.\" $NetBSD: BN_generate_prime.3,v 1.10 2002/08/09 16:15:38 itojun Exp $ .\" .\" Automatically generated by Pod::Man version 1.02 .\" Sat Aug 10 00:56:09 2002 .\" .\" Standard preamble: .\" ====================================================================== .de Sh \" Subsection heading .br .if t .Sp .ne 5 .PP \fB\\$1\fR .PP .. .de Sp \" Vertical space (when we can't use .PP) .if t .sp .5v .if n .sp .. .de Ip \" List item .br .ie \\n(.$>=3 .ne \\$3 .el .ne 3 .IP "\\$1" \\$2 .. .de Vb \" Begin verbatim text .ft CW .nf .ne \\$1 .. .de Ve \" End verbatim text .ft R .fi .. .\" Set up some character translations and predefined strings. \*(-- will .\" give an unbreakable dash, \*(PI will give pi, \*(L" will give a left .\" double quote, and \*(R" will give a right double quote. | will give a .\" real vertical bar. \*(C+ will give a nicer C++. Capital omega is used .\" to do unbreakable dashes and therefore won't be available. \*(C` and .\" \*(C' expand to `' in nroff, nothing in troff, for use with C<> .tr \(*W-|\(bv\*(Tr .ds C+ C\v'-.1v'\h'-1p'\s-2+\h'-1p'+\s0\v'.1v'\h'-1p' .ie n \{\ . ds -- \(*W- . ds PI pi . if (\n(.H=4u)&(1m=24u) .ds -- \(*W\h'-12u'\(*W\h'-12u'-\" diablo 10 pitch . if (\n(.H=4u)&(1m=20u) .ds -- \(*W\h'-12u'\(*W\h'-8u'-\" diablo 12 pitch . ds L" "" . ds R" "" . ds C` ` . ds C' ' 'br\} .el\{\ . ds -- \|\(em\| . ds PI \(*p . ds L" `` . ds R" '' 'br\} .\" .\" If the F register is turned on, we'll generate index entries on stderr .\" for titles (.TH), headers (.SH), subsections (.Sh), items (.Ip), and .\" index entries marked with X<> in POD. Of course, you'll have to process .\" the output yourself in some meaningful fashion. .if \nF \{\ . de IX . tm Index:\\$1\t\\n%\t"\\$2" . . . nr % 0 . rr F .\} .\" .\" For nroff, turn off justification. Always turn off hyphenation; it .\" makes way too many mistakes in technical documents. .hy 0 .if n .na .\" .\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2). .\" Fear. Run. Save yourself. No user-serviceable parts. .bd B 3 . \" fudge factors for nroff and troff .if n \{\ . ds #H 0 . ds #V .8m . ds #F .3m . ds #[ \f1 . ds #] \fP .\} .if t \{\ . ds #H ((1u-(\\\\n(.fu%2u))*.13m) . ds #V .6m . ds #F 0 . ds #[ \& . ds #] \& .\} . \" simple accents for nroff and troff .if n \{\ . ds ' \& . ds ` \& . ds ^ \& . ds , \& . ds ~ ~ . ds / .\} .if t \{\ . ds ' \\k:\h'-(\\n(.wu*8/10-\*(#H)'\'\h"|\\n:u" . ds ` \\k:\h'-(\\n(.wu*8/10-\*(#H)'\`\h'|\\n:u' . ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'^\h'|\\n:u' . ds , \\k:\h'-(\\n(.wu*8/10)',\h'|\\n:u' . ds ~ \\k:\h'-(\\n(.wu-\*(#H-.1m)'~\h'|\\n:u' . ds / \\k:\h'-(\\n(.wu*8/10-\*(#H)'\z\(sl\h'|\\n:u' .\} . \" troff and (daisy-wheel) nroff accents .ds : \\k:\h'-(\\n(.wu*8/10-\*(#H+.1m+\*(#F)'\v'-\*(#V'\z.\h'.2m+\*(#F'.\h'|\\n:u'\v'\*(#V' .ds 8 \h'\*(#H'\(*b\h'-\*(#H' .ds o \\k:\h'-(\\n(.wu+\w'\(de'u-\*(#H)/2u'\v'-.3n'\*(#[\z\(de\v'.3n'\h'|\\n:u'\*(#] .ds d- \h'\*(#H'\(pd\h'-\w'~'u'\v'-.25m'\f2\(hy\fP\v'.25m'\h'-\*(#H' .ds D- D\\k:\h'-\w'D'u'\v'-.11m'\z\(hy\v'.11m'\h'|\\n:u' .ds th \*(#[\v'.3m'\s+1I\s-1\v'-.3m'\h'-(\w'I'u*2/3)'\s-1o\s+1\*(#] .ds Th \*(#[\s+2I\s-2\h'-\w'I'u*3/5'\v'-.3m'o\v'.3m'\*(#] .ds ae a\h'-(\w'a'u*4/10)'e .ds Ae A\h'-(\w'A'u*4/10)'E . \" corrections for vroff .if v .ds ~ \\k:\h'-(\\n(.wu*9/10-\*(#H)'\s-2\u~\d\s+2\h'|\\n:u' .if v .ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'\v'-.4m'^\v'.4m'\h'|\\n:u' . \" for low resolution devices (crt and lpr) .if \n(.H>23 .if \n(.V>19 \ \{\ . ds : e . ds 8 ss . ds o a . ds d- d\h'-1'\(ga . ds D- D\h'-1'\(hy . ds th \o'bp' . ds Th \o'LP' . ds ae ae . ds Ae AE .\} .rm #[ #] #H #V #F C .\" ====================================================================== .\" .IX Title "BN_generate_prime 3" .TH BN_generate_prime 3 "0.9.6g" "2000-07-22" "OpenSSL" .UC .SH "NAME" BN_generate_prime, BN_is_prime, BN_is_prime_fasttest \- generate primes and test for primality .SH "LIBRARY" libcrypto, -lcrypto .SH "SYNOPSIS" .IX Header "SYNOPSIS" .Vb 1 \& #include .Ve .Vb 2 \& BIGNUM *BN_generate_prime(BIGNUM *ret, int num, int safe, BIGNUM *add, \& BIGNUM *rem, void (*callback)(int, int, void *), void *cb_arg); .Ve .Vb 2 \& int BN_is_prime(const BIGNUM *a, int checks, void (*callback)(int, int, \& void *), BN_CTX *ctx, void *cb_arg); .Ve .Vb 3 \& int BN_is_prime_fasttest(const BIGNUM *a, int checks, \& void (*callback)(int, int, void *), BN_CTX *ctx, void *cb_arg, \& int do_trial_division); .Ve .SH "DESCRIPTION" .IX Header "DESCRIPTION" \&\fIBN_generate_prime()\fR generates a pseudo-random prime number of \fBnum\fR bits. If \fBret\fR is not \fB\s-1NULL\s0\fR, it will be used to store the number. .PP If \fBcallback\fR is not \fB\s-1NULL\s0\fR, it is called as follows: .Ip "\(bu" 4 \&\fBcallback(0, i, cb_arg)\fR is called after generating the i-th potential prime number. .Ip "\(bu" 4 While the number is being tested for primality, \fBcallback(1, j, cb_arg)\fR is called as described below. .Ip "\(bu" 4 When a prime has been found, \fBcallback(2, i, cb_arg)\fR is called. .PP The prime may have to fulfill additional requirements for use in Diffie-Hellman key exchange: .PP If \fBadd\fR is not \fB\s-1NULL\s0\fR, the prime will fulfill the condition p % \fBadd\fR == \fBrem\fR (p % \fBadd\fR == 1 if \fBrem\fR == \fB\s-1NULL\s0\fR) in order to suit a given generator. .PP If \fBsafe\fR is true, it will be a safe prime (i.e. a prime p so that (p-1)/2 is also prime). .PP The \s-1PRNG\s0 must be seeded prior to calling \fIBN_generate_prime()\fR. The prime number generation has a negligible error probability. .PP \&\fIBN_is_prime()\fR and \fIBN_is_prime_fasttest()\fR test if the number \fBa\fR is prime. The following tests are performed until one of them shows that \&\fBa\fR is composite; if \fBa\fR passes all these tests, it is considered prime. .PP \&\fIBN_is_prime_fasttest()\fR, when called with \fBdo_trial_division == 1\fR, first attempts trial division by a number of small primes; if no divisors are found by this test and \fBcallback\fR is not \fB\s-1NULL\s0\fR, \&\fBcallback(1, \-1, cb_arg)\fR is called. If \fBdo_trial_division == 0\fR, this test is skipped. .PP Both \fIBN_is_prime()\fR and \fIBN_is_prime_fasttest()\fR perform a Miller-Rabin probabilistic primality test with \fBchecks\fR iterations. If \&\fBchecks == BN_prime_check\fR, a number of iterations is used that yields a false positive rate of at most 2^\-80 for random input. .PP If \fBcallback\fR is not \fB\s-1NULL\s0\fR, \fBcallback(1, j, cb_arg)\fR is called after the j-th iteration (j = 0, 1, ...). \fBctx\fR is a pre-allocated \fB\s-1BN_CTX\s0\fR (to save the overhead of allocating and freeing the structure in a loop), or \fB\s-1NULL\s0\fR. .SH "RETURN VALUES" .IX Header "RETURN VALUES" \&\fIBN_generate_prime()\fR returns the prime number on success, \fB\s-1NULL\s0\fR otherwise. .PP \&\fIBN_is_prime()\fR returns 0 if the number is composite, 1 if it is prime with an error probability of less than 0.25^\fBchecks\fR, and \&\-1 on error. .PP The error codes can be obtained by ERR_get_error(3). .SH "SEE ALSO" .IX Header "SEE ALSO" openssl_bn(3), openssl_err(3), openssl_rand(3) .SH "HISTORY" .IX Header "HISTORY" The \fBcb_arg\fR arguments to \fIBN_generate_prime()\fR and to \fIBN_is_prime()\fR were added in SSLeay 0.9.0. The \fBret\fR argument to \fIBN_generate_prime()\fR was added in SSLeay 0.9.1. \&\fIBN_is_prime_fasttest()\fR was added in OpenSSL 0.9.5.