/* $NetBSD: rf_reconstruct.c,v 1.59 2003/12/29 05:58:34 oster Exp $ */ /* * Copyright (c) 1995 Carnegie-Mellon University. * All rights reserved. * * Author: Mark Holland * * Permission to use, copy, modify and distribute this software and * its documentation is hereby granted, provided that both the copyright * notice and this permission notice appear in all copies of the * software, derivative works or modified versions, and any portions * thereof, and that both notices appear in supporting documentation. * * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. * * Carnegie Mellon requests users of this software to return to * * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU * School of Computer Science * Carnegie Mellon University * Pittsburgh PA 15213-3890 * * any improvements or extensions that they make and grant Carnegie the * rights to redistribute these changes. */ /************************************************************ * * rf_reconstruct.c -- code to perform on-line reconstruction * ************************************************************/ #include __KERNEL_RCSID(0, "$NetBSD: rf_reconstruct.c,v 1.59 2003/12/29 05:58:34 oster Exp $"); #include #include #include #include #include #include #include #include #include #include #include "rf_raid.h" #include "rf_reconutil.h" #include "rf_revent.h" #include "rf_reconbuffer.h" #include "rf_acctrace.h" #include "rf_etimer.h" #include "rf_dag.h" #include "rf_desc.h" #include "rf_debugprint.h" #include "rf_general.h" #include "rf_driver.h" #include "rf_utils.h" #include "rf_shutdown.h" #include "rf_kintf.h" /* setting these to -1 causes them to be set to their default values if not set by debug options */ #if RF_DEBUG_RECON #define Dprintf(s) if (rf_reconDebug) rf_debug_printf(s,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL) #define Dprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL) #define Dprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL) #define Dprintf3(s,a,b,c) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),NULL,NULL,NULL,NULL,NULL) #define Dprintf4(s,a,b,c,d) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),NULL,NULL,NULL,NULL) #define Dprintf5(s,a,b,c,d,e) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),NULL,NULL,NULL) #define Dprintf6(s,a,b,c,d,e,f) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),NULL,NULL) #define Dprintf7(s,a,b,c,d,e,f,g) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),(void *)((unsigned long)g),NULL) #define DDprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL) #define DDprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL) #else /* RF_DEBUG_RECON */ #define Dprintf(s) {} #define Dprintf1(s,a) {} #define Dprintf2(s,a,b) {} #define Dprintf3(s,a,b,c) {} #define Dprintf4(s,a,b,c,d) {} #define Dprintf5(s,a,b,c,d,e) {} #define Dprintf6(s,a,b,c,d,e,f) {} #define Dprintf7(s,a,b,c,d,e,f,g) {} #define DDprintf1(s,a) {} #define DDprintf2(s,a,b) {} #endif /* RF_DEBUG_RECON */ static struct pool rf_recond_pool; #define RF_MAX_FREE_RECOND 4 #define RF_RECOND_INC 1 static RF_RaidReconDesc_t * AllocRaidReconDesc(RF_Raid_t * raidPtr, RF_RowCol_t col, RF_RaidDisk_t * spareDiskPtr, int numDisksDone, RF_RowCol_t scol); static void FreeReconDesc(RF_RaidReconDesc_t * reconDesc); static int ProcessReconEvent(RF_Raid_t * raidPtr, RF_ReconEvent_t * event); static int IssueNextReadRequest(RF_Raid_t * raidPtr, RF_RowCol_t col); static int TryToRead(RF_Raid_t * raidPtr, RF_RowCol_t col); static int ComputePSDiskOffsets(RF_Raid_t * raidPtr, RF_StripeNum_t psid, RF_RowCol_t col, RF_SectorNum_t * outDiskOffset, RF_SectorNum_t * outFailedDiskSectorOffset, RF_RowCol_t * spCol, RF_SectorNum_t * spOffset); static int IssueNextWriteRequest(RF_Raid_t * raidPtr); static int ReconReadDoneProc(void *arg, int status); static int ReconWriteDoneProc(void *arg, int status); static void CheckForNewMinHeadSep(RF_Raid_t * raidPtr, RF_HeadSepLimit_t hsCtr); static int CheckHeadSeparation(RF_Raid_t * raidPtr, RF_PerDiskReconCtrl_t * ctrl, RF_RowCol_t col, RF_HeadSepLimit_t hsCtr, RF_ReconUnitNum_t which_ru); static int CheckForcedOrBlockedReconstruction(RF_Raid_t * raidPtr, RF_ReconParityStripeStatus_t * pssPtr, RF_PerDiskReconCtrl_t * ctrl, RF_RowCol_t col, RF_StripeNum_t psid, RF_ReconUnitNum_t which_ru); static void ForceReconReadDoneProc(void *arg, int status); static void rf_ShutdownReconstruction(void *); struct RF_ReconDoneProc_s { void (*proc) (RF_Raid_t *, void *); void *arg; RF_ReconDoneProc_t *next; }; /************************************************************************** * * sets up the parameters that will be used by the reconstruction process * currently there are none, except for those that the layout-specific * configuration (e.g. rf_ConfigureDeclustered) routine sets up. * * in the kernel, we fire off the recon thread. * **************************************************************************/ static void rf_ShutdownReconstruction(ignored) void *ignored; { pool_destroy(&rf_recond_pool); } int rf_ConfigureReconstruction(listp) RF_ShutdownList_t **listp; { int rc; pool_init(&rf_recond_pool, sizeof(RF_RaidReconDesc_t), 0, 0, 0, "rf_recond_pl", NULL); rc = rf_ShutdownCreate(listp, rf_ShutdownReconstruction, NULL); if (rc) { rf_print_unable_to_add_shutdown(__FILE__, __LINE__, rc); rf_ShutdownReconstruction(NULL); return (rc); } return (0); } static RF_RaidReconDesc_t * AllocRaidReconDesc(raidPtr, col, spareDiskPtr, numDisksDone, scol) RF_Raid_t *raidPtr; RF_RowCol_t col; RF_RaidDisk_t *spareDiskPtr; int numDisksDone; RF_RowCol_t scol; { RF_RaidReconDesc_t *reconDesc; reconDesc = pool_get(&rf_recond_pool, PR_WAITOK); /* XXX WAITOK?? */ reconDesc->raidPtr = raidPtr; reconDesc->col = col; reconDesc->spareDiskPtr = spareDiskPtr; reconDesc->numDisksDone = numDisksDone; reconDesc->scol = scol; reconDesc->state = 0; reconDesc->next = NULL; return (reconDesc); } static void FreeReconDesc(reconDesc) RF_RaidReconDesc_t *reconDesc; { #if RF_RECON_STATS > 0 printf("raid%d: %lu recon event waits, %lu recon delays\n", reconDesc->raidPtr->raidid, (long) reconDesc->numReconEventWaits, (long) reconDesc->numReconExecDelays); #endif /* RF_RECON_STATS > 0 */ printf("raid%d: %lu max exec ticks\n", reconDesc->raidPtr->raidid, (long) reconDesc->maxReconExecTicks); #if (RF_RECON_STATS > 0) || defined(KERNEL) printf("\n"); #endif /* (RF_RECON_STATS > 0) || KERNEL */ pool_put(&rf_recond_pool, reconDesc); } /***************************************************************************** * * primary routine to reconstruct a failed disk. This should be called from * within its own thread. It won't return until reconstruction completes, * fails, or is aborted. *****************************************************************************/ int rf_ReconstructFailedDisk(raidPtr, col) RF_Raid_t *raidPtr; RF_RowCol_t col; { const RF_LayoutSW_t *lp; int rc; lp = raidPtr->Layout.map; if (lp->SubmitReconBuffer) { /* * The current infrastructure only supports reconstructing one * disk at a time for each array. */ RF_LOCK_MUTEX(raidPtr->mutex); while (raidPtr->reconInProgress) { RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex); } raidPtr->reconInProgress++; RF_UNLOCK_MUTEX(raidPtr->mutex); rc = rf_ReconstructFailedDiskBasic(raidPtr, col); RF_LOCK_MUTEX(raidPtr->mutex); raidPtr->reconInProgress--; RF_UNLOCK_MUTEX(raidPtr->mutex); } else { RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n", lp->parityConfig); rc = EIO; } RF_SIGNAL_COND(raidPtr->waitForReconCond); return (rc); } int rf_ReconstructFailedDiskBasic(raidPtr, col) RF_Raid_t *raidPtr; RF_RowCol_t col; { RF_ComponentLabel_t c_label; RF_RaidDisk_t *spareDiskPtr = NULL; RF_RaidReconDesc_t *reconDesc; RF_RowCol_t scol; int numDisksDone = 0, rc; /* first look for a spare drive onto which to reconstruct the data */ /* spare disk descriptors are stored in row 0. This may have to * change eventually */ RF_LOCK_MUTEX(raidPtr->mutex); RF_ASSERT(raidPtr->Disks[col].status == rf_ds_failed); if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) { if (raidPtr->status != rf_rs_degraded) { RF_ERRORMSG1("Unable to reconstruct disk at col %d because status not degraded\n", col); RF_UNLOCK_MUTEX(raidPtr->mutex); return (EINVAL); } scol = (-1); } else { for (scol = raidPtr->numCol; scol < raidPtr->numCol + raidPtr->numSpare; scol++) { if (raidPtr->Disks[scol].status == rf_ds_spare) { spareDiskPtr = &raidPtr->Disks[scol]; spareDiskPtr->status = rf_ds_used_spare; break; } } if (!spareDiskPtr) { RF_ERRORMSG1("Unable to reconstruct disk at col %d because no spares are available\n", col); RF_UNLOCK_MUTEX(raidPtr->mutex); return (ENOSPC); } printf("RECON: initiating reconstruction on col %d -> spare at col %d\n", col, scol); } RF_UNLOCK_MUTEX(raidPtr->mutex); reconDesc = AllocRaidReconDesc((void *) raidPtr, col, spareDiskPtr, numDisksDone, scol); raidPtr->reconDesc = (void *) reconDesc; #if RF_RECON_STATS > 0 reconDesc->hsStallCount = 0; reconDesc->numReconExecDelays = 0; reconDesc->numReconEventWaits = 0; #endif /* RF_RECON_STATS > 0 */ reconDesc->reconExecTimerRunning = 0; reconDesc->reconExecTicks = 0; reconDesc->maxReconExecTicks = 0; rc = rf_ContinueReconstructFailedDisk(reconDesc); if (!rc) { /* fix up the component label */ /* Don't actually need the read here.. */ raidread_component_label( raidPtr->raid_cinfo[scol].ci_dev, raidPtr->raid_cinfo[scol].ci_vp, &c_label); raid_init_component_label( raidPtr, &c_label); c_label.row = 0; c_label.column = col; c_label.clean = RF_RAID_DIRTY; c_label.status = rf_ds_optimal; c_label.partitionSize = raidPtr->Disks[scol].partitionSize; /* We've just done a rebuild based on all the other disks, so at this point the parity is known to be clean, even if it wasn't before. */ /* XXX doesn't hold for RAID 6!!*/ RF_LOCK_MUTEX(raidPtr->mutex); raidPtr->parity_good = RF_RAID_CLEAN; RF_UNLOCK_MUTEX(raidPtr->mutex); /* XXXX MORE NEEDED HERE */ raidwrite_component_label( raidPtr->raid_cinfo[scol].ci_dev, raidPtr->raid_cinfo[scol].ci_vp, &c_label); rf_update_component_labels(raidPtr, RF_NORMAL_COMPONENT_UPDATE); } return (rc); } /* Allow reconstructing a disk in-place -- i.e. component /dev/sd2e goes AWOL, and you don't get a spare until the next Monday. With this function (and hot-swappable drives) you can now put your new disk containing /dev/sd2e on the bus, scsictl it alive, and then use raidctl(8) to rebuild the data "on the spot". */ int rf_ReconstructInPlace(raidPtr, col) RF_Raid_t *raidPtr; RF_RowCol_t col; { RF_RaidDisk_t *spareDiskPtr = NULL; RF_RaidReconDesc_t *reconDesc; const RF_LayoutSW_t *lp; RF_ComponentLabel_t c_label; int numDisksDone = 0, rc; struct partinfo dpart; struct vnode *vp; struct vattr va; struct proc *proc; int retcode; int ac; lp = raidPtr->Layout.map; if (lp->SubmitReconBuffer) { /* * The current infrastructure only supports reconstructing one * disk at a time for each array. */ RF_LOCK_MUTEX(raidPtr->mutex); if (raidPtr->Disks[col].status != rf_ds_failed) { /* "It's gone..." */ raidPtr->numFailures++; raidPtr->Disks[col].status = rf_ds_failed; raidPtr->status = rf_rs_degraded; RF_UNLOCK_MUTEX(raidPtr->mutex); rf_update_component_labels(raidPtr, RF_NORMAL_COMPONENT_UPDATE); RF_LOCK_MUTEX(raidPtr->mutex); } while (raidPtr->reconInProgress) { RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex); } raidPtr->reconInProgress++; /* first look for a spare drive onto which to reconstruct the data. spare disk descriptors are stored in row 0. This may have to change eventually */ /* Actually, we don't care if it's failed or not... On a RAID set with correct parity, this function should be callable on any component without ill affects. */ /* RF_ASSERT(raidPtr->Disks[col].status == rf_ds_failed); */ if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) { RF_ERRORMSG1("Unable to reconstruct to disk at col %d: operation not supported for RF_DISTRIBUTE_SPARE\n", col); raidPtr->reconInProgress--; RF_UNLOCK_MUTEX(raidPtr->mutex); return (EINVAL); } proc = raidPtr->engine_thread; /* This device may have been opened successfully the first time. Close it before trying to open it again.. */ if (raidPtr->raid_cinfo[col].ci_vp != NULL) { #if 0 printf("Closed the open device: %s\n", raidPtr->Disks[col].devname); #endif vp = raidPtr->raid_cinfo[col].ci_vp; ac = raidPtr->Disks[col].auto_configured; RF_UNLOCK_MUTEX(raidPtr->mutex); rf_close_component(raidPtr, vp, ac); RF_LOCK_MUTEX(raidPtr->mutex); raidPtr->raid_cinfo[col].ci_vp = NULL; } /* note that this disk was *not* auto_configured (any longer)*/ raidPtr->Disks[col].auto_configured = 0; #if 0 printf("About to (re-)open the device for rebuilding: %s\n", raidPtr->Disks[col].devname); #endif RF_UNLOCK_MUTEX(raidPtr->mutex); retcode = raidlookup(raidPtr->Disks[col].devname, proc, &vp); if (retcode) { printf("raid%d: rebuilding: raidlookup on device: %s failed: %d!\n",raidPtr->raidid, raidPtr->Disks[col].devname, retcode); /* the component isn't responding properly... must be still dead :-( */ RF_LOCK_MUTEX(raidPtr->mutex); raidPtr->reconInProgress--; RF_UNLOCK_MUTEX(raidPtr->mutex); return(retcode); } else { /* Ok, so we can at least do a lookup... How about actually getting a vp for it? */ if ((retcode = VOP_GETATTR(vp, &va, proc->p_ucred, proc)) != 0) { RF_LOCK_MUTEX(raidPtr->mutex); raidPtr->reconInProgress--; RF_UNLOCK_MUTEX(raidPtr->mutex); return(retcode); } retcode = VOP_IOCTL(vp, DIOCGPART, &dpart, FREAD, proc->p_ucred, proc); if (retcode) { RF_LOCK_MUTEX(raidPtr->mutex); raidPtr->reconInProgress--; RF_UNLOCK_MUTEX(raidPtr->mutex); return(retcode); } RF_LOCK_MUTEX(raidPtr->mutex); raidPtr->Disks[col].blockSize = dpart.disklab->d_secsize; raidPtr->Disks[col].numBlocks = dpart.part->p_size - rf_protectedSectors; raidPtr->raid_cinfo[col].ci_vp = vp; raidPtr->raid_cinfo[col].ci_dev = va.va_rdev; raidPtr->Disks[col].dev = va.va_rdev; /* we allow the user to specify that only a fraction of the disks should be used this is just for debug: it speeds up * the parity scan */ raidPtr->Disks[col].numBlocks = raidPtr->Disks[col].numBlocks * rf_sizePercentage / 100; RF_UNLOCK_MUTEX(raidPtr->mutex); } spareDiskPtr = &raidPtr->Disks[col]; spareDiskPtr->status = rf_ds_used_spare; printf("raid%d: initiating in-place reconstruction on column %d\n", raidPtr->raidid, col); reconDesc = AllocRaidReconDesc((void *) raidPtr, col, spareDiskPtr, numDisksDone, col); raidPtr->reconDesc = (void *) reconDesc; #if RF_RECON_STATS > 0 reconDesc->hsStallCount = 0; reconDesc->numReconExecDelays = 0; reconDesc->numReconEventWaits = 0; #endif /* RF_RECON_STATS > 0 */ reconDesc->reconExecTimerRunning = 0; reconDesc->reconExecTicks = 0; reconDesc->maxReconExecTicks = 0; rc = rf_ContinueReconstructFailedDisk(reconDesc); RF_LOCK_MUTEX(raidPtr->mutex); raidPtr->reconInProgress--; RF_UNLOCK_MUTEX(raidPtr->mutex); } else { RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n", lp->parityConfig); rc = EIO; } if (!rc) { RF_LOCK_MUTEX(raidPtr->mutex); /* Need to set these here, as at this point it'll be claiming that the disk is in rf_ds_spared! But we know better :-) */ raidPtr->Disks[col].status = rf_ds_optimal; raidPtr->status = rf_rs_optimal; RF_UNLOCK_MUTEX(raidPtr->mutex); /* fix up the component label */ /* Don't actually need the read here.. */ raidread_component_label(raidPtr->raid_cinfo[col].ci_dev, raidPtr->raid_cinfo[col].ci_vp, &c_label); RF_LOCK_MUTEX(raidPtr->mutex); raid_init_component_label(raidPtr, &c_label); c_label.row = 0; c_label.column = col; /* We've just done a rebuild based on all the other disks, so at this point the parity is known to be clean, even if it wasn't before. */ /* XXX doesn't hold for RAID 6!!*/ raidPtr->parity_good = RF_RAID_CLEAN; RF_UNLOCK_MUTEX(raidPtr->mutex); raidwrite_component_label(raidPtr->raid_cinfo[col].ci_dev, raidPtr->raid_cinfo[col].ci_vp, &c_label); rf_update_component_labels(raidPtr, RF_NORMAL_COMPONENT_UPDATE); } RF_SIGNAL_COND(raidPtr->waitForReconCond); return (rc); } int rf_ContinueReconstructFailedDisk(reconDesc) RF_RaidReconDesc_t *reconDesc; { RF_Raid_t *raidPtr = reconDesc->raidPtr; RF_RowCol_t col = reconDesc->col; RF_RowCol_t scol = reconDesc->scol; RF_ReconMap_t *mapPtr; RF_ReconCtrl_t *tmp_reconctrl; RF_ReconEvent_t *event; struct timeval etime, elpsd; unsigned long xor_s, xor_resid_us; int i, ds; switch (reconDesc->state) { case 0: raidPtr->accumXorTimeUs = 0; /* create one trace record per physical disk */ RF_Malloc(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t), (RF_AccTraceEntry_t *)); /* quiesce the array prior to starting recon. this is needed * to assure no nasty interactions with pending user writes. * We need to do this before we change the disk or row status. */ reconDesc->state = 1; Dprintf("RECON: begin request suspend\n"); rf_SuspendNewRequestsAndWait(raidPtr); Dprintf("RECON: end request suspend\n"); rf_StartUserStats(raidPtr); /* zero out the stats kept on * user accs */ /* fall through to state 1 */ case 1: /* allocate our RF_ReconCTRL_t before we protect raidPtr->reconControl[row] */ tmp_reconctrl = rf_MakeReconControl(reconDesc, col, scol); RF_LOCK_MUTEX(raidPtr->mutex); /* create the reconstruction control pointer and install it in * the right slot */ raidPtr->reconControl = tmp_reconctrl; mapPtr = raidPtr->reconControl->reconMap; raidPtr->status = rf_rs_reconstructing; raidPtr->Disks[col].status = rf_ds_reconstructing; raidPtr->Disks[col].spareCol = scol; RF_UNLOCK_MUTEX(raidPtr->mutex); RF_GETTIME(raidPtr->reconControl->starttime); /* now start up the actual reconstruction: issue a read for * each surviving disk */ reconDesc->numDisksDone = 0; for (i = 0; i < raidPtr->numCol; i++) { if (i != col) { /* find and issue the next I/O on the * indicated disk */ if (IssueNextReadRequest(raidPtr, i)) { Dprintf1("RECON: done issuing for c%d\n", i); reconDesc->numDisksDone++; } } } case 2: Dprintf("RECON: resume requests\n"); rf_ResumeNewRequests(raidPtr); reconDesc->state = 3; case 3: /* process reconstruction events until all disks report that * they've completed all work */ mapPtr = raidPtr->reconControl->reconMap; while (reconDesc->numDisksDone < raidPtr->numCol - 1) { event = rf_GetNextReconEvent(reconDesc, (void (*) (void *)) rf_ContinueReconstructFailedDisk, reconDesc); RF_ASSERT(event); if (ProcessReconEvent(raidPtr, event)) reconDesc->numDisksDone++; raidPtr->reconControl->numRUsTotal = mapPtr->totalRUs; raidPtr->reconControl->numRUsComplete = mapPtr->totalRUs - rf_UnitsLeftToReconstruct(mapPtr); raidPtr->reconControl->percentComplete = (raidPtr->reconControl->numRUsComplete * 100 / raidPtr->reconControl->numRUsTotal); #if RF_DEBUG_RECON if (rf_prReconSched) { rf_PrintReconSchedule(raidPtr->reconControl->reconMap, &(raidPtr->reconControl->starttime)); } #endif } reconDesc->state = 4; case 4: mapPtr = raidPtr->reconControl->reconMap; if (rf_reconDebug) { printf("RECON: all reads completed\n"); } /* at this point all the reads have completed. We now wait * for any pending writes to complete, and then we're done */ while (rf_UnitsLeftToReconstruct(raidPtr->reconControl->reconMap) > 0) { event = rf_GetNextReconEvent(reconDesc, (void (*) (void *)) rf_ContinueReconstructFailedDisk, reconDesc); RF_ASSERT(event); (void) ProcessReconEvent(raidPtr, event); /* ignore return code */ raidPtr->reconControl->percentComplete = 100 - (rf_UnitsLeftToReconstruct(mapPtr) * 100 / mapPtr->totalRUs); #if RF_DEBUG_RECON if (rf_prReconSched) { rf_PrintReconSchedule(raidPtr->reconControl->reconMap, &(raidPtr->reconControl->starttime)); } #endif } reconDesc->state = 5; case 5: /* Success: mark the dead disk as reconstructed. We quiesce * the array here to assure no nasty interactions with pending * user accesses when we free up the psstatus structure as * part of FreeReconControl() */ reconDesc->state = 6; rf_SuspendNewRequestsAndWait(raidPtr); rf_StopUserStats(raidPtr); rf_PrintUserStats(raidPtr); /* print out the stats on user * accs accumulated during * recon */ /* fall through to state 6 */ case 6: RF_LOCK_MUTEX(raidPtr->mutex); raidPtr->numFailures--; ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE); raidPtr->Disks[col].status = (ds) ? rf_ds_dist_spared : rf_ds_spared; raidPtr->status = (ds) ? rf_rs_reconfigured : rf_rs_optimal; RF_UNLOCK_MUTEX(raidPtr->mutex); RF_GETTIME(etime); RF_TIMEVAL_DIFF(&(raidPtr->reconControl->starttime), &etime, &elpsd); /* XXX -- why is state 7 different from state 6 if there is no * return() here? -- XXX Note that I set elpsd above & use it * below, so if you put a return here you'll have to fix this. * (also, FreeReconControl is called below) */ case 7: rf_ResumeNewRequests(raidPtr); printf("raid%d: Reconstruction of disk at col %d completed\n", raidPtr->raidid, col); xor_s = raidPtr->accumXorTimeUs / 1000000; xor_resid_us = raidPtr->accumXorTimeUs % 1000000; printf("raid%d: Recon time was %d.%06d seconds, accumulated XOR time was %ld us (%ld.%06ld)\n", raidPtr->raidid, (int) elpsd.tv_sec, (int) elpsd.tv_usec, raidPtr->accumXorTimeUs, xor_s, xor_resid_us); printf("raid%d: (start time %d sec %d usec, end time %d sec %d usec)\n", raidPtr->raidid, (int) raidPtr->reconControl->starttime.tv_sec, (int) raidPtr->reconControl->starttime.tv_usec, (int) etime.tv_sec, (int) etime.tv_usec); #if RF_RECON_STATS > 0 printf("raid%d: Total head-sep stall count was %d\n", raidPtr->raidid, (int) reconDesc->hsStallCount); #endif /* RF_RECON_STATS > 0 */ rf_FreeReconControl(raidPtr); RF_Free(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t)); FreeReconDesc(reconDesc); } return (0); } /***************************************************************************** * do the right thing upon each reconstruction event. * returns nonzero if and only if there is nothing left unread on the * indicated disk *****************************************************************************/ static int ProcessReconEvent(raidPtr, event) RF_Raid_t *raidPtr; RF_ReconEvent_t *event; { int retcode = 0, submitblocked; RF_ReconBuffer_t *rbuf; RF_SectorCount_t sectorsPerRU; Dprintf1("RECON: ProcessReconEvent type %d\n", event->type); switch (event->type) { /* a read I/O has completed */ case RF_REVENT_READDONE: rbuf = raidPtr->reconControl->perDiskInfo[event->col].rbuf; Dprintf2("RECON: READDONE EVENT: col %d psid %ld\n", event->col, rbuf->parityStripeID); Dprintf7("RECON: done read psid %ld buf %lx %02x %02x %02x %02x %02x\n", rbuf->parityStripeID, rbuf->buffer, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff, rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff); rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg); submitblocked = rf_SubmitReconBuffer(rbuf, 0, 0); Dprintf1("RECON: submitblocked=%d\n", submitblocked); if (!submitblocked) retcode = IssueNextReadRequest(raidPtr, event->col); break; /* a write I/O has completed */ case RF_REVENT_WRITEDONE: #if RF_DEBUG_RECON if (rf_floatingRbufDebug) { rf_CheckFloatingRbufCount(raidPtr, 1); } #endif sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU; rbuf = (RF_ReconBuffer_t *) event->arg; rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg); Dprintf3("RECON: WRITEDONE EVENT: psid %d ru %d (%d %% complete)\n", rbuf->parityStripeID, rbuf->which_ru, raidPtr->reconControl->percentComplete); rf_ReconMapUpdate(raidPtr, raidPtr->reconControl->reconMap, rbuf->failedDiskSectorOffset, rbuf->failedDiskSectorOffset + sectorsPerRU - 1); rf_RemoveFromActiveReconTable(raidPtr, rbuf->parityStripeID, rbuf->which_ru); if (rbuf->type == RF_RBUF_TYPE_FLOATING) { RF_LOCK_MUTEX(raidPtr->reconControl->rb_mutex); raidPtr->numFullReconBuffers--; rf_ReleaseFloatingReconBuffer(raidPtr, rbuf); RF_UNLOCK_MUTEX(raidPtr->reconControl->rb_mutex); } else if (rbuf->type == RF_RBUF_TYPE_FORCED) rf_FreeReconBuffer(rbuf); else RF_ASSERT(0); break; case RF_REVENT_BUFCLEAR: /* A buffer-stall condition has been * cleared */ Dprintf1("RECON: BUFCLEAR EVENT: col %d\n", event->col); submitblocked = rf_SubmitReconBuffer(raidPtr->reconControl->perDiskInfo[event->col].rbuf, 0, (int) (long) event->arg); RF_ASSERT(!submitblocked); /* we wouldn't have gotten the * BUFCLEAR event if we * couldn't submit */ retcode = IssueNextReadRequest(raidPtr, event->col); break; case RF_REVENT_BLOCKCLEAR: /* A user-write reconstruction * blockage has been cleared */ DDprintf1("RECON: BLOCKCLEAR EVENT: col %d\n", event->col); retcode = TryToRead(raidPtr, event->col); break; case RF_REVENT_HEADSEPCLEAR: /* A max-head-separation * reconstruction blockage has been * cleared */ Dprintf1("RECON: HEADSEPCLEAR EVENT: col %d\n", event->col); retcode = TryToRead(raidPtr, event->col); break; /* a buffer has become ready to write */ case RF_REVENT_BUFREADY: Dprintf1("RECON: BUFREADY EVENT: col %d\n", event->col); retcode = IssueNextWriteRequest(raidPtr); #if RF_DEBUG_RECON if (rf_floatingRbufDebug) { rf_CheckFloatingRbufCount(raidPtr, 1); } #endif break; /* we need to skip the current RU entirely because it got * recon'd while we were waiting for something else to happen */ case RF_REVENT_SKIP: DDprintf1("RECON: SKIP EVENT: col %d\n", event->col); retcode = IssueNextReadRequest(raidPtr, event->col); break; /* a forced-reconstruction read access has completed. Just * submit the buffer */ case RF_REVENT_FORCEDREADDONE: rbuf = (RF_ReconBuffer_t *) event->arg; rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg); DDprintf1("RECON: FORCEDREADDONE EVENT: col %d\n", event->col); submitblocked = rf_SubmitReconBuffer(rbuf, 1, 0); RF_ASSERT(!submitblocked); break; default: RF_PANIC(); } rf_FreeReconEventDesc(event); return (retcode); } /***************************************************************************** * * find the next thing that's needed on the indicated disk, and issue * a read request for it. We assume that the reconstruction buffer * associated with this process is free to receive the data. If * reconstruction is blocked on the indicated RU, we issue a * blockage-release request instead of a physical disk read request. * If the current disk gets too far ahead of the others, we issue a * head-separation wait request and return. * * ctrl->{ru_count, curPSID, diskOffset} and * rbuf->failedDiskSectorOffset are maintained to point to the unit * we're currently accessing. Note that this deviates from the * standard C idiom of having counters point to the next thing to be * accessed. This allows us to easily retry when we're blocked by * head separation or reconstruction-blockage events. * * returns nonzero if and only if there is nothing left unread on the * indicated disk * *****************************************************************************/ static int IssueNextReadRequest(raidPtr, col) RF_Raid_t *raidPtr; RF_RowCol_t col; { RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl->perDiskInfo[col]; RF_RaidLayout_t *layoutPtr = &raidPtr->Layout; RF_ReconBuffer_t *rbuf = ctrl->rbuf; RF_ReconUnitCount_t RUsPerPU = layoutPtr->SUsPerPU / layoutPtr->SUsPerRU; RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU; int do_new_check = 0, retcode = 0, status; /* if we are currently the slowest disk, mark that we have to do a new * check */ if (ctrl->headSepCounter <= raidPtr->reconControl->minHeadSepCounter) do_new_check = 1; while (1) { ctrl->ru_count++; if (ctrl->ru_count < RUsPerPU) { ctrl->diskOffset += sectorsPerRU; rbuf->failedDiskSectorOffset += sectorsPerRU; } else { ctrl->curPSID++; ctrl->ru_count = 0; /* code left over from when head-sep was based on * parity stripe id */ if (ctrl->curPSID >= raidPtr->reconControl->lastPSID) { CheckForNewMinHeadSep(raidPtr, ++(ctrl->headSepCounter)); return (1); /* finito! */ } /* find the disk offsets of the start of the parity * stripe on both the current disk and the failed * disk. skip this entire parity stripe if either disk * does not appear in the indicated PS */ status = ComputePSDiskOffsets(raidPtr, ctrl->curPSID, col, &ctrl->diskOffset, &rbuf->failedDiskSectorOffset, &rbuf->spCol, &rbuf->spOffset); if (status) { ctrl->ru_count = RUsPerPU - 1; continue; } } rbuf->which_ru = ctrl->ru_count; /* skip this RU if it's already been reconstructed */ if (rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, rbuf->failedDiskSectorOffset)) { Dprintf2("Skipping psid %ld ru %d: already reconstructed\n", ctrl->curPSID, ctrl->ru_count); continue; } break; } ctrl->headSepCounter++; if (do_new_check) CheckForNewMinHeadSep(raidPtr, ctrl->headSepCounter); /* update min if needed */ /* at this point, we have definitely decided what to do, and we have * only to see if we can actually do it now */ rbuf->parityStripeID = ctrl->curPSID; rbuf->which_ru = ctrl->ru_count; memset((char *) &raidPtr->recon_tracerecs[col], 0, sizeof(raidPtr->recon_tracerecs[col])); raidPtr->recon_tracerecs[col].reconacc = 1; RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer); retcode = TryToRead(raidPtr, col); return (retcode); } /* * tries to issue the next read on the indicated disk. We may be * blocked by (a) the heads being too far apart, or (b) recon on the * indicated RU being blocked due to a write by a user thread. In * this case, we issue a head-sep or blockage wait request, which will * cause this same routine to be invoked again later when the blockage * has cleared. */ static int TryToRead(raidPtr, col) RF_Raid_t *raidPtr; RF_RowCol_t col; { RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl->perDiskInfo[col]; RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU; RF_StripeNum_t psid = ctrl->curPSID; RF_ReconUnitNum_t which_ru = ctrl->ru_count; RF_DiskQueueData_t *req; int status, created = 0; RF_ReconParityStripeStatus_t *pssPtr; /* if the current disk is too far ahead of the others, issue a * head-separation wait and return */ if (CheckHeadSeparation(raidPtr, ctrl, col, ctrl->headSepCounter, which_ru)) return (0); RF_LOCK_PSS_MUTEX(raidPtr, psid); pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_CREATE, &created); /* if recon is blocked on the indicated parity stripe, issue a * block-wait request and return. this also must mark the indicated RU * in the stripe as under reconstruction if not blocked. */ status = CheckForcedOrBlockedReconstruction(raidPtr, pssPtr, ctrl, col, psid, which_ru); if (status == RF_PSS_RECON_BLOCKED) { Dprintf2("RECON: Stalling psid %ld ru %d: recon blocked\n", psid, which_ru); goto out; } else if (status == RF_PSS_FORCED_ON_WRITE) { rf_CauseReconEvent(raidPtr, col, NULL, RF_REVENT_SKIP); goto out; } /* make one last check to be sure that the indicated RU didn't get * reconstructed while we were waiting for something else to happen. * This is unfortunate in that it causes us to make this check twice * in the normal case. Might want to make some attempt to re-work * this so that we only do this check if we've definitely blocked on * one of the above checks. When this condition is detected, we may * have just created a bogus status entry, which we need to delete. */ if (rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, ctrl->rbuf->failedDiskSectorOffset)) { Dprintf2("RECON: Skipping psid %ld ru %d: prior recon after stall\n", psid, which_ru); if (created) rf_PSStatusDelete(raidPtr, raidPtr->reconControl->pssTable, pssPtr); rf_CauseReconEvent(raidPtr, col, NULL, RF_REVENT_SKIP); goto out; } /* found something to read. issue the I/O */ Dprintf4("RECON: Read for psid %ld on col %d offset %ld buf %lx\n", psid, col, ctrl->diskOffset, ctrl->rbuf->buffer); RF_ETIMER_STOP(raidPtr->recon_tracerecs[col].recon_timer); RF_ETIMER_EVAL(raidPtr->recon_tracerecs[col].recon_timer); raidPtr->recon_tracerecs[col].specific.recon.recon_start_to_fetch_us = RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[col].recon_timer); RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer); /* should be ok to use a NULL proc pointer here, all the bufs we use * should be in kernel space */ req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, ctrl->diskOffset, sectorsPerRU, ctrl->rbuf->buffer, psid, which_ru, ReconReadDoneProc, (void *) ctrl, NULL, &raidPtr->recon_tracerecs[col], (void *) raidPtr, 0, NULL); RF_ASSERT(req); /* XXX -- fix this -- XXX */ ctrl->rbuf->arg = (void *) req; rf_DiskIOEnqueue(&raidPtr->Queues[col], req, RF_IO_RECON_PRIORITY); pssPtr->issued[col] = 1; out: RF_UNLOCK_PSS_MUTEX(raidPtr, psid); return (0); } /* * given a parity stripe ID, we want to find out whether both the * current disk and the failed disk exist in that parity stripe. If * not, we want to skip this whole PS. If so, we want to find the * disk offset of the start of the PS on both the current disk and the * failed disk. * * this works by getting a list of disks comprising the indicated * parity stripe, and searching the list for the current and failed * disks. Once we've decided they both exist in the parity stripe, we * need to decide whether each is data or parity, so that we'll know * which mapping function to call to get the corresponding disk * offsets. * * this is kind of unpleasant, but doing it this way allows the * reconstruction code to use parity stripe IDs rather than physical * disks address to march through the failed disk, which greatly * simplifies a lot of code, as well as eliminating the need for a * reverse-mapping function. I also think it will execute faster, * since the calls to the mapping module are kept to a minimum. * * ASSUMES THAT THE STRIPE IDENTIFIER IDENTIFIES THE DISKS COMPRISING * THE STRIPE IN THE CORRECT ORDER */ static int ComputePSDiskOffsets( RF_Raid_t * raidPtr, /* raid descriptor */ RF_StripeNum_t psid, /* parity stripe identifier */ RF_RowCol_t col, /* column of disk to find the offsets for */ RF_SectorNum_t * outDiskOffset, RF_SectorNum_t * outFailedDiskSectorOffset, RF_RowCol_t * spCol, /* OUT: col of spare unit for failed unit */ RF_SectorNum_t * spOffset) { /* OUT: offset into disk containing spare unit */ RF_RaidLayout_t *layoutPtr = &raidPtr->Layout; RF_RowCol_t fcol = raidPtr->reconControl->fcol; RF_RaidAddr_t sosRaidAddress; /* start-of-stripe */ RF_RowCol_t *diskids; u_int i, j, k, i_offset, j_offset; RF_RowCol_t pcol; int testcol; RF_SectorNum_t poffset; char i_is_parity = 0, j_is_parity = 0; RF_RowCol_t stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol; /* get a listing of the disks comprising that stripe */ sosRaidAddress = rf_ParityStripeIDToRaidAddress(layoutPtr, psid); (layoutPtr->map->IdentifyStripe) (raidPtr, sosRaidAddress, &diskids); RF_ASSERT(diskids); /* reject this entire parity stripe if it does not contain the * indicated disk or it does not contain the failed disk */ for (i = 0; i < stripeWidth; i++) { if (col == diskids[i]) break; } if (i == stripeWidth) goto skipit; for (j = 0; j < stripeWidth; j++) { if (fcol == diskids[j]) break; } if (j == stripeWidth) { goto skipit; } /* find out which disk the parity is on */ (layoutPtr->map->MapParity) (raidPtr, sosRaidAddress, &pcol, &poffset, RF_DONT_REMAP); /* find out if either the current RU or the failed RU is parity */ /* also, if the parity occurs in this stripe prior to the data and/or * failed col, we need to decrement i and/or j */ for (k = 0; k < stripeWidth; k++) if (diskids[k] == pcol) break; RF_ASSERT(k < stripeWidth); i_offset = i; j_offset = j; if (k < i) i_offset--; else if (k == i) { i_is_parity = 1; i_offset = 0; } /* set offsets to zero to disable multiply * below */ if (k < j) j_offset--; else if (k == j) { j_is_parity = 1; j_offset = 0; } /* at this point, [ij]_is_parity tells us whether the [current,failed] * disk is parity at the start of this RU, and, if data, "[ij]_offset" * tells us how far into the stripe the [current,failed] disk is. */ /* call the mapping routine to get the offset into the current disk, * repeat for failed disk. */ if (i_is_parity) layoutPtr->map->MapParity(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outDiskOffset, RF_DONT_REMAP); else layoutPtr->map->MapSector(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outDiskOffset, RF_DONT_REMAP); RF_ASSERT(col == testcol); if (j_is_parity) layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP); else layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP); RF_ASSERT(fcol == testcol); /* now locate the spare unit for the failed unit */ if (layoutPtr->map->flags & RF_DISTRIBUTE_SPARE) { if (j_is_parity) layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spCol, spOffset, RF_REMAP); else layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spCol, spOffset, RF_REMAP); } else { *spCol = raidPtr->reconControl->spareCol; *spOffset = *outFailedDiskSectorOffset; } return (0); skipit: Dprintf2("RECON: Skipping psid %ld: nothing needed from r%d c%d\n", psid, col); return (1); } /* this is called when a buffer has become ready to write to the replacement disk */ static int IssueNextWriteRequest(raidPtr) RF_Raid_t *raidPtr; { RF_RaidLayout_t *layoutPtr = &raidPtr->Layout; RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU; RF_RowCol_t fcol = raidPtr->reconControl->fcol; RF_ReconBuffer_t *rbuf; RF_DiskQueueData_t *req; rbuf = rf_GetFullReconBuffer(raidPtr->reconControl); RF_ASSERT(rbuf); /* there must be one available, or we wouldn't * have gotten the event that sent us here */ RF_ASSERT(rbuf->pssPtr); rbuf->pssPtr->writeRbuf = rbuf; rbuf->pssPtr = NULL; Dprintf6("RECON: New write (c %d offs %d) for psid %ld ru %d (failed disk offset %ld) buf %lx\n", rbuf->spCol, rbuf->spOffset, rbuf->parityStripeID, rbuf->which_ru, rbuf->failedDiskSectorOffset, rbuf->buffer); Dprintf6("RECON: new write psid %ld %02x %02x %02x %02x %02x\n", rbuf->parityStripeID, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff, rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff); /* should be ok to use a NULL b_proc here b/c all addrs should be in * kernel space */ req = rf_CreateDiskQueueData(RF_IO_TYPE_WRITE, rbuf->spOffset, sectorsPerRU, rbuf->buffer, rbuf->parityStripeID, rbuf->which_ru, ReconWriteDoneProc, (void *) rbuf, NULL, &raidPtr->recon_tracerecs[fcol], (void *) raidPtr, 0, NULL); RF_ASSERT(req); /* XXX -- fix this -- XXX */ rbuf->arg = (void *) req; rf_DiskIOEnqueue(&raidPtr->Queues[rbuf->spCol], req, RF_IO_RECON_PRIORITY); return (0); } /* * this gets called upon the completion of a reconstruction read * operation the arg is a pointer to the per-disk reconstruction * control structure for the process that just finished a read. * * called at interrupt context in the kernel, so don't do anything * illegal here. */ static int ReconReadDoneProc(arg, status) void *arg; int status; { RF_PerDiskReconCtrl_t *ctrl = (RF_PerDiskReconCtrl_t *) arg; RF_Raid_t *raidPtr = ctrl->reconCtrl->reconDesc->raidPtr; if (status) { /* * XXX */ printf("Recon read failed!\n"); RF_PANIC(); } RF_ETIMER_STOP(raidPtr->recon_tracerecs[ctrl->col].recon_timer); RF_ETIMER_EVAL(raidPtr->recon_tracerecs[ctrl->col].recon_timer); raidPtr->recon_tracerecs[ctrl->col].specific.recon.recon_fetch_to_return_us = RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[ctrl->col].recon_timer); RF_ETIMER_START(raidPtr->recon_tracerecs[ctrl->col].recon_timer); rf_CauseReconEvent(raidPtr, ctrl->col, NULL, RF_REVENT_READDONE); return (0); } /* this gets called upon the completion of a reconstruction write operation. * the arg is a pointer to the rbuf that was just written * * called at interrupt context in the kernel, so don't do anything illegal here. */ static int ReconWriteDoneProc(arg, status) void *arg; int status; { RF_ReconBuffer_t *rbuf = (RF_ReconBuffer_t *) arg; Dprintf2("Reconstruction completed on psid %ld ru %d\n", rbuf->parityStripeID, rbuf->which_ru); if (status) { printf("Recon write failed!\n"); /* fprintf(stderr,"Recon * write failed!\n"); */ RF_PANIC(); } rf_CauseReconEvent((RF_Raid_t *) rbuf->raidPtr, rbuf->col, arg, RF_REVENT_WRITEDONE); return (0); } /* * computes a new minimum head sep, and wakes up anyone who needs to * be woken as a result */ static void CheckForNewMinHeadSep(raidPtr, hsCtr) RF_Raid_t *raidPtr; RF_HeadSepLimit_t hsCtr; { RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl; RF_HeadSepLimit_t new_min; RF_RowCol_t i; RF_CallbackDesc_t *p; RF_ASSERT(hsCtr >= reconCtrlPtr->minHeadSepCounter); /* from the definition * of a minimum */ RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex); new_min = ~(1L << (8 * sizeof(long) - 1)); /* 0x7FFF....FFF */ for (i = 0; i < raidPtr->numCol; i++) if (i != reconCtrlPtr->fcol) { if (reconCtrlPtr->perDiskInfo[i].headSepCounter < new_min) new_min = reconCtrlPtr->perDiskInfo[i].headSepCounter; } /* set the new minimum and wake up anyone who can now run again */ if (new_min != reconCtrlPtr->minHeadSepCounter) { reconCtrlPtr->minHeadSepCounter = new_min; Dprintf1("RECON: new min head pos counter val is %ld\n", new_min); while (reconCtrlPtr->headSepCBList) { if (reconCtrlPtr->headSepCBList->callbackArg.v > new_min) break; p = reconCtrlPtr->headSepCBList; reconCtrlPtr->headSepCBList = p->next; p->next = NULL; rf_CauseReconEvent(raidPtr, p->col, NULL, RF_REVENT_HEADSEPCLEAR); rf_FreeCallbackDesc(p); } } RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex); } /* * checks to see that the maximum head separation will not be violated * if we initiate a reconstruction I/O on the indicated disk. * Limiting the maximum head separation between two disks eliminates * the nasty buffer-stall conditions that occur when one disk races * ahead of the others and consumes all of the floating recon buffers. * This code is complex and unpleasant but it's necessary to avoid * some very nasty, albeit fairly rare, reconstruction behavior. * * returns non-zero if and only if we have to stop working on the * indicated disk due to a head-separation delay. */ static int CheckHeadSeparation( RF_Raid_t * raidPtr, RF_PerDiskReconCtrl_t * ctrl, RF_RowCol_t col, RF_HeadSepLimit_t hsCtr, RF_ReconUnitNum_t which_ru) { RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl; RF_CallbackDesc_t *cb, *p, *pt; int retval = 0; /* if we're too far ahead of the slowest disk, stop working on this * disk until the slower ones catch up. We do this by scheduling a * wakeup callback for the time when the slowest disk has caught up. * We define "caught up" with 20% hysteresis, i.e. the head separation * must have fallen to at most 80% of the max allowable head * separation before we'll wake up. * */ RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex); if ((raidPtr->headSepLimit >= 0) && ((ctrl->headSepCounter - reconCtrlPtr->minHeadSepCounter) > raidPtr->headSepLimit)) { Dprintf5("raid%d: RECON: head sep stall: col %d hsCtr %ld minHSCtr %ld limit %ld\n", raidPtr->raidid, col, ctrl->headSepCounter, reconCtrlPtr->minHeadSepCounter, raidPtr->headSepLimit); cb = rf_AllocCallbackDesc(); /* the minHeadSepCounter value we have to get to before we'll * wake up. build in 20% hysteresis. */ cb->callbackArg.v = (ctrl->headSepCounter - raidPtr->headSepLimit + raidPtr->headSepLimit / 5); cb->col = col; cb->next = NULL; /* insert this callback descriptor into the sorted list of * pending head-sep callbacks */ p = reconCtrlPtr->headSepCBList; if (!p) reconCtrlPtr->headSepCBList = cb; else if (cb->callbackArg.v < p->callbackArg.v) { cb->next = reconCtrlPtr->headSepCBList; reconCtrlPtr->headSepCBList = cb; } else { for (pt = p, p = p->next; p && (p->callbackArg.v < cb->callbackArg.v); pt = p, p = p->next); cb->next = p; pt->next = cb; } retval = 1; #if RF_RECON_STATS > 0 ctrl->reconCtrl->reconDesc->hsStallCount++; #endif /* RF_RECON_STATS > 0 */ } RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex); return (retval); } /* * checks to see if reconstruction has been either forced or blocked * by a user operation. if forced, we skip this RU entirely. else if * blocked, put ourselves on the wait list. else return 0. * * ASSUMES THE PSS MUTEX IS LOCKED UPON ENTRY */ static int CheckForcedOrBlockedReconstruction( RF_Raid_t * raidPtr, RF_ReconParityStripeStatus_t * pssPtr, RF_PerDiskReconCtrl_t * ctrl, RF_RowCol_t col, RF_StripeNum_t psid, RF_ReconUnitNum_t which_ru) { RF_CallbackDesc_t *cb; int retcode = 0; if ((pssPtr->flags & RF_PSS_FORCED_ON_READ) || (pssPtr->flags & RF_PSS_FORCED_ON_WRITE)) retcode = RF_PSS_FORCED_ON_WRITE; else if (pssPtr->flags & RF_PSS_RECON_BLOCKED) { Dprintf3("RECON: col %d blocked at psid %ld ru %d\n", col, psid, which_ru); cb = rf_AllocCallbackDesc(); /* append ourselves to * the blockage-wait * list */ cb->col = col; cb->next = pssPtr->blockWaitList; pssPtr->blockWaitList = cb; retcode = RF_PSS_RECON_BLOCKED; } if (!retcode) pssPtr->flags |= RF_PSS_UNDER_RECON; /* mark this RU as under * reconstruction */ return (retcode); } /* * if reconstruction is currently ongoing for the indicated stripeID, * reconstruction is forced to completion and we return non-zero to * indicate that the caller must wait. If not, then reconstruction is * blocked on the indicated stripe and the routine returns zero. If * and only if we return non-zero, we'll cause the cbFunc to get * invoked with the cbArg when the reconstruction has completed. */ int rf_ForceOrBlockRecon(raidPtr, asmap, cbFunc, cbArg) RF_Raid_t *raidPtr; RF_AccessStripeMap_t *asmap; void (*cbFunc) (RF_Raid_t *, void *); void *cbArg; { RF_StripeNum_t stripeID = asmap->stripeID; /* the stripe ID we're * forcing recon on */ RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU; /* num sects in one RU */ RF_ReconParityStripeStatus_t *pssPtr; /* a pointer to the parity * stripe status structure */ RF_StripeNum_t psid; /* parity stripe id */ RF_SectorNum_t offset, fd_offset; /* disk offset, failed-disk * offset */ RF_RowCol_t *diskids; RF_ReconUnitNum_t which_ru; /* RU within parity stripe */ RF_RowCol_t fcol, diskno, i; RF_ReconBuffer_t *new_rbuf; /* ptr to newly allocated rbufs */ RF_DiskQueueData_t *req;/* disk I/O req to be enqueued */ RF_CallbackDesc_t *cb; int created = 0, nPromoted; psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru); RF_LOCK_PSS_MUTEX(raidPtr, psid); pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_CREATE | RF_PSS_RECON_BLOCKED, &created); /* if recon is not ongoing on this PS, just return */ if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) { RF_UNLOCK_PSS_MUTEX(raidPtr, psid); return (0); } /* otherwise, we have to wait for reconstruction to complete on this * RU. */ /* In order to avoid waiting for a potentially large number of * low-priority accesses to complete, we force a normal-priority (i.e. * not low-priority) reconstruction on this RU. */ if (!(pssPtr->flags & RF_PSS_FORCED_ON_WRITE) && !(pssPtr->flags & RF_PSS_FORCED_ON_READ)) { DDprintf1("Forcing recon on psid %ld\n", psid); pssPtr->flags |= RF_PSS_FORCED_ON_WRITE; /* mark this RU as under * forced recon */ pssPtr->flags &= ~RF_PSS_RECON_BLOCKED; /* clear the blockage * that we just set */ fcol = raidPtr->reconControl->fcol; /* get a listing of the disks comprising the indicated stripe */ (raidPtr->Layout.map->IdentifyStripe) (raidPtr, asmap->raidAddress, &diskids); /* For previously issued reads, elevate them to normal * priority. If the I/O has already completed, it won't be * found in the queue, and hence this will be a no-op. For * unissued reads, allocate buffers and issue new reads. The * fact that we've set the FORCED bit means that the regular * recon procs will not re-issue these reqs */ for (i = 0; i < raidPtr->Layout.numDataCol + raidPtr->Layout.numParityCol; i++) if ((diskno = diskids[i]) != fcol) { if (pssPtr->issued[diskno]) { nPromoted = rf_DiskIOPromote(&raidPtr->Queues[diskno], psid, which_ru); if (rf_reconDebug && nPromoted) printf("raid%d: promoted read from col %d\n", raidPtr->raidid, diskno); } else { new_rbuf = rf_MakeReconBuffer(raidPtr, diskno, RF_RBUF_TYPE_FORCED); /* create new buf */ ComputePSDiskOffsets(raidPtr, psid, diskno, &offset, &fd_offset, &new_rbuf->spCol, &new_rbuf->spOffset); /* find offsets & spare * location */ new_rbuf->parityStripeID = psid; /* fill in the buffer */ new_rbuf->which_ru = which_ru; new_rbuf->failedDiskSectorOffset = fd_offset; new_rbuf->priority = RF_IO_NORMAL_PRIORITY; /* use NULL b_proc b/c all addrs * should be in kernel space */ req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, offset + which_ru * sectorsPerRU, sectorsPerRU, new_rbuf->buffer, psid, which_ru, (int (*) (void *, int)) ForceReconReadDoneProc, (void *) new_rbuf, NULL, NULL, (void *) raidPtr, 0, NULL); RF_ASSERT(req); /* XXX -- fix this -- * XXX */ new_rbuf->arg = req; rf_DiskIOEnqueue(&raidPtr->Queues[diskno], req, RF_IO_NORMAL_PRIORITY); /* enqueue the I/O */ Dprintf2("raid%d: Issued new read req on col %d\n", raidPtr->raidid, diskno); } } /* if the write is sitting in the disk queue, elevate its * priority */ if (rf_DiskIOPromote(&raidPtr->Queues[fcol], psid, which_ru)) printf("raid%d: promoted write to col %d\n", raidPtr->raidid, fcol); } /* install a callback descriptor to be invoked when recon completes on * this parity stripe. */ cb = rf_AllocCallbackDesc(); /* XXX the following is bogus.. These functions don't really match!! * GO */ cb->callbackFunc = (void (*) (RF_CBParam_t)) cbFunc; cb->callbackArg.p = (void *) cbArg; cb->next = pssPtr->procWaitList; pssPtr->procWaitList = cb; DDprintf2("raid%d: Waiting for forced recon on psid %ld\n", raidPtr->raidid, psid); RF_UNLOCK_PSS_MUTEX(raidPtr, psid); return (1); } /* called upon the completion of a forced reconstruction read. * all we do is schedule the FORCEDREADONE event. * called at interrupt context in the kernel, so don't do anything illegal here. */ static void ForceReconReadDoneProc(arg, status) void *arg; int status; { RF_ReconBuffer_t *rbuf = arg; if (status) { printf("Forced recon read failed!\n"); /* fprintf(stderr,"Forced * recon read * failed!\n"); */ RF_PANIC(); } rf_CauseReconEvent((RF_Raid_t *) rbuf->raidPtr, rbuf->col, (void *) rbuf, RF_REVENT_FORCEDREADDONE); } /* releases a block on the reconstruction of the indicated stripe */ int rf_UnblockRecon(raidPtr, asmap) RF_Raid_t *raidPtr; RF_AccessStripeMap_t *asmap; { RF_StripeNum_t stripeID = asmap->stripeID; RF_ReconParityStripeStatus_t *pssPtr; RF_ReconUnitNum_t which_ru; RF_StripeNum_t psid; int created = 0; RF_CallbackDesc_t *cb; psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru); RF_LOCK_PSS_MUTEX(raidPtr, psid); pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_NONE, &created); /* When recon is forced, the pss desc can get deleted before we get * back to unblock recon. But, this can _only_ happen when recon is * forced. It would be good to put some kind of sanity check here, but * how to decide if recon was just forced or not? */ if (!pssPtr) { /* printf("Warning: no pss descriptor upon unblock on psid %ld * RU %d\n",psid,which_ru); */ #if (RF_DEBUG_RECON > 0) || (RF_DEBUG_PSS > 0) if (rf_reconDebug || rf_pssDebug) printf("Warning: no pss descriptor upon unblock on psid %ld RU %d\n", (long) psid, which_ru); #endif goto out; } pssPtr->blockCount--; Dprintf3("raid%d: unblocking recon on psid %ld: blockcount is %d\n", raidPtr->raidid, psid, pssPtr->blockCount); if (pssPtr->blockCount == 0) { /* if recon blockage has been released */ /* unblock recon before calling CauseReconEvent in case * CauseReconEvent causes us to try to issue a new read before * returning here. */ pssPtr->flags &= ~RF_PSS_RECON_BLOCKED; while (pssPtr->blockWaitList) { /* spin through the block-wait list and release all the waiters */ cb = pssPtr->blockWaitList; pssPtr->blockWaitList = cb->next; cb->next = NULL; rf_CauseReconEvent(raidPtr, cb->col, NULL, RF_REVENT_BLOCKCLEAR); rf_FreeCallbackDesc(cb); } if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) { /* if no recon was requested while recon was blocked */ rf_PSStatusDelete(raidPtr, raidPtr->reconControl->pssTable, pssPtr); } } out: RF_UNLOCK_PSS_MUTEX(raidPtr, psid); return (0); }