/* $NetBSD: mkfs.c,v 1.11 2002/08/08 13:24:15 soren Exp $ */ /* From NetBSD: mkfs.c,v 1.59 2001/12/31 07:07:58 lukem Exp $ */ /* * Copyright (c) 1980, 1989, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include #if defined(__RCSID) && !defined(lint) #if 0 static char sccsid[] = "@(#)mkfs.c 8.11 (Berkeley) 5/3/95"; #else __RCSID("$NetBSD: mkfs.c,v 1.11 2002/08/08 13:24:15 soren Exp $"); #endif #endif /* not lint */ #include #include #include #include #include #include #include #include "makefs.h" #include #include #include #include "ffs/ufs_inode.h" #include "ffs/ffs_extern.h" #include "ffs/newfs_extern.h" static void initcg(int, time_t, const fsinfo_t *); static int32_t calcipg(int32_t, int32_t, off_t *); static void swap_cg(struct cg *, struct cg *); static int count_digits(int); /* * make file system for cylinder-group style file systems */ /* * We limit the size of the inode map to be no more than a * third of the cylinder group space, since we must leave at * least an equal amount of space for the block map. * * N.B.: MAXIPG must be a multiple of INOPB(fs). */ #define MAXIPG(fs) roundup((fs)->fs_bsize * NBBY / 3, INOPB(fs)) #define UMASK 0755 #define POWEROF2(num) (((num) & ((num) - 1)) == 0) union { struct fs fs; char pad[SBSIZE]; } fsun; #define sblock fsun.fs union { struct cg cg; char pad[MAXBSIZE]; } cgun; #define acg cgun.cg struct dinode zino[MAXBSIZE / DINODE_SIZE]; char writebuf[MAXBSIZE]; static int Oflag; /* format as an 4.3BSD file system */ static int fssize; /* file system size */ static int ntracks; /* # tracks/cylinder */ static int nsectors; /* # sectors/track */ static int nphyssectors; /* # sectors/track including spares */ static int secpercyl; /* sectors per cylinder */ static int sectorsize; /* bytes/sector */ static int rpm; /* revolutions/minute of drive */ static int interleave; /* hardware sector interleave */ static int trackskew; /* sector 0 skew, per track */ static int fsize; /* fragment size */ static int bsize; /* block size */ static int cpg; /* cylinders/cylinder group */ static int cpgflg; /* cylinders/cylinder group flag was given */ static int minfree; /* free space threshold */ static int opt; /* optimization preference (space or time) */ static int density; /* number of bytes per inode */ static int maxcontig; /* max contiguous blocks to allocate */ static int rotdelay; /* rotational delay between blocks */ static int maxbpg; /* maximum blocks per file in a cyl group */ static int nrpos; /* # of distinguished rotational positions */ static int bbsize; /* boot block size */ static int sbsize; /* superblock size */ static int avgfilesize; /* expected average file size */ static int avgfpdir; /* expected number of files per directory */ struct fs * ffs_mkfs(const char *fsys, const fsinfo_t *fsopts) { int32_t i, mincpc, mincpg, inospercg; int32_t cylno, rpos, blk, j, warned = 0; int32_t used, mincpgcnt, bpcg; off_t usedb; int32_t mapcramped, inodecramped; int32_t postblsize, rotblsize, totalsbsize; long long sizepb; void *space; int size, blks; int nprintcols, printcolwidth; Oflag = 0; fssize = fsopts->size / fsopts->sectorsize; ntracks = fsopts->ntracks; nsectors = fsopts->nsectors; nphyssectors = fsopts->nsectors; /* XXX: no trackspares */ secpercyl = nsectors * ntracks; sectorsize = fsopts->sectorsize; rpm = fsopts->rpm; interleave = 1; trackskew = 0; fsize = fsopts->fsize; bsize = fsopts->bsize; cpg = fsopts->cpg; cpgflg = fsopts->cpgflg; minfree = fsopts->minfree; opt = fsopts->optimization; density = fsopts->density; maxcontig = fsopts->maxcontig; rotdelay = fsopts->rotdelay; maxbpg = fsopts->maxbpg; nrpos = fsopts->nrpos; bbsize = BBSIZE; sbsize = SBSIZE; avgfilesize = fsopts->avgfilesize; avgfpdir = fsopts->avgfpdir; if (Oflag) { sblock.fs_inodefmt = FS_42INODEFMT; sblock.fs_maxsymlinklen = 0; } else { sblock.fs_inodefmt = FS_44INODEFMT; sblock.fs_maxsymlinklen = MAXSYMLINKLEN; } /* * Validate the given file system size. * Verify that its last block can actually be accessed. */ if (fssize <= 0) printf("preposterous size %d\n", fssize), exit(13); ffs_wtfs(fssize - 1, sectorsize, (char *)&sblock, fsopts); /* * collect and verify the sector and track info */ sblock.fs_nsect = nsectors; sblock.fs_ntrak = ntracks; if (sblock.fs_ntrak <= 0) printf("preposterous ntrak %d\n", sblock.fs_ntrak), exit(14); if (sblock.fs_nsect <= 0) printf("preposterous nsect %d\n", sblock.fs_nsect), exit(15); /* * collect and verify the filesystem density info */ sblock.fs_avgfilesize = avgfilesize; sblock.fs_avgfpdir = avgfpdir; if (sblock.fs_avgfilesize <= 0) printf("illegal expected average file size %d\n", sblock.fs_avgfilesize), exit(14); if (sblock.fs_avgfpdir <= 0) printf("illegal expected number of files per directory %d\n", sblock.fs_avgfpdir), exit(15); /* * collect and verify the block and fragment sizes */ sblock.fs_bsize = bsize; sblock.fs_fsize = fsize; if (!POWEROF2(sblock.fs_bsize)) { printf("block size must be a power of 2, not %d\n", sblock.fs_bsize); exit(16); } if (!POWEROF2(sblock.fs_fsize)) { printf("fragment size must be a power of 2, not %d\n", sblock.fs_fsize); exit(17); } if (sblock.fs_fsize < sectorsize) { printf("fragment size %d is too small, minimum is %d\n", sblock.fs_fsize, sectorsize); exit(18); } if (sblock.fs_bsize > MAXBSIZE) { printf("block size %d is too large, maximum is %d\n", sblock.fs_bsize, MAXBSIZE); exit(19); } if (sblock.fs_bsize < MINBSIZE) { printf("block size %d is too small, minimum is %d\n", sblock.fs_bsize, MINBSIZE); exit(19); } if (sblock.fs_bsize < sblock.fs_fsize) { printf("block size (%d) cannot be smaller than fragment size (%d)\n", sblock.fs_bsize, sblock.fs_fsize); exit(20); } sblock.fs_bmask = ~(sblock.fs_bsize - 1); sblock.fs_fmask = ~(sblock.fs_fsize - 1); sblock.fs_qbmask = ~sblock.fs_bmask; sblock.fs_qfmask = ~sblock.fs_fmask; for (sblock.fs_bshift = 0, i = sblock.fs_bsize; i > 1; i >>= 1) sblock.fs_bshift++; for (sblock.fs_fshift = 0, i = sblock.fs_fsize; i > 1; i >>= 1) sblock.fs_fshift++; sblock.fs_frag = numfrags(&sblock, sblock.fs_bsize); for (sblock.fs_fragshift = 0, i = sblock.fs_frag; i > 1; i >>= 1) sblock.fs_fragshift++; if (sblock.fs_frag > MAXFRAG) { printf("fragment size %d is too small, " "minimum with block size %d is %d\n", sblock.fs_fsize, sblock.fs_bsize, sblock.fs_bsize / MAXFRAG); exit(21); } sblock.fs_nrpos = nrpos; sblock.fs_nindir = sblock.fs_bsize / sizeof(daddr_t); sblock.fs_inopb = sblock.fs_bsize / DINODE_SIZE; sblock.fs_nspf = sblock.fs_fsize / sectorsize; for (sblock.fs_fsbtodb = 0, i = NSPF(&sblock); i > 1; i >>= 1) sblock.fs_fsbtodb++; sblock.fs_sblkno = roundup(howmany(bbsize + sbsize, sblock.fs_fsize), sblock.fs_frag); sblock.fs_cblkno = (daddr_t)(sblock.fs_sblkno + roundup(howmany(sbsize, sblock.fs_fsize), sblock.fs_frag)); sblock.fs_iblkno = sblock.fs_cblkno + sblock.fs_frag; sblock.fs_cgoffset = roundup( howmany(sblock.fs_nsect, NSPF(&sblock)), sblock.fs_frag); for (sblock.fs_cgmask = 0xffffffff, i = sblock.fs_ntrak; i > 1; i >>= 1) sblock.fs_cgmask <<= 1; if (!POWEROF2(sblock.fs_ntrak)) sblock.fs_cgmask <<= 1; sblock.fs_maxfilesize = sblock.fs_bsize * NDADDR - 1; for (sizepb = sblock.fs_bsize, i = 0; i < NIADDR; i++) { sizepb *= NINDIR(&sblock); sblock.fs_maxfilesize += sizepb; } /* * Validate specified/determined secpercyl * and calculate minimum cylinders per group. */ sblock.fs_spc = secpercyl; for (sblock.fs_cpc = NSPB(&sblock), i = sblock.fs_spc; sblock.fs_cpc > 1 && (i & 1) == 0; sblock.fs_cpc >>= 1, i >>= 1) /* void */; mincpc = sblock.fs_cpc; bpcg = sblock.fs_spc * sectorsize; inospercg = roundup(bpcg / DINODE_SIZE, INOPB(&sblock)); if (inospercg > MAXIPG(&sblock)) inospercg = MAXIPG(&sblock); used = (sblock.fs_iblkno + inospercg / INOPF(&sblock)) * NSPF(&sblock); mincpgcnt = howmany(sblock.fs_cgoffset * (~sblock.fs_cgmask) + used, sblock.fs_spc); mincpg = roundup(mincpgcnt, mincpc); /* * Ensure that cylinder group with mincpg has enough space * for block maps. */ sblock.fs_cpg = mincpg; sblock.fs_ipg = inospercg; if (maxcontig > 1) sblock.fs_contigsumsize = MIN(maxcontig, FS_MAXCONTIG); mapcramped = 0; while (CGSIZE(&sblock) > sblock.fs_bsize) { mapcramped = 1; if (sblock.fs_bsize < MAXBSIZE) { sblock.fs_bsize <<= 1; if ((i & 1) == 0) { i >>= 1; } else { sblock.fs_cpc <<= 1; mincpc <<= 1; mincpg = roundup(mincpgcnt, mincpc); sblock.fs_cpg = mincpg; } sblock.fs_frag <<= 1; sblock.fs_fragshift += 1; if (sblock.fs_frag <= MAXFRAG) continue; } if (sblock.fs_fsize == sblock.fs_bsize) { printf("There is no block size that"); printf(" can support this disk\n"); exit(22); } sblock.fs_frag >>= 1; sblock.fs_fragshift -= 1; sblock.fs_fsize <<= 1; sblock.fs_nspf <<= 1; } /* * Ensure that cylinder group with mincpg has enough space for inodes. */ inodecramped = 0; inospercg = calcipg(mincpg, bpcg, &usedb); sblock.fs_ipg = inospercg; while (inospercg > MAXIPG(&sblock)) { inodecramped = 1; if (mincpc == 1 || sblock.fs_frag == 1 || sblock.fs_bsize == MINBSIZE) break; printf("With a block size of %d %s %d\n", sblock.fs_bsize, "minimum bytes per inode is", (int)((mincpg * (off_t)bpcg - usedb) / MAXIPG(&sblock) + 1)); sblock.fs_bsize >>= 1; sblock.fs_frag >>= 1; sblock.fs_fragshift -= 1; mincpc >>= 1; sblock.fs_cpg = roundup(mincpgcnt, mincpc); if (CGSIZE(&sblock) > sblock.fs_bsize) { sblock.fs_bsize <<= 1; break; } mincpg = sblock.fs_cpg; inospercg = calcipg(mincpg, bpcg, &usedb); sblock.fs_ipg = inospercg; } if (inodecramped) { if (inospercg > MAXIPG(&sblock)) { printf("Minimum bytes per inode is %d\n", (int)((mincpg * (off_t)bpcg - usedb) / MAXIPG(&sblock) + 1)); } else if (!mapcramped) { printf("With %d bytes per inode, ", density); printf("minimum cylinders per group is %d\n", mincpg); } } if (mapcramped) { printf("With %d sectors per cylinder, ", sblock.fs_spc); printf("minimum cylinders per group is %d\n", mincpg); } if (inodecramped || mapcramped) { if (sblock.fs_bsize != bsize) printf("%s to be changed from %d to %d\n", "This requires the block size", bsize, sblock.fs_bsize); if (sblock.fs_fsize != fsize) printf("\t%s to be changed from %d to %d\n", "and the fragment size", fsize, sblock.fs_fsize); exit(23); } /* * Calculate the number of cylinders per group */ sblock.fs_cpg = cpg; if (sblock.fs_cpg % mincpc != 0) { printf("%s groups must have a multiple of %d cylinders\n", cpgflg ? "Cylinder" : "Warning: cylinder", mincpc); sblock.fs_cpg = roundup(sblock.fs_cpg, mincpc); if (!cpgflg) cpg = sblock.fs_cpg; } /* * Must ensure there is enough space for inodes. */ sblock.fs_ipg = calcipg(sblock.fs_cpg, bpcg, &usedb); while (sblock.fs_ipg > MAXIPG(&sblock)) { inodecramped = 1; sblock.fs_cpg -= mincpc; sblock.fs_ipg = calcipg(sblock.fs_cpg, bpcg, &usedb); } /* * Must ensure there is enough space to hold block map. */ while (CGSIZE(&sblock) > sblock.fs_bsize) { mapcramped = 1; sblock.fs_cpg -= mincpc; sblock.fs_ipg = calcipg(sblock.fs_cpg, bpcg, &usedb); } sblock.fs_fpg = (sblock.fs_cpg * sblock.fs_spc) / NSPF(&sblock); if ((sblock.fs_cpg * sblock.fs_spc) % NSPB(&sblock) != 0) { printf("panic (fs_cpg * fs_spc) %% NSPF != 0"); exit(24); } if (sblock.fs_cpg < mincpg) { printf("cylinder groups must have at least %d cylinders\n", mincpg); exit(25); } else if (sblock.fs_cpg != cpg && cpgflg) { if (!mapcramped && !inodecramped) exit(26); if (mapcramped && inodecramped) printf("Block size and bytes per inode restrict"); else if (mapcramped) printf("Block size restricts"); else printf("Bytes per inode restrict"); printf(" cylinders per group to %d.\n", sblock.fs_cpg); exit(27); } sblock.fs_cgsize = fragroundup(&sblock, CGSIZE(&sblock)); /* * Now have size for file system and nsect and ntrak. * Determine number of cylinders and blocks in the file system. */ sblock.fs_size = fssize = dbtofsb(&sblock, fssize); sblock.fs_ncyl = fssize * NSPF(&sblock) / sblock.fs_spc; if (fssize * NSPF(&sblock) > sblock.fs_ncyl * sblock.fs_spc) { sblock.fs_ncyl++; warned = 1; } if (sblock.fs_ncyl < 1) { printf("file systems must have at least one cylinder\n"); exit(28); } /* * Determine feasability/values of rotational layout tables. * * The size of the rotational layout tables is limited by the * size of the superblock, SBSIZE. The amount of space available * for tables is calculated as (SBSIZE - sizeof (struct fs)). * The size of these tables is inversely proportional to the block * size of the file system. The size increases if sectors per track * are not powers of two, because more cylinders must be described * by the tables before the rotational pattern repeats (fs_cpc). */ sblock.fs_interleave = interleave; sblock.fs_trackskew = trackskew; sblock.fs_npsect = nphyssectors; sblock.fs_postblformat = FS_DYNAMICPOSTBLFMT; sblock.fs_sbsize = fragroundup(&sblock, sizeof(struct fs)); if (sblock.fs_ntrak == 1) { sblock.fs_cpc = 0; goto next; } postblsize = sblock.fs_nrpos * sblock.fs_cpc * sizeof(int16_t); rotblsize = sblock.fs_cpc * sblock.fs_spc / NSPB(&sblock); totalsbsize = sizeof(struct fs) + rotblsize; if (sblock.fs_nrpos == 8 && sblock.fs_cpc <= 16) { /* use old static table space */ sblock.fs_postbloff = (char *)(&sblock.fs_opostbl[0][0]) - (char *)(&sblock.fs_firstfield); sblock.fs_rotbloff = &sblock.fs_space[0] - (u_char *)(&sblock.fs_firstfield); } else { /* use dynamic table space */ sblock.fs_postbloff = &sblock.fs_space[0] - (u_char *)(&sblock.fs_firstfield); sblock.fs_rotbloff = sblock.fs_postbloff + postblsize; totalsbsize += postblsize; } if (totalsbsize > SBSIZE || sblock.fs_nsect > (1 << NBBY) * NSPB(&sblock)) { printf("%s %s %d %s %d.%s", "Warning: insufficient space in super block for\n", "rotational layout tables with nsect", sblock.fs_nsect, "and ntrak", sblock.fs_ntrak, "\nFile system performance may be impaired.\n"); sblock.fs_cpc = 0; goto next; } sblock.fs_sbsize = fragroundup(&sblock, totalsbsize); /* * calculate the available blocks for each rotational position */ for (cylno = 0; cylno < sblock.fs_cpc; cylno++) for (rpos = 0; rpos < sblock.fs_nrpos; rpos++) fs_postbl(&sblock, cylno)[rpos] = -1; for (i = (rotblsize - 1) * sblock.fs_frag; i >= 0; i -= sblock.fs_frag) { cylno = cbtocylno(&sblock, i); rpos = cbtorpos(&sblock, i); blk = fragstoblks(&sblock, i); if (fs_postbl(&sblock, cylno)[rpos] == -1) fs_rotbl(&sblock)[blk] = 0; else fs_rotbl(&sblock)[blk] = fs_postbl(&sblock, cylno)[rpos] - blk; fs_postbl(&sblock, cylno)[rpos] = blk; } next: /* * Compute/validate number of cylinder groups. */ sblock.fs_ncg = sblock.fs_ncyl / sblock.fs_cpg; if (sblock.fs_ncyl % sblock.fs_cpg) sblock.fs_ncg++; sblock.fs_dblkno = sblock.fs_iblkno + sblock.fs_ipg / INOPF(&sblock); i = MIN(~sblock.fs_cgmask, sblock.fs_ncg - 1); if (cgdmin(&sblock, i) - cgbase(&sblock, i) >= sblock.fs_fpg) { printf("inode blocks/cyl group (%d) >= data blocks (%d)\n", cgdmin(&sblock, i) - cgbase(&sblock, i) / sblock.fs_frag, sblock.fs_fpg / sblock.fs_frag); printf("number of cylinders per cylinder group (%d) %s.\n", sblock.fs_cpg, "must be increased"); exit(29); } j = sblock.fs_ncg - 1; if ((i = fssize - j * sblock.fs_fpg) < sblock.fs_fpg && cgdmin(&sblock, j) - cgbase(&sblock, j) > i) { if (j == 0) { printf("File system must have at least %d sectors\n", NSPF(&sblock) * (cgdmin(&sblock, 0) + 3 * sblock.fs_frag)); exit(30); } printf("Warning: inode blocks/cyl group (%d) >= " "data blocks (%d) in last\n", (cgdmin(&sblock, j) - cgbase(&sblock, j)) / sblock.fs_frag, i / sblock.fs_frag); printf(" cylinder group. This implies %d sector(s) " "cannot be allocated.\n", i * NSPF(&sblock)); sblock.fs_ncg--; sblock.fs_ncyl -= sblock.fs_ncyl % sblock.fs_cpg; sblock.fs_size = fssize = sblock.fs_ncyl * sblock.fs_spc / NSPF(&sblock); warned = 0; } if (warned) { printf("Warning: %d sector(s) in last cylinder unallocated\n", sblock.fs_spc - (fssize * NSPF(&sblock) - (sblock.fs_ncyl - 1) * sblock.fs_spc)); } /* * fill in remaining fields of the super block */ sblock.fs_csaddr = cgdmin(&sblock, 0); sblock.fs_cssize = fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum)); /* * The superblock fields 'fs_csmask' and 'fs_csshift' are no * longer used. However, we still initialise them so that the * filesystem remains compatible with old kernels. */ i = sblock.fs_bsize / sizeof(struct csum); sblock.fs_csmask = ~(i - 1); for (sblock.fs_csshift = 0; i > 1; i >>= 1) sblock.fs_csshift++; /* * Setup memory for temporary in-core cylgroup summaries. * Cribbed from ffs_mountfs(). */ size = sblock.fs_cssize; blks = howmany(size, sblock.fs_fsize); if (sblock.fs_contigsumsize > 0) size += sblock.fs_ncg * sizeof(int32_t); if ((space = (char *)calloc(1, size)) == NULL) err(1, "memory allocation error for cg summaries"); sblock.fs_csp = space; space = (char *)space + sblock.fs_cssize; if (sblock.fs_contigsumsize > 0) { int32_t *lp; sblock.fs_maxcluster = lp = space; for (i = 0; i < sblock.fs_ncg; i++) *lp++ = sblock.fs_contigsumsize; } sblock.fs_magic = FS_MAGIC; sblock.fs_rotdelay = rotdelay; sblock.fs_minfree = minfree; sblock.fs_maxcontig = maxcontig; sblock.fs_maxbpg = maxbpg; sblock.fs_rps = rpm / 60; sblock.fs_optim = opt; sblock.fs_cgrotor = 0; sblock.fs_cstotal.cs_ndir = 0; sblock.fs_cstotal.cs_nbfree = 0; sblock.fs_cstotal.cs_nifree = 0; sblock.fs_cstotal.cs_nffree = 0; sblock.fs_fmod = 0; sblock.fs_clean = FS_ISCLEAN; sblock.fs_ronly = 0; /* * Dump out summary information about file system. */ printf("%s:\t%d sectors in %d %s of %d tracks, %d sectors\n", fsys, sblock.fs_size * NSPF(&sblock), sblock.fs_ncyl, "cylinders", sblock.fs_ntrak, sblock.fs_nsect); #define B2MBFACTOR (1 / (1024.0 * 1024.0)) printf("\t%.1fMB in %d cyl groups (%d c/g, %.2fMB/g, %d i/g)\n", (float)sblock.fs_size * sblock.fs_fsize * B2MBFACTOR, sblock.fs_ncg, sblock.fs_cpg, (float)sblock.fs_fpg * sblock.fs_fsize * B2MBFACTOR, sblock.fs_ipg); #undef B2MBFACTOR /* * Now determine how wide each column will be, and calculate how * many columns will fit in a 76 char line. 76 is the width of the * subwindows in sysinst. */ printcolwidth = count_digits( fsbtodb(&sblock, cgsblock(&sblock, sblock.fs_ncg -1))); nprintcols = 76 / (printcolwidth + 2); /* * Now build the cylinders group blocks and * then print out indices of cylinder groups. */ printf("super-block backups (for fsck -b #) at:"); for (cylno = 0; cylno < sblock.fs_ncg; cylno++) { initcg(cylno, start_time.tv_sec, fsopts); if (cylno % nprintcols == 0) printf("\n"); printf(" %*d,", printcolwidth, fsbtodb(&sblock, cgsblock(&sblock, cylno))); fflush(stdout); } printf("\n"); /* * Now construct the initial file system, * then write out the super-block. */ sblock.fs_time = start_time.tv_sec; if (fsopts->needswap) sblock.fs_flags |= FS_SWAPPED; ffs_write_superblock(&sblock, fsopts); return (&sblock); } /* * Write out the superblock and its duplicates, * and the cylinder group summaries */ void ffs_write_superblock(struct fs *fs, const fsinfo_t *fsopts) { int cylno, size, blks, i, saveflag; void *space; char *wrbuf; saveflag = fs->fs_flags & FS_INTERNAL; fs->fs_flags &= ~FS_INTERNAL; /* Write out the master super block */ memcpy(writebuf, fs, sbsize); if (fsopts->needswap) ffs_sb_swap(fs, (struct fs*)writebuf); ffs_wtfs((int)SBOFF / sectorsize, sbsize, writebuf, fsopts); /* Write out the duplicate super blocks */ for (cylno = 0; cylno < sblock.fs_ncg; cylno++) ffs_wtfs(fsbtodb(fs, cgsblock(fs, cylno)), sbsize, writebuf, fsopts); /* Write out the cylinder group summaries */ size = fs->fs_cssize; blks = howmany(size, fs->fs_fsize); space = (void *)fs->fs_csp; if ((wrbuf = malloc(size)) == NULL) err(1, "ffs_write_superblock: malloc %d", size); for (i = 0; i < blks; i+= fs->fs_frag) { size = fs->fs_bsize; if (i + fs->fs_frag > blks) size = (blks - i) * fs->fs_fsize; if (fsopts->needswap) ffs_csum_swap((struct csum *)space, (struct csum *)wrbuf, size); else memcpy(wrbuf, space, (u_int)size); ffs_wtfs(fsbtodb(fs, fs->fs_csaddr + i), size, wrbuf, fsopts); space = (char *)space + size; } free(wrbuf); fs->fs_flags |= saveflag; } /* * Initialize a cylinder group. */ static void initcg(int cylno, time_t utime, const fsinfo_t *fsopts) { daddr_t cbase, d, dlower, dupper, dmax, blkno; int32_t i; /* * Determine block bounds for cylinder group. * Allow space for super block summary information in first * cylinder group. */ cbase = cgbase(&sblock, cylno); dmax = cbase + sblock.fs_fpg; if (dmax > sblock.fs_size) dmax = sblock.fs_size; dlower = cgsblock(&sblock, cylno) - cbase; dupper = cgdmin(&sblock, cylno) - cbase; if (cylno == 0) dupper += howmany(sblock.fs_cssize, sblock.fs_fsize); memset(&acg, 0, sblock.fs_cgsize); acg.cg_time = utime; acg.cg_magic = CG_MAGIC; acg.cg_cgx = cylno; if (cylno == sblock.fs_ncg - 1) acg.cg_ncyl = sblock.fs_ncyl % sblock.fs_cpg; else acg.cg_ncyl = sblock.fs_cpg; acg.cg_niblk = sblock.fs_ipg; acg.cg_ndblk = dmax - cbase; if (sblock.fs_contigsumsize > 0) acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag; acg.cg_btotoff = &acg.cg_space[0] - (u_char *)(&acg.cg_firstfield); acg.cg_boff = acg.cg_btotoff + sblock.fs_cpg * sizeof(int32_t); acg.cg_iusedoff = acg.cg_boff + sblock.fs_cpg * sblock.fs_nrpos * sizeof(int16_t); acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, NBBY); if (sblock.fs_contigsumsize <= 0) { acg.cg_nextfreeoff = acg.cg_freeoff + howmany(sblock.fs_cpg * sblock.fs_spc / NSPF(&sblock), NBBY); } else { acg.cg_clustersumoff = acg.cg_freeoff + howmany (sblock.fs_cpg * sblock.fs_spc / NSPF(&sblock), NBBY) - sizeof(int32_t); acg.cg_clustersumoff = roundup(acg.cg_clustersumoff, sizeof(int32_t)); acg.cg_clusteroff = acg.cg_clustersumoff + (sblock.fs_contigsumsize + 1) * sizeof(int32_t); acg.cg_nextfreeoff = acg.cg_clusteroff + howmany (sblock.fs_cpg * sblock.fs_spc / NSPB(&sblock), NBBY); } if (acg.cg_nextfreeoff > sblock.fs_cgsize) { printf("Panic: cylinder group too big\n"); exit(37); } acg.cg_cs.cs_nifree += sblock.fs_ipg; if (cylno == 0) for (i = 0; i < ROOTINO; i++) { setbit(cg_inosused(&acg, 0), i); acg.cg_cs.cs_nifree--; } for (i = 0; i < sblock.fs_ipg / INOPF(&sblock); i += sblock.fs_frag) ffs_wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno) + i), sblock.fs_bsize, (char *)zino, fsopts); if (cylno > 0) { /* * In cylno 0, beginning space is reserved * for boot and super blocks. */ for (d = 0; d < dlower; d += sblock.fs_frag) { blkno = d / sblock.fs_frag; ffs_setblock(&sblock, cg_blksfree(&acg, 0), blkno); if (sblock.fs_contigsumsize > 0) setbit(cg_clustersfree(&acg, 0), blkno); acg.cg_cs.cs_nbfree++; cg_blktot(&acg, 0)[cbtocylno(&sblock, d)]++; cg_blks(&sblock, &acg, cbtocylno(&sblock, d), 0) [cbtorpos(&sblock, d)]++; } sblock.fs_dsize += dlower; } sblock.fs_dsize += acg.cg_ndblk - dupper; if ((i = (dupper % sblock.fs_frag)) != 0) { acg.cg_frsum[sblock.fs_frag - i]++; for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) { setbit(cg_blksfree(&acg, 0), dupper); acg.cg_cs.cs_nffree++; } } for (d = dupper; d + sblock.fs_frag <= dmax - cbase; ) { blkno = d / sblock.fs_frag; ffs_setblock(&sblock, cg_blksfree(&acg, 0), blkno); if (sblock.fs_contigsumsize > 0) setbit(cg_clustersfree(&acg, 0), blkno); acg.cg_cs.cs_nbfree++; cg_blktot(&acg, 0)[cbtocylno(&sblock, d)]++; cg_blks(&sblock, &acg, cbtocylno(&sblock, d), 0) [cbtorpos(&sblock, d)]++; d += sblock.fs_frag; } if (d < dmax - cbase) { acg.cg_frsum[dmax - cbase - d]++; for (; d < dmax - cbase; d++) { setbit(cg_blksfree(&acg, 0), d); acg.cg_cs.cs_nffree++; } } if (sblock.fs_contigsumsize > 0) { int32_t *sump = cg_clustersum(&acg, 0); u_char *mapp = cg_clustersfree(&acg, 0); int map = *mapp++; int bit = 1; int run = 0; for (i = 0; i < acg.cg_nclusterblks; i++) { if ((map & bit) != 0) { run++; } else if (run != 0) { if (run > sblock.fs_contigsumsize) run = sblock.fs_contigsumsize; sump[run]++; run = 0; } if ((i & (NBBY - 1)) != (NBBY - 1)) { bit <<= 1; } else { map = *mapp++; bit = 1; } } if (run != 0) { if (run > sblock.fs_contigsumsize) run = sblock.fs_contigsumsize; sump[run]++; } } sblock.fs_cstotal.cs_ndir += acg.cg_cs.cs_ndir; sblock.fs_cstotal.cs_nffree += acg.cg_cs.cs_nffree; sblock.fs_cstotal.cs_nbfree += acg.cg_cs.cs_nbfree; sblock.fs_cstotal.cs_nifree += acg.cg_cs.cs_nifree; sblock.fs_cs(&sblock, cylno) = acg.cg_cs; memcpy(writebuf, &acg, sblock.fs_bsize); if (fsopts->needswap) swap_cg(&acg, (struct cg*)writebuf); ffs_wtfs(fsbtodb(&sblock, cgtod(&sblock, cylno)), sblock.fs_bsize, writebuf, fsopts); } /* * Calculate number of inodes per group. */ static int32_t calcipg(int32_t cylpg, int32_t bpcg, off_t *usedbp) { int i; int32_t ipg, new_ipg, ncg, ncyl; off_t usedb; /* * Prepare to scale by fssize / (number of sectors in cylinder groups). * Note that fssize is still in sectors, not file system blocks. */ ncyl = howmany(fssize, secpercyl); ncg = howmany(ncyl, cylpg); /* * Iterate a few times to allow for ipg depending on itself. */ ipg = 0; for (i = 0; i < 10; i++) { usedb = (sblock.fs_iblkno + ipg / INOPF(&sblock)) * NSPF(&sblock) * (off_t)sectorsize; if (cylpg * (long long)bpcg < usedb) { warnx("Too many inodes per cyl group!"); return (MAXIPG(&sblock)+1); } new_ipg = (cylpg * (long long)bpcg - usedb) / (long long)density * fssize / (ncg * secpercyl * cylpg); if (new_ipg <= 0) new_ipg = 1; /* ensure ipg > 0 */ new_ipg = roundup(new_ipg, INOPB(&sblock)); if (new_ipg == ipg) break; ipg = new_ipg; } *usedbp = usedb; return (ipg); } /* * read a block from the file system */ void ffs_rdfs(daddr_t bno, int size, void *bf, const fsinfo_t *fsopts) { int n; off_t offset; offset = bno; offset *= fsopts->sectorsize; if (lseek(fsopts->fd, offset, SEEK_SET) < 0) err(1, "ffs_rdfs: seek error: %d", bno); n = read(fsopts->fd, bf, size); if (n == -1) err(1, "ffs_rdfs: read error bno %d size %d", bno, size); else if (n != size) errx(1, "ffs_rdfs: read error bno %d size %d: short read of %d", bno, size, n); } /* * write a block to the file system */ void ffs_wtfs(daddr_t bno, int size, void *bf, const fsinfo_t *fsopts) { int n; off_t offset; offset = bno; offset *= fsopts->sectorsize; if (lseek(fsopts->fd, offset, SEEK_SET) < 0) err(1, "ffs_wtfs: seek error: %d", bno); n = write(fsopts->fd, bf, size); if (n == -1) err(1, "ffs_wtfs: write error bno %d size %d", bno, size); else if (n != size) errx(1, "ffs_wtfs: write error bno %d size %d: short write of %d", bno, size, n); } /* swap byte order of cylinder group */ static void swap_cg(struct cg *o, struct cg *n) { int i, btotsize, fbsize; u_int32_t *n32, *o32; u_int16_t *n16, *o16; n->cg_firstfield = bswap32(o->cg_firstfield); n->cg_magic = bswap32(o->cg_magic); n->cg_time = bswap32(o->cg_time); n->cg_cgx = bswap32(o->cg_cgx); n->cg_ncyl = bswap16(o->cg_ncyl); n->cg_niblk = bswap16(o->cg_niblk); n->cg_ndblk = bswap32(o->cg_ndblk); n->cg_cs.cs_ndir = bswap32(o->cg_cs.cs_ndir); n->cg_cs.cs_nbfree = bswap32(o->cg_cs.cs_nbfree); n->cg_cs.cs_nifree = bswap32(o->cg_cs.cs_nifree); n->cg_cs.cs_nffree = bswap32(o->cg_cs.cs_nffree); n->cg_rotor = bswap32(o->cg_rotor); n->cg_frotor = bswap32(o->cg_frotor); n->cg_irotor = bswap32(o->cg_irotor); n->cg_btotoff = bswap32(o->cg_btotoff); n->cg_boff = bswap32(o->cg_boff); n->cg_iusedoff = bswap32(o->cg_iusedoff); n->cg_freeoff = bswap32(o->cg_freeoff); n->cg_nextfreeoff = bswap32(o->cg_nextfreeoff); n->cg_clustersumoff = bswap32(o->cg_clustersumoff); n->cg_clusteroff = bswap32(o->cg_clusteroff); n->cg_nclusterblks = bswap32(o->cg_nclusterblks); for (i=0; i < MAXFRAG; i++) n->cg_frsum[i] = bswap32(o->cg_frsum[i]); /* alays new format */ if (n->cg_magic == CG_MAGIC) { btotsize = n->cg_boff - n->cg_btotoff; fbsize = n->cg_iusedoff - n->cg_boff; n32 = (u_int32_t*)((u_int8_t*)n + n->cg_btotoff); o32 = (u_int32_t*)((u_int8_t*)o + n->cg_btotoff); n16 = (u_int16_t*)((u_int8_t*)n + n->cg_boff); o16 = (u_int16_t*)((u_int8_t*)o + n->cg_boff); } else { btotsize = bswap32(n->cg_boff) - bswap32(n->cg_btotoff); fbsize = bswap32(n->cg_iusedoff) - bswap32(n->cg_boff); n32 = (u_int32_t*)((u_int8_t*)n + bswap32(n->cg_btotoff)); o32 = (u_int32_t*)((u_int8_t*)o + bswap32(n->cg_btotoff)); n16 = (u_int16_t*)((u_int8_t*)n + bswap32(n->cg_boff)); o16 = (u_int16_t*)((u_int8_t*)o + bswap32(n->cg_boff)); } for (i=0; i < btotsize / sizeof(u_int32_t); i++) n32[i] = bswap32(o32[i]); for (i=0; i < fbsize/sizeof(u_int16_t); i++) n16[i] = bswap16(o16[i]); if (n->cg_magic == CG_MAGIC) { n32 = (u_int32_t*)((u_int8_t*)n + n->cg_clustersumoff); o32 = (u_int32_t*)((u_int8_t*)o + n->cg_clustersumoff); } else { n32 = (u_int32_t*)((u_int8_t*)n + bswap32(n->cg_clustersumoff)); o32 = (u_int32_t*)((u_int8_t*)o + bswap32(n->cg_clustersumoff)); } for (i = 1; i < sblock.fs_contigsumsize + 1; i++) n32[i] = bswap32(o32[i]); } /* Determine how many digits are needed to print a given integer */ static int count_digits(int num) { int ndig; for(ndig = 1; num > 9; num /=10, ndig++); return (ndig); }