/* $NetBSD: subr_percpu.c,v 1.16 2012/01/27 19:48:40 para Exp $ */ /*- * Copyright (c)2007,2008 YAMAMOTO Takashi, * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * per-cpu storage. */ #include __KERNEL_RCSID(0, "$NetBSD: subr_percpu.c,v 1.16 2012/01/27 19:48:40 para Exp $"); #include #include #include #include #include #include #include #include #include #define PERCPU_QUANTUM_SIZE (ALIGNBYTES + 1) #define PERCPU_QCACHE_MAX 0 #define PERCPU_IMPORT_SIZE 2048 #if defined(DIAGNOSTIC) #define MAGIC 0x50435055 /* "PCPU" */ #define percpu_encrypt(pc) ((pc) ^ MAGIC) #define percpu_decrypt(pc) ((pc) ^ MAGIC) #else /* defined(DIAGNOSTIC) */ #define percpu_encrypt(pc) (pc) #define percpu_decrypt(pc) (pc) #endif /* defined(DIAGNOSTIC) */ static krwlock_t percpu_swap_lock __cacheline_aligned; static kmutex_t percpu_allocation_lock __cacheline_aligned; static vmem_t * percpu_offset_arena __cacheline_aligned; static unsigned int percpu_nextoff __cacheline_aligned; static percpu_cpu_t * cpu_percpu(struct cpu_info *ci) { return &ci->ci_data.cpu_percpu; } static unsigned int percpu_offset(percpu_t *pc) { const unsigned int off = percpu_decrypt((uintptr_t)pc); KASSERT(off < percpu_nextoff); return off; } /* * percpu_cpu_swap: crosscall handler for percpu_cpu_enlarge */ static void percpu_cpu_swap(void *p1, void *p2) { struct cpu_info * const ci = p1; percpu_cpu_t * const newpcc = p2; percpu_cpu_t * const pcc = cpu_percpu(ci); KASSERT(ci == curcpu() || !mp_online); /* * swap *pcc and *newpcc unless anyone has beaten us. */ rw_enter(&percpu_swap_lock, RW_WRITER); if (newpcc->pcc_size > pcc->pcc_size) { percpu_cpu_t tmp; int s; tmp = *pcc; /* * block interrupts so that we don't lose their modifications. */ s = splhigh(); /* * copy data to new storage. */ memcpy(newpcc->pcc_data, pcc->pcc_data, pcc->pcc_size); /* * this assignment needs to be atomic for percpu_getptr_remote. */ pcc->pcc_data = newpcc->pcc_data; splx(s); pcc->pcc_size = newpcc->pcc_size; *newpcc = tmp; } rw_exit(&percpu_swap_lock); } /* * percpu_cpu_enlarge: ensure that percpu_cpu_t of each cpus have enough space */ static void percpu_cpu_enlarge(size_t size) { CPU_INFO_ITERATOR cii; struct cpu_info *ci; for (CPU_INFO_FOREACH(cii, ci)) { percpu_cpu_t pcc; pcc.pcc_data = kmem_alloc(size, KM_SLEEP); /* XXX cacheline */ pcc.pcc_size = size; if (!mp_online) { percpu_cpu_swap(ci, &pcc); } else { uint64_t where; where = xc_unicast(0, percpu_cpu_swap, ci, &pcc, ci); xc_wait(where); } KASSERT(pcc.pcc_size < size); if (pcc.pcc_data != NULL) { kmem_free(pcc.pcc_data, pcc.pcc_size); } } } /* * percpu_backend_alloc: vmem import callback for percpu_offset_arena */ static int percpu_backend_alloc(vmem_t *dummy, vmem_size_t size, vmem_size_t *resultsize, vm_flag_t vmflags, vmem_addr_t *addrp) { unsigned int offset; unsigned int nextoff; ASSERT_SLEEPABLE(); KASSERT(dummy == NULL); if ((vmflags & VM_NOSLEEP) != 0) return ENOMEM; size = roundup(size, PERCPU_IMPORT_SIZE); mutex_enter(&percpu_allocation_lock); offset = percpu_nextoff; percpu_nextoff = nextoff = percpu_nextoff + size; mutex_exit(&percpu_allocation_lock); percpu_cpu_enlarge(nextoff); *resultsize = size; *addrp = (vmem_addr_t)offset; return 0; } static void percpu_zero_cb(void *vp, void *vp2, struct cpu_info *ci) { size_t sz = (uintptr_t)vp2; memset(vp, 0, sz); } /* * percpu_zero: initialize percpu storage with zero. */ static void percpu_zero(percpu_t *pc, size_t sz) { percpu_foreach(pc, percpu_zero_cb, (void *)(uintptr_t)sz); } /* * percpu_init: subsystem initialization */ void percpu_init(void) { ASSERT_SLEEPABLE(); rw_init(&percpu_swap_lock); mutex_init(&percpu_allocation_lock, MUTEX_DEFAULT, IPL_NONE); percpu_nextoff = PERCPU_QUANTUM_SIZE; percpu_offset_arena = vmem_xcreate("percpu", 0, 0, PERCPU_QUANTUM_SIZE, percpu_backend_alloc, NULL, NULL, PERCPU_QCACHE_MAX, VM_SLEEP, IPL_NONE); } /* * percpu_init_cpu: cpu initialization * * => should be called before the cpu appears on the list for CPU_INFO_FOREACH. */ void percpu_init_cpu(struct cpu_info *ci) { percpu_cpu_t * const pcc = cpu_percpu(ci); size_t size = percpu_nextoff; /* XXX racy */ ASSERT_SLEEPABLE(); pcc->pcc_size = size; if (size) { pcc->pcc_data = kmem_zalloc(pcc->pcc_size, KM_SLEEP); } } /* * percpu_alloc: allocate percpu storage * * => called in thread context. * => considered as an expensive and rare operation. * => allocated storage is initialized with zeros. */ percpu_t * percpu_alloc(size_t size) { vmem_addr_t offset; percpu_t *pc; ASSERT_SLEEPABLE(); if (vmem_alloc(percpu_offset_arena, size, VM_SLEEP | VM_BESTFIT, &offset) != 0) return NULL; pc = (percpu_t *)percpu_encrypt((uintptr_t)offset); percpu_zero(pc, size); return pc; } /* * percpu_free: free percpu storage * * => called in thread context. * => considered as an expensive and rare operation. */ void percpu_free(percpu_t *pc, size_t size) { ASSERT_SLEEPABLE(); vmem_free(percpu_offset_arena, (vmem_addr_t)percpu_offset(pc), size); } /* * percpu_getref: * * => safe to be used in either thread or interrupt context * => disables preemption; must be bracketed with a percpu_putref() */ void * percpu_getref(percpu_t *pc) { KPREEMPT_DISABLE(curlwp); return percpu_getptr_remote(pc, curcpu()); } /* * percpu_putref: * * => drops the preemption-disabled count after caller is done with per-cpu * data */ void percpu_putref(percpu_t *pc) { KPREEMPT_ENABLE(curlwp); } /* * percpu_traverse_enter, percpu_traverse_exit, percpu_getptr_remote: * helpers to access remote cpu's percpu data. * * => called in thread context. * => percpu_traverse_enter can block low-priority xcalls. * => typical usage would be: * * sum = 0; * percpu_traverse_enter(); * for (CPU_INFO_FOREACH(cii, ci)) { * unsigned int *p = percpu_getptr_remote(pc, ci); * sum += *p; * } * percpu_traverse_exit(); */ void percpu_traverse_enter(void) { ASSERT_SLEEPABLE(); rw_enter(&percpu_swap_lock, RW_READER); } void percpu_traverse_exit(void) { rw_exit(&percpu_swap_lock); } void * percpu_getptr_remote(percpu_t *pc, struct cpu_info *ci) { return &((char *)cpu_percpu(ci)->pcc_data)[percpu_offset(pc)]; } /* * percpu_foreach: call the specified callback function for each cpus. * * => called in thread context. * => caller should not rely on the cpu iteration order. * => the callback function should be minimum because it is executed with * holding a global lock, which can block low-priority xcalls. * eg. it's illegal for a callback function to sleep for memory allocation. */ void percpu_foreach(percpu_t *pc, percpu_callback_t cb, void *arg) { CPU_INFO_ITERATOR cii; struct cpu_info *ci; percpu_traverse_enter(); for (CPU_INFO_FOREACH(cii, ci)) { (*cb)(percpu_getptr_remote(pc, ci), arg, ci); } percpu_traverse_exit(); }