/* $NetBSD: zs.c,v 1.17 1999/03/27 01:21:37 wrstuden Exp $ */ /*- * Copyright (c) 1998 Minoura Makoto * Copyright (c) 1996 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Gordon W. Ross. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the NetBSD * Foundation, Inc. and its contributors. * 4. Neither the name of The NetBSD Foundation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * Zilog Z8530 Dual UART driver (machine-dependent part) * * X68k uses one Z8530 built-in. Channel A is for RS-232C serial port; * while channel B is dedicated to the mouse. * Extra Z8530's can be installed for serial ports. This driver * supports up to 5 chips including the built-in one. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "zsc.h" /* NZSC */ #include "opt_zsc.h" #ifndef ZSCN_SPEED #define ZSCN_SPEED 9600 #endif #include "zstty.h" extern void Debugger __P((void)); /* * Some warts needed by z8530tty.c - * The default parity REALLY needs to be the same as the PROM uses, * or you can not see messages done with printf during boot-up... */ int zs_def_cflag = (CREAD | CS8 | HUPCL); int zscn_def_cflag = (CREAD | CS8 | HUPCL); int zs_major = 12; /* * X68k provides a 5.0 MHz clock to the ZS chips. */ #define PCLK (5 * 1000 * 1000) /* PCLK pin input clock rate */ /* Default physical addresses. */ #define ZS_MAXDEV 5 static bus_addr_t zs_physaddr[ZS_MAXDEV] = { 0x00e98000, 0x00eafc00, 0x00eafc10, 0x00eafc20, 0x00eafc30 }; static u_char zs_init_reg[16] = { 0, /* 0: CMD (reset, etc.) */ 0, /* 1: No interrupts yet. */ 0x70, /* 2: XXX: IVECT */ ZSWR3_RX_8 | ZSWR3_RX_ENABLE, ZSWR4_CLK_X16 | ZSWR4_ONESB | ZSWR4_EVENP, ZSWR5_TX_8 | ZSWR5_TX_ENABLE, 0, /* 6: TXSYNC/SYNCLO */ 0, /* 7: RXSYNC/SYNCHI */ 0, /* 8: alias for data port */ ZSWR9_MASTER_IE, ZSWR10_NRZ, /*10: Misc. TX/RX control bits */ ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD, ((PCLK/32)/9600)-2, /*12: BAUDLO (default=9600) */ 0, /*13: BAUDHI (default=9600) */ ZSWR14_BAUD_ENA | ZSWR14_BAUD_FROM_PCLK, ZSWR15_BREAK_IE, }; static volatile struct zschan *conschan = 0; /**************************************************************** * Autoconfig ****************************************************************/ /* Definition of the driver for autoconfig. */ static int zs_match __P((struct device *, struct cfdata *, void *)); static void zs_attach __P((struct device *, struct device *, void *)); static int zs_print __P((void *, const char *name)); struct cfattach zsc_ca = { sizeof(struct zsc_softc), zs_match, zs_attach }; extern struct cfdriver zsc_cd; static int zshard __P((void *)); int zssoft __P((void *)); static int zs_get_speed __P((struct zs_chanstate *)); /* * Is the zs chip present? */ static int zs_match(parent, cf, aux) struct device *parent; struct cfdata *cf; void *aux; { struct intio_attach_args *ia = aux; struct zsdevice *zsaddr = (void*) ia->ia_addr; int i; if (strcmp (ia->ia_name, "zsc") != 0) return 0; for (i = 0; i < ZS_MAXDEV; i++) if (zsaddr == (void*) zs_physaddr[i]) /* XXX */ break; ia->ia_size = 8; if (intio_map_allocate_region (parent, ia, INTIO_MAP_TESTONLY)) return 0; if (zsaddr != (void*) zs_physaddr[i]) return 0; if (badaddr((caddr_t)INTIO_ADDR(zsaddr))) return 0; return (1); } /* * Attach a found zs. */ static void zs_attach(parent, self, aux) struct device *parent; struct device *self; void *aux; { struct zsc_softc *zsc = (void *) self; struct intio_attach_args *ia = aux; struct zsc_attach_args zsc_args; volatile struct zschan *zc; struct zs_chanstate *cs; int r, s, zs_unit, channel; zs_unit = zsc->zsc_dev.dv_unit; zsc->zsc_addr = (void*) ia->ia_addr; ia->ia_size = 8; r = intio_map_allocate_region (parent, ia, INTIO_MAP_ALLOCATE); #ifdef DIAGNOSTIC if (r) panic ("zs: intio IO map corruption"); #endif printf("\n"); /* * Initialize software state for each channel. */ for (channel = 0; channel < 2; channel++) { struct device *child; zsc_args.channel = channel; zsc_args.hwflags = 0; cs = &zsc->zsc_cs_store[channel]; zsc->zsc_cs[channel] = cs; cs->cs_channel = channel; cs->cs_private = NULL; cs->cs_ops = &zsops_null; cs->cs_brg_clk = PCLK / 16; if (channel == 0) zc = (void*) INTIO_ADDR(&zsc->zsc_addr->zs_chan_a); else zc = (void*) INTIO_ADDR(&zsc->zsc_addr->zs_chan_b); cs->cs_reg_csr = &zc->zc_csr; cs->cs_reg_data = &zc->zc_data; zs_init_reg[2] = ia->ia_intr; bcopy(zs_init_reg, cs->cs_creg, 16); bcopy(zs_init_reg, cs->cs_preg, 16); if (zc == conschan) { zsc_args.hwflags |= ZS_HWFLAG_CONSOLE; cs->cs_defspeed = zs_get_speed(cs); cs->cs_defcflag = zscn_def_cflag; } else { cs->cs_defspeed = 9600; cs->cs_defcflag = zs_def_cflag; } /* Make these correspond to cs_defcflag (-crtscts) */ cs->cs_rr0_dcd = ZSRR0_DCD; cs->cs_rr0_cts = 0; cs->cs_wr5_dtr = ZSWR5_DTR | ZSWR5_RTS; cs->cs_wr5_rts = 0; /* * Clear the master interrupt enable. * The INTENA is common to both channels, * so just do it on the A channel. */ if (channel == 0) { s = splzs(); zs_write_reg(cs, 9, 0); splx(s); } /* * Look for a child driver for this channel. * The child attach will setup the hardware. */ child = config_found(self, (void *)&zsc_args, zs_print); #if ZSTTY > 0 if (zc == conschan && ((child && strcmp (child->dv_xname, "zstty0")) || child == NULL)) /* XXX */ panic ("zs_attach: console device mismatch"); #endif if (child == NULL) { /* No sub-driver. Just reset it. */ u_char reset = (channel == 0) ? ZSWR9_A_RESET : ZSWR9_B_RESET; s = splzs(); zs_write_reg(cs, 9, reset); splx(s); } } /* * Now safe to install interrupt handlers. */ if (intio_intr_establish(ia->ia_intr, "zs", zshard, zsc)) panic("zs_attach: interrupt vector busy"); /* XXX; evcnt_attach() ? */ /* * Set the master interrupt enable and interrupt vector. * (common to both channels, do it on A) */ cs = zsc->zsc_cs[0]; s = splzs(); /* interrupt vector */ zs_write_reg(cs, 2, ia->ia_intr); /* master interrupt control (enable) */ zs_write_reg(cs, 9, zs_init_reg[9]); splx(s); } static int zs_print(aux, name) void *aux; const char *name; { struct zsc_attach_args *args = aux; if (name != NULL) printf("%s: ", name); if (args->channel != -1) printf(" channel %d", args->channel); return UNCONF; } /* * For x68k-port, we don't use autovectored interrupt. * We do not need to look at all of the zs chips. */ static int zshard(arg) void *arg; { register struct zsc_softc *zsc = arg; register int rval; int s; /* * Actually, zs hardware ipl is 5. * Here we disable all interrupts to shorten the zshard * handling time. Otherwise, too many characters are * dropped. */ s = splhigh(); rval = zsc_intr_hard(zsc); /* We are at splzs here, so no need to lock. */ if (zsc->zsc_cs[0]->cs_softreq || zsc->zsc_cs[1]->cs_softreq) setsoftserial(); return (rval); } /* * Shared among the all chips. We have to look at all of them. */ int zssoft(arg) void *arg; { register struct zsc_softc *zsc; register int s, unit; /* Make sure we call the tty layer at spltty. */ s = spltty(); for (unit = 0; unit < zsc_cd.cd_ndevs; unit++) { zsc = zsc_cd.cd_devs[unit]; if (zsc == NULL) continue; (void) zsc_intr_soft(zsc); } splx(s); return (1); } /* * Compute the current baud rate given a ZS channel. */ static int zs_get_speed(cs) struct zs_chanstate *cs; { int tconst; tconst = zs_read_reg(cs, 12); tconst |= zs_read_reg(cs, 13) << 8; return (TCONST_TO_BPS(cs->cs_brg_clk, tconst)); } /* * MD functions for setting the baud rate and control modes. */ int zs_set_speed(cs, bps) struct zs_chanstate *cs; int bps; /* bits per second */ { int tconst, real_bps; if (bps == 0) return (0); #ifdef DIAGNOSTIC if (cs->cs_brg_clk == 0) panic("zs_set_speed"); #endif tconst = BPS_TO_TCONST(cs->cs_brg_clk, bps); if (tconst < 0) return (EINVAL); /* Convert back to make sure we can do it. */ real_bps = TCONST_TO_BPS(cs->cs_brg_clk, tconst); #if 0 /* XXX */ /* XXX - Allow some tolerance here? */ if (real_bps != bps) return (EINVAL); #else /* * Since our PCLK has somewhat strange value, * we have to allow tolerance here. */ if (BPS_TO_TCONST(cs->cs_brg_clk, real_bps) != tconst) return (EINVAL); #endif cs->cs_preg[12] = tconst; cs->cs_preg[13] = tconst >> 8; /* Caller will stuff the pending registers. */ return (0); } int zs_set_modes(cs, cflag) struct zs_chanstate *cs; int cflag; /* bits per second */ { int s; /* * Output hardware flow control on the chip is horrendous: * if carrier detect drops, the receiver is disabled, and if * CTS drops, the transmitter is stoped IN MID CHARACTER! * Therefore, NEVER set the HFC bit, and instead use the * status interrupt to detect CTS changes. */ s = splzs(); cs->cs_rr0_pps = 0; if ((cflag & (CLOCAL | MDMBUF)) != 0) { cs->cs_rr0_dcd = 0; if ((cflag & MDMBUF) == 0) cs->cs_rr0_pps = ZSRR0_DCD; } else cs->cs_rr0_dcd = ZSRR0_DCD; if ((cflag & CRTSCTS) != 0) { cs->cs_wr5_dtr = ZSWR5_DTR; cs->cs_wr5_rts = ZSWR5_RTS; cs->cs_rr0_cts = ZSRR0_CTS; } else if ((cflag & MDMBUF) != 0) { cs->cs_wr5_dtr = 0; cs->cs_wr5_rts = ZSWR5_DTR; cs->cs_rr0_cts = ZSRR0_DCD; } else { cs->cs_wr5_dtr = ZSWR5_DTR | ZSWR5_RTS; cs->cs_wr5_rts = 0; cs->cs_rr0_cts = 0; } splx(s); /* Caller will stuff the pending registers. */ return (0); } /* * Read or write the chip with suitable delays. */ u_char zs_read_reg(cs, reg) struct zs_chanstate *cs; u_char reg; { u_char val; *cs->cs_reg_csr = reg; ZS_DELAY(); val = *cs->cs_reg_csr; ZS_DELAY(); return val; } void zs_write_reg(cs, reg, val) struct zs_chanstate *cs; u_char reg, val; { *cs->cs_reg_csr = reg; ZS_DELAY(); *cs->cs_reg_csr = val; ZS_DELAY(); } u_char zs_read_csr(cs) struct zs_chanstate *cs; { register u_char val; val = *cs->cs_reg_csr; ZS_DELAY(); return val; } void zs_write_csr(cs, val) struct zs_chanstate *cs; u_char val; { *cs->cs_reg_csr = val; ZS_DELAY(); } u_char zs_read_data(cs) struct zs_chanstate *cs; { register u_char val; val = *cs->cs_reg_data; ZS_DELAY(); return val; } void zs_write_data(cs, val) struct zs_chanstate *cs; u_char val; { *cs->cs_reg_data = val; ZS_DELAY(); } static struct zs_chanstate zscn_cs; /**************************************************************** * Console support functions (x68k specific!) * Note: this code is allowed to know about the layout of * the chip registers, and uses that to keep things simple. * XXX - I think I like the mvme167 code better. -gwr ****************************************************************/ /* * Handle user request to enter kernel debugger. */ void zs_abort(cs) struct zs_chanstate *cs; { int rr0; /* Wait for end of break to avoid PROM abort. */ /* XXX - Limit the wait? */ do { rr0 = *cs->cs_reg_csr; ZS_DELAY(); } while (rr0 & ZSRR0_BREAK); #ifdef DDB Debugger(); #else printf ("BREAK!!\n"); #endif } #if NZSTTY > 0 #include cons_decl(zs); static int zs_getc __P((void)); static void zs_putc __P((int)); /* * Polled input char. */ static int zs_getc(void) { register int s, c, rr0; s = splzs(); /* Wait for a character to arrive. */ do { rr0 = zs_read_csr(&zscn_cs); } while ((rr0 & ZSRR0_RX_READY) == 0); c = zs_read_data (&zscn_cs); splx(s); /* * This is used by the kd driver to read scan codes, * so don't translate '\r' ==> '\n' here... */ return (c); } /* * Polled output char. */ static void zs_putc(c) int c; { register int s, rr0; s = splzs(); /* Wait for transmitter to become ready. */ do { rr0 = zs_read_csr (&zscn_cs); } while ((rr0 & ZSRR0_TX_READY) == 0); zs_write_data(&zscn_cs, c); splx(s); } void zscninit(cn) struct consdev *cn; { volatile struct zschan *cnchan = (void*) INTIO_ADDR(ZSCN_PHYSADDR); int s; bzero (&zscn_cs, sizeof (struct zs_chanstate)); zscn_cs.cs_reg_csr = &cnchan->zc_csr; zscn_cs.cs_reg_data = &cnchan->zc_data; zscn_cs.cs_channel = 0; zscn_cs.cs_brg_clk = PCLK / 16; bcopy (zs_init_reg, zscn_cs.cs_preg, 16); zscn_cs.cs_preg[4] = ZSWR4_CLK_X16 | ZSWR4_ONESB; /* XXX */ zscn_cs.cs_preg[9] = 0; zs_set_speed(&zscn_cs, ZSCN_SPEED); s = splzs(); zs_loadchannelregs(&zscn_cs); splx(s); conschan = cnchan; } /* * Polled console input putchar. */ int zscngetc(dev) dev_t dev; { return (zs_getc()); } /* * Polled console output putchar. */ void zscnputc(dev, c) dev_t dev; int c; { zs_putc(c); } extern int zsopen(dev_t, int, int, struct proc *); void zscnprobe(cd) struct consdev *cd; { int maj; /* locate the major number */ for (maj = 0; maj < nchrdev; maj++) if (cdevsw[maj].d_open == zsopen) break; /* XXX: minor number is 0 */ if (cdevsw[maj].d_open != zsopen) cd->cn_pri = CN_DEAD; else { #ifdef ZSCONSOLE cd->cn_pri = CN_REMOTE; /* higher than ITE (CN_INTERNAL) */ #else cd->cn_pri = CN_NORMAL; #endif cd->cn_dev = makedev(maj, 0); } } void zscnpollc(dev, on) dev_t dev; int on; { } #endif