEEE80211_CHALLENGE_LEN); m->m_pkthdr.len = m->m_len = 4 * sizeof(u_int16_t) + IEEE80211_CHALLENGE_LEN; if (arg == IEEE80211_AUTH_SHARED_RESPONSE) { IEEE80211_DPRINTF(ic, IEEE80211_MSG_AUTH, "[%s] request encrypt frame (%s)\n", ether_sprintf(ni->ni_macaddr), __func__); m->m_flags |= M_LINK0; /* WEP-encrypt, please */ } } else m->m_pkthdr.len = m->m_len = 3 * sizeof(u_int16_t); /* XXX not right for shared key */ if (status == IEEE80211_STATUS_SUCCESS) IEEE80211_NODE_STAT(ni, tx_auth); else IEEE80211_NODE_STAT(ni, tx_auth_fail); if (ic->ic_opmode == IEEE80211_M_STA) timer = IEEE80211_TRANS_WAIT; break; case IEEE80211_FC0_SUBTYPE_DEAUTH: IEEE80211_DPRINTF(ic, IEEE80211_MSG_AUTH, "[%s] send station deauthenticate (reason %d)\n", ether_sprintf(ni->ni_macaddr), arg); m = ieee80211_getmgtframe(&frm, sizeof(u_int16_t)); if (m == NULL) senderr(ENOMEM, is_tx_nobuf); *(u_int16_t *)frm = htole16(arg); /* reason */ m->m_pkthdr.len = m->m_len = sizeof(u_int16_t); IEEE80211_NODE_STAT(ni, tx_deauth); IEEE80211_NODE_STAT_SET(ni, tx_deauth_code, arg); ieee80211_node_unauthorize(ni); /* port closed */ break; case IEEE80211_FC0_SUBTYPE_ASSOC_REQ: case IEEE80211_FC0_SUBTYPE_REASSOC_REQ: /* * asreq frame format * [2] capability information * [2] listen interval * [6*] current AP address (reassoc only) * [tlv] ssid * [tlv] supported rates * [tlv] extended supported rates * [tlv] WME * [tlv] user-specified ie's */ m = ieee80211_getmgtframe(&frm, sizeof(u_int16_t) + sizeof(u_int16_t) + IEEE80211_ADDR_LEN + 2 + IEEE80211_NWID_LEN + 2 + IEEE80211_RATE_SIZE + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) + sizeof(struct ieee80211_wme_info) + (ic->ic_opt_ie != NULL ? ic->ic_opt_ie_len : 0) ); if (m == NULL) senderr(ENOMEM, is_tx_nobuf); capinfo = 0; if (ic->ic_opmode == IEEE80211_M_IBSS) capinfo |= IEEE80211_CAPINFO_IBSS; else /* IEEE80211_M_STA */ capinfo |= IEEE80211_CAPINFO_ESS; if (ic->ic_flags & IEEE80211_F_PRIVACY) capinfo |= IEEE80211_CAPINFO_PRIVACY; /* * NB: Some 11a AP's reject the request when * short premable is set. */ if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE; if ((ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_SLOTTIME) && (ic->ic_caps & IEEE80211_C_SHSLOT)) capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME; *(u_int16_t *)frm = htole16(capinfo); frm += 2; *(u_int16_t *)frm = htole16(ic->ic_lintval); frm += 2; if (type == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) { IEEE80211_ADDR_COPY(frm, ic->ic_bss->ni_bssid); frm += IEEE80211_ADDR_LEN; } frm = ieee80211_add_ssid(frm, ni->ni_essid, ni->ni_esslen); frm = ieee80211_add_rates(frm, &ni->ni_rates); frm = ieee80211_add_xrates(frm, &ni->ni_rates); if ((ic->ic_flags & IEEE80211_F_WME) && ni->ni_wme_ie != NULL) frm = ieee80211_add_wme_info(frm, &ic->ic_wme); if (ic->ic_opt_ie != NULL) { memcpy(frm, ic->ic_opt_ie, ic->ic_opt_ie_len); frm += ic->ic_opt_ie_len; } m->m_pkthdr.len = m->m_len = frm - mtod(m, u_int8_t *); timer = IEEE80211_TRANS_WAIT; break; case IEEE80211_FC0_SUBTYPE_ASSOC_RESP: case IEEE80211_FC0_SUBTYPE_REASSOC_RESP: /* * asreq frame format * [2] capability information * [2] status * [2] association ID * [tlv] supported rates * [tlv] extended supported rates * [tlv] WME (if enabled and STA enabled) */ m = ieee80211_getmgtframe(&frm, sizeof(u_int16_t) + sizeof(u_int16_t) + sizeof(u_int16_t) + 2 + IEEE80211_RATE_SIZE + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) + sizeof(struct ieee80211_wme_param) ); if (m == NULL) senderr(ENOMEM, is_tx_nobuf); capinfo = IEEE80211_CAPINFO_ESS; if (ic->ic_flags & IEEE80211_F_PRIVACY) capinfo |= IEEE80211_CAPINFO_PRIVACY; if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE; if (ic->ic_flags & IEEE80211_F_SHSLOT) capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME; *(u_int16_t *)frm = htole16(capinfo); frm += 2; *(u_int16_t *)frm = htole16(arg); /* status */ frm += 2; if (arg == IEEE80211_STATUS_SUCCESS) { *(u_int16_t *)frm = htole16(ni->ni_associd); IEEE80211_NODE_STAT(ni, tx_assoc); } else IEEE80211_NODE_STAT(ni, tx_assoc_fail); frm += 2; frm = ieee80211_add_rates(frm, &ni->ni_rates); frm = ieee80211_add_xrates(frm, &ni->ni_rates); if ((ic->ic_flags & IEEE80211_F_WME) && ni->ni_wme_ie != NULL) frm = ieee80211_add_wme_param(frm, &ic->ic_wme); m->m_pkthdr.len = m->m_len = frm - mtod(m, u_int8_t *); break; case IEEE80211_FC0_SUBTYPE_DISASSOC: IEEE80211_DPRINTF(ic, IEEE80211_MSG_ASSOC, "[%s] send station disassociate (reason %d)\n", ether_sprintf(ni->ni_macaddr), arg); m = ieee80211_getmgtframe(&frm, sizeof(u_int16_t)); if (m == NULL) senderr(ENOMEM, is_tx_nobuf); *(u_int16_t *)frm = htole16(arg); /* reason */ m->m_pkthdr.len = m->m_len = sizeof(u_int16_t); IEEE80211_NODE_STAT(ni, tx_disassoc); IEEE80211_NODE_STAT_SET(ni, tx_disassoc_code, arg); break; default: IEEE80211_DPRINTF(ic, IEEE80211_MSG_ANY, "[%s] invalid mgmt frame type %u\n", ether_sprintf(ni->ni_macaddr), type); senderr(EINVAL, is_tx_unknownmgt); /* NOTREACHED */ } ret = ieee80211_mgmt_output(ic, ni, m, type, timer); if (ret != 0) { bad: ieee80211_free_node(ni); } return ret; #undef senderr } /* * Build a RTS (Request To Send) control frame. */ struct mbuf * ieee80211_get_rts(struct ieee80211com *ic, const struct ieee80211_frame *wh, uint16_t dur) { struct ieee80211_frame_rts *rts; struct mbuf *m; MGETHDR(m, M_DONTWAIT, MT_DATA); if (m == NULL) return NULL; m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_rts); rts = mtod(m, struct ieee80211_frame_rts *); rts->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_RTS; rts->i_fc[1] = IEEE80211_FC1_DIR_NODS; *(uint16_t *)rts->i_dur = htole16(dur); IEEE80211_ADDR_COPY(rts->i_ra, wh->i_addr1); IEEE80211_ADDR_COPY(rts->i_ta, wh->i_addr2); return m; } /* * Build a CTS-to-self (Clear To Send) control frame. */ struct mbuf * ieee80211_get_cts_to_self(struct ieee80211com *ic, uint16_t dur) { struct ieee80211_frame_cts *cts; struct mbuf *m; MGETHDR(m, M_DONTWAIT, MT_DATA); if (m == NULL) return NULL; m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_cts); cts = mtod(m, struct ieee80211_frame_cts *); cts->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_CTS; cts->i_fc[1] = IEEE80211_FC1_DIR_NODS; *(uint16_t *)cts->i_dur = htole16(dur); IEEE80211_ADDR_COPY(cts->i_ra, ic->ic_myaddr); return m; } /* * Allocate a beacon frame and fillin the appropriate bits. */ struct mbuf * ieee80211_beacon_alloc(struct ieee80211com *ic, struct ieee80211_node *ni, struct ieee80211_beacon_offsets *bo) { struct ifnet *ifp = ic->ic_ifp; struct ieee80211_frame *wh; struct mbuf *m; int pktlen; u_int8_t *frm, *efrm; u_int16_t capinfo; struct ieee80211_rateset *rs; /* * beacon frame format * [8] time stamp * [2] beacon interval * [2] cabability information * [tlv] ssid * [tlv] supported rates * [3] parameter set (DS) * [tlv] parameter set (IBSS/TIM) * [tlv] extended rate phy (ERP) * [tlv] extended supported rates * [tlv] WME parameters * [tlv] WPA/RSN parameters * XXX Vendor-specific OIDs (e.g. Atheros) * NB: we allocate the max space required for the TIM bitmap. */ rs = &ni->ni_rates; pktlen = 8 /* time stamp */ + sizeof(u_int16_t) /* beacon interval */ + sizeof(u_int16_t) /* capabilities */ + 2 + ni->ni_esslen /* ssid */ + 2 + IEEE80211_RATE_SIZE /* supported rates */ + 2 + 1 /* DS parameters */ + 2 + 4 + ic->ic_tim_len /* DTIM/IBSSPARMS */ + 2 + 1 /* ERP */ + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) + (ic->ic_caps & IEEE80211_C_WME ? /* WME */ sizeof(struct ieee80211_wme_param) : 0) + (ic->ic_caps & IEEE80211_C_WPA ? /* WPA 1+2 */ 2*sizeof(struct ieee80211_ie_wpa) : 0) ; m = ieee80211_getmgtframe(&frm, pktlen); if (m == NULL) { IEEE80211_DPRINTF(ic, IEEE80211_MSG_ANY, "%s: cannot get buf; size %u\n", __func__, pktlen); ic->ic_stats.is_tx_nobuf++; return NULL; } memset(frm, 0, 8); /* XXX timestamp is set by hardware/driver */ frm += 8; *(u_int16_t *)frm = htole16(ni->ni_intval); frm += 2; if (ic->ic_opmode == IEEE80211_M_IBSS) capinfo = IEEE80211_CAPINFO_IBSS; else capinfo = IEEE80211_CAPINFO_ESS; if (ic->ic_flags & IEEE80211_F_PRIVACY) capinfo |= IEEE80211_CAPINFO_PRIVACY; if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE; if (ic->ic_flags & IEEE80211_F_SHSLOT) capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME; bo->bo_caps = (u_int16_t *)frm; *(u_int16_t *)frm = htole16(capinfo); frm += 2; *frm++ = IEEE80211_ELEMID_SSID; if ((ic->ic_flags & IEEE80211_F_HIDESSID) == 0) { *frm++ = ni->ni_esslen; memcpy(frm, ni->ni_essid, ni->ni_esslen); frm += ni->ni_esslen; } else *frm++ = 0; frm = ieee80211_add_rates(frm, rs); if (ic->ic_curmode != IEEE80211_MODE_FH) { *frm++ = IEEE80211_ELEMID_DSPARMS; *frm++ = 1; *frm++ = ieee80211_chan2ieee(ic, ni->ni_chan); } bo->bo_tim = frm; if (ic->ic_opmode == IEEE80211_M_IBSS) { *frm++ = IEEE80211_ELEMID_IBSSPARMS; *frm++ = 2; *frm++ = 0; *frm++ = 0; /* TODO: ATIM window */ bo->bo_tim_len = 0; } else { struct ieee80211_tim_ie *tie = (struct ieee80211_tim_ie *) frm; tie->tim_ie = IEEE80211_ELEMID_TIM; tie->tim_len = 4; /* length */ tie->tim_count = 0; /* DTIM count */ tie->tim_period = ic->ic_dtim_period; /* DTIM period */ tie->tim_bitctl = 0; /* bitmap control */ tie->tim_bitmap[0] = 0; /* Partial Virtual Bitmap */ frm += sizeof(struct ieee80211_tim_ie); bo->bo_tim_len = 1; } bo->bo_trailer = frm; if (ic->ic_flags & IEEE80211_F_WME) { bo->bo_wme = frm; frm = ieee80211_add_wme_param(frm, &ic->ic_wme); ic->ic_flags &= ~IEEE80211_F_WMEUPDATE; } if (ic->ic_flags & IEEE80211_F_WPA) frm = ieee80211_add_wpa(frm, ic); if (ic->ic_curmode == IEEE80211_MODE_11G) frm = ieee80211_add_erp(frm, ic); efrm = ieee80211_add_xrates(frm, rs); bo->bo_trailer_len = efrm - bo->bo_trailer; m->m_pkthdr.len = m->m_len = efrm - mtod(m, u_int8_t *); M_PREPEND(m, sizeof(struct ieee80211_frame), M_DONTWAIT); IASSERT(m != NULL, ("no space for 802.11 header?")); wh = mtod(m, struct ieee80211_frame *); wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_BEACON; wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; *(u_int16_t *)wh->i_dur = 0; IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr); IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr); IEEE80211_ADDR_COPY(wh->i_addr3, ni->ni_bssid); *(u_int16_t *)wh->i_seq = 0; return m; } /* * Update the dynamic parts of a beacon frame based on the current state. */ int ieee80211_beacon_update(struct ieee80211com *ic, struct ieee80211_node *ni, struct ieee80211_beacon_offsets *bo, struct mbuf *m, int mcast) { int len_changed = 0; u_int16_t capinfo; IEEE80211_BEACON_LOCK(ic); /* XXX faster to recalculate entirely or just changes? */ if (ic->ic_opmode == IEEE80211_M_IBSS) capinfo = IEEE80211_CAPINFO_IBSS; else capinfo = IEEE80211_CAPINFO_ESS; if (ic->ic_flags & IEEE80211_F_PRIVACY) capinfo |= IEEE80211_CAPINFO_PRIVACY; if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE; if (ic->ic_flags & IEEE80211_F_SHSLOT) capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME; *bo->bo_caps = htole16(capinfo); if (ic->ic_flags & IEEE80211_F_WME) { struct ieee80211_wme_state *wme = &ic->ic_wme; /* * Check for agressive mode change. When there is * significant high priority traffic in the BSS * throttle back BE traffic by using conservative * parameters. Otherwise BE uses agressive params * to optimize performance of legacy/non-QoS traffic. */ if (wme->wme_flags & WME_F_AGGRMODE) { if (wme->wme_hipri_traffic > wme->wme_hipri_switch_thresh) { IEEE80211_DPRINTF(ic, IEEE80211_MSG_WME, "%s: traffic %u, disable aggressive mode\n", __func__, wme->wme_hipri_traffic); wme->wme_flags &= ~WME_F_AGGRMODE; ieee80211_wme_updateparams_locked(ic); wme->wme_hipri_traffic = wme->wme_hipri_switch_hysteresis; } else wme->wme_hipri_traffic = 0; } else { if (wme->wme_hipri_traffic <= wme->wme_hipri_switch_thresh) { IEEE80211_DPRINTF(ic, IEEE80211_MSG_WME, "%s: traffic %u, enable aggressive mode\n", __func__, wme->wme_hipri_traffic); wme->wme_flags |= WME_F_AGGRMODE; ieee80211_wme_updateparams_locked(ic); wme->wme_hipri_traffic = 0; } else wme->wme_hipri_traffic = wme->wme_hipri_switch_hysteresis; } if (ic->ic_flags & IEEE80211_F_WMEUPDATE) { (void) ieee80211_add_wme_param(bo->bo_wme, wme); ic->ic_flags &= ~IEEE80211_F_WMEUPDATE; } } #ifndef IEEE80211_NO_HOSTAP if (ic->ic_opmode == IEEE80211_M_HOSTAP) { /* NB: no IBSS support*/ struct ieee80211_tim_ie *tie = (struct ieee80211_tim_ie *) bo->bo_tim; if (ic->ic_flags & IEEE80211_F_TIMUPDATE) { u_int timlen, timoff, i; /* * ATIM/DTIM needs updating. If it fits in the * current space allocated then just copy in the * new bits. Otherwise we need to move any trailing * data to make room. Note that we know there is * contiguous space because ieee80211_beacon_allocate * insures there is space in the mbuf to write a * maximal-size virtual bitmap (based on ic_max_aid). */ /* * Calculate the bitmap size and offset, copy any * trailer out of the way, and then copy in the * new bitmap and update the information element. * Note that the tim bitmap must contain at least * one byte and any offset must be even. */ if (ic->ic_ps_pending != 0) { timoff = 128; /* impossibly large */ for (i = 0; i < ic->ic_tim_len; i++) if (ic->ic_tim_bitmap[i]) { timoff = i &~ 1; break; } IASSERT(timoff != 128, ("tim bitmap empty!")); for (i = ic->ic_tim_len-1; i >= timoff; i--) if (ic->ic_tim_bitmap[i]) break; timlen = 1 + (i - timoff); } else { timoff = 0; timlen = 1; } if (timlen != bo->bo_tim_len) { /* copy up/down trailer */ ovbcopy(bo->bo_trailer, tie->tim_bitmap+timlen, bo->bo_trailer_len); bo->bo_trailer = tie->tim_bitmap+timlen; bo->bo_wme = bo->bo_trailer; bo->bo_tim_len = timlen; /* update information element */ tie->tim_len = 3 + timlen; tie->tim_bitctl = timoff; len_changed = 1; } memcpy(tie->tim_bitmap, ic->ic_tim_bitmap + timoff, bo->bo_tim_len); ic->ic_flags &= ~IEEE80211_F_TIMUPDATE; IEEE80211_DPRINTF(ic, IEEE80211_MSG_POWER, "%s: TIM updated, pending %u, off %u, len %u\n", __func__, ic->ic_ps_pending, timoff, timlen); } /* count down DTIM period */ if (tie->tim_count == 0) tie->tim_count = tie->tim_period - 1; else tie->tim_count--; /* update state for buffered multicast frames on DTIM */ if (mcast && (tie->tim_count == 1 || tie->tim_period == 1)) tie->tim_bitctl |= 1; else tie->tim_bitctl &= ~1; } #endif /* !IEEE80211_NO_HOSTAP */ IEEE80211_BEACON_UNLOCK(ic); return len_changed; } /* * Save an outbound packet for a node in power-save sleep state. * The new packet is placed on the node's saved queue, and the TIM * is changed, if necessary. */ void ieee80211_pwrsave(struct ieee80211com *ic, struct ieee80211_node *ni, struct mbuf *m) { int qlen, age; IEEE80211_NODE_SAVEQ_LOCK(ni); if (IF_QFULL(&ni->ni_savedq)) { IF_DROP(&ni->ni_savedq); IEEE80211_NODE_SAVEQ_UNLOCK(ni); IEEE80211_DPRINTF(ic, IEEE80211_MSG_ANY, "[%s] pwr save q overflow, drops %d (size %d)\n", ether_sprintf(ni->ni_macaddr), ni->ni_savedq.ifq_drops, IEEE80211_PS_MAX_QUEUE); #ifdef IEEE80211_DEBUG if (ieee80211_msg_dumppkts(ic)) ieee80211_dump_pkt(mtod(m, void *), m->m_len, -1, -1); #endif m_freem(m); return; } /* * Tag the frame with it's expiry time and insert * it in the queue. The aging interval is 4 times * the listen interval specified by the station. * Frames that sit around too long are reclaimed * using this information. */ /* XXX handle overflow? */ age = ((ni->ni_intval * ic->ic_bintval) << 2) / 1024; /* TU -> secs */ _IEEE80211_NODE_SAVEQ_ENQUEUE(ni, m, qlen, age); IEEE80211_NODE_SAVEQ_UNLOCK(ni); IEEE80211_DPRINTF(ic, IEEE80211_MSG_POWER, "[%s] save frame with age %d, %u now queued\n", ether_sprintf(ni->ni_macaddr), age, qlen); if (qlen == 1) ic->ic_set_tim(ni, 1); }