/* $NetBSD: uvm_swap.c,v 1.200 2020/10/07 17:51:50 chs Exp $ */ /* * Copyright (c) 1995, 1996, 1997, 2009 Matthew R. Green * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * from: NetBSD: vm_swap.c,v 1.52 1997/12/02 13:47:37 pk Exp * from: Id: uvm_swap.c,v 1.1.2.42 1998/02/02 20:38:06 chuck Exp */ #include __KERNEL_RCSID(0, "$NetBSD: uvm_swap.c,v 1.200 2020/10/07 17:51:50 chs Exp $"); #include "opt_uvmhist.h" #include "opt_compat_netbsd.h" #include "opt_ddb.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * uvm_swap.c: manage configuration and i/o to swap space. */ /* * swap space is managed in the following way: * * each swap partition or file is described by a "swapdev" structure. * each "swapdev" structure contains a "swapent" structure which contains * information that is passed up to the user (via system calls). * * each swap partition is assigned a "priority" (int) which controls * swap partition usage. * * the system maintains a global data structure describing all swap * partitions/files. there is a sorted LIST of "swappri" structures * which describe "swapdev"'s at that priority. this LIST is headed * by the "swap_priority" global var. each "swappri" contains a * TAILQ of "swapdev" structures at that priority. * * locking: * - swap_syscall_lock (krwlock_t): this lock serializes the swapctl * system call and prevents the swap priority list from changing * while we are in the middle of a system call (e.g. SWAP_STATS). * - uvm_swap_data_lock (kmutex_t): this lock protects all swap data * structures including the priority list, the swapdev structures, * and the swapmap arena. * * each swap device has the following info: * - swap device in use (could be disabled, preventing future use) * - swap enabled (allows new allocations on swap) * - map info in /dev/drum * - vnode pointer * for swap files only: * - block size * - max byte count in buffer * - buffer * * userland controls and configures swap with the swapctl(2) system call. * the sys_swapctl performs the following operations: * [1] SWAP_NSWAP: returns the number of swap devices currently configured * [2] SWAP_STATS: given a pointer to an array of swapent structures * (passed in via "arg") of a size passed in via "misc" ... we load * the current swap config into the array. The actual work is done * in the uvm_swap_stats() function. * [3] SWAP_ON: given a pathname in arg (could be device or file) and a * priority in "misc", start swapping on it. * [4] SWAP_OFF: as SWAP_ON, but stops swapping to a device * [5] SWAP_CTL: changes the priority of a swap device (new priority in * "misc") */ /* * swapdev: describes a single swap partition/file * * note the following should be true: * swd_inuse <= swd_nblks [number of blocks in use is <= total blocks] * swd_nblks <= swd_mapsize [because mapsize includes miniroot+disklabel] */ struct swapdev { dev_t swd_dev; /* device id */ int swd_flags; /* flags:inuse/enable/fake */ int swd_priority; /* our priority */ int swd_nblks; /* blocks in this device */ char *swd_path; /* saved pathname of device */ int swd_pathlen; /* length of pathname */ int swd_npages; /* #pages we can use */ int swd_npginuse; /* #pages in use */ int swd_npgbad; /* #pages bad */ int swd_drumoffset; /* page0 offset in drum */ int swd_drumsize; /* #pages in drum */ blist_t swd_blist; /* blist for this swapdev */ struct vnode *swd_vp; /* backing vnode */ TAILQ_ENTRY(swapdev) swd_next; /* priority tailq */ int swd_bsize; /* blocksize (bytes) */ int swd_maxactive; /* max active i/o reqs */ struct bufq_state *swd_tab; /* buffer list */ int swd_active; /* number of active buffers */ volatile uint32_t *swd_encmap; /* bitmap of encrypted slots */ struct aesenc swd_enckey; /* AES key expanded for enc */ struct aesdec swd_deckey; /* AES key expanded for dec */ bool swd_encinit; /* true if keys initialized */ }; /* * swap device priority entry; the list is kept sorted on `spi_priority'. */ struct swappri { int spi_priority; /* priority */ TAILQ_HEAD(spi_swapdev, swapdev) spi_swapdev; /* tailq of swapdevs at this priority */ LIST_ENTRY(swappri) spi_swappri; /* global list of pri's */ }; /* * The following two structures are used to keep track of data transfers * on swap devices associated with regular files. * NOTE: this code is more or less a copy of vnd.c; we use the same * structure names here to ease porting.. */ struct vndxfer { struct buf *vx_bp; /* Pointer to parent buffer */ struct swapdev *vx_sdp; int vx_error; int vx_pending; /* # of pending aux buffers */ int vx_flags; #define VX_BUSY 1 #define VX_DEAD 2 }; struct vndbuf { struct buf vb_buf; struct vndxfer *vb_xfer; }; /* * We keep a of pool vndbuf's and vndxfer structures. */ static struct pool vndxfer_pool, vndbuf_pool; /* * local variables */ static vmem_t *swapmap; /* controls the mapping of /dev/drum */ /* list of all active swap devices [by priority] */ LIST_HEAD(swap_priority, swappri); static struct swap_priority swap_priority; /* locks */ static kmutex_t uvm_swap_data_lock __cacheline_aligned; static krwlock_t swap_syscall_lock; /* workqueue and use counter for swap to regular files */ static int sw_reg_count = 0; static struct workqueue *sw_reg_workqueue; /* tuneables */ u_int uvm_swapisfull_factor = 99; bool uvm_swap_encrypt = false; /* * prototypes */ static struct swapdev *swapdrum_getsdp(int); static struct swapdev *swaplist_find(struct vnode *, bool); static void swaplist_insert(struct swapdev *, struct swappri *, int); static void swaplist_trim(void); static int swap_on(struct lwp *, struct swapdev *); static int swap_off(struct lwp *, struct swapdev *); static void sw_reg_strategy(struct swapdev *, struct buf *, int); static void sw_reg_biodone(struct buf *); static void sw_reg_iodone(struct work *wk, void *dummy); static void sw_reg_start(struct swapdev *); static int uvm_swap_io(struct vm_page **, int, int, int); static void uvm_swap_genkey(struct swapdev *); static void uvm_swap_encryptpage(struct swapdev *, void *, int); static void uvm_swap_decryptpage(struct swapdev *, void *, int); static size_t encmap_size(size_t npages) { struct swapdev *sdp; const size_t bytesperword = sizeof(sdp->swd_encmap[0]); const size_t bitsperword = NBBY * bytesperword; const size_t nbits = npages; /* one bit for each page */ const size_t nwords = howmany(nbits, bitsperword); const size_t nbytes = nwords * bytesperword; return nbytes; } /* * uvm_swap_init: init the swap system data structures and locks * * => called at boot time from init_main.c after the filesystems * are brought up (which happens after uvm_init()) */ void uvm_swap_init(void) { UVMHIST_FUNC(__func__); UVMHIST_CALLED(pdhist); /* * first, init the swap list, its counter, and its lock. * then get a handle on the vnode for /dev/drum by using * the its dev_t number ("swapdev", from MD conf.c). */ LIST_INIT(&swap_priority); uvmexp.nswapdev = 0; rw_init(&swap_syscall_lock); mutex_init(&uvm_swap_data_lock, MUTEX_DEFAULT, IPL_NONE); if (bdevvp(swapdev, &swapdev_vp)) panic("%s: can't get vnode for swap device", __func__); if (vn_lock(swapdev_vp, LK_EXCLUSIVE | LK_RETRY)) panic("%s: can't lock swap device", __func__); if (VOP_OPEN(swapdev_vp, FREAD | FWRITE, NOCRED)) panic("%s: can't open swap device", __func__); VOP_UNLOCK(swapdev_vp); /* * create swap block resource map to map /dev/drum. the range * from 1 to INT_MAX allows 2 gigablocks of swap space. note * that block 0 is reserved (used to indicate an allocation * failure, or no allocation). */ swapmap = vmem_create("swapmap", 1, INT_MAX - 1, 1, NULL, NULL, NULL, 0, VM_NOSLEEP, IPL_NONE); if (swapmap == 0) { panic("%s: vmem_create failed", __func__); } pool_init(&vndxfer_pool, sizeof(struct vndxfer), 0, 0, 0, "swp vnx", NULL, IPL_BIO); pool_init(&vndbuf_pool, sizeof(struct vndbuf), 0, 0, 0, "swp vnd", NULL, IPL_BIO); UVMHIST_LOG(pdhist, "<- done", 0, 0, 0, 0); } /* * swaplist functions: functions that operate on the list of swap * devices on the system. */ /* * swaplist_insert: insert swap device "sdp" into the global list * * => caller must hold both swap_syscall_lock and uvm_swap_data_lock * => caller must provide a newly allocated swappri structure (we will * FREE it if we don't need it... this it to prevent allocation * blocking here while adding swap) */ static void swaplist_insert(struct swapdev *sdp, struct swappri *newspp, int priority) { struct swappri *spp, *pspp; UVMHIST_FUNC(__func__); UVMHIST_CALLED(pdhist); KASSERT(rw_write_held(&swap_syscall_lock)); KASSERT(mutex_owned(&uvm_swap_data_lock)); /* * find entry at or after which to insert the new device. */ pspp = NULL; LIST_FOREACH(spp, &swap_priority, spi_swappri) { if (priority <= spp->spi_priority) break; pspp = spp; } /* * new priority? */ if (spp == NULL || spp->spi_priority != priority) { spp = newspp; /* use newspp! */ UVMHIST_LOG(pdhist, "created new swappri = %jd", priority, 0, 0, 0); spp->spi_priority = priority; TAILQ_INIT(&spp->spi_swapdev); if (pspp) LIST_INSERT_AFTER(pspp, spp, spi_swappri); else LIST_INSERT_HEAD(&swap_priority, spp, spi_swappri); } else { /* we don't need a new priority structure, free it */ kmem_free(newspp, sizeof(*newspp)); } /* * priority found (or created). now insert on the priority's * tailq list and bump the total number of swapdevs. */ sdp->swd_priority = priority; TAILQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next); uvmexp.nswapdev++; } /* * swaplist_find: find and optionally remove a swap device from the * global list. * * => caller must hold both swap_syscall_lock and uvm_swap_data_lock * => we return the swapdev we found (and removed) */ static struct swapdev * swaplist_find(struct vnode *vp, bool remove) { struct swapdev *sdp; struct swappri *spp; KASSERT(rw_lock_held(&swap_syscall_lock)); KASSERT(remove ? rw_write_held(&swap_syscall_lock) : 1); KASSERT(mutex_owned(&uvm_swap_data_lock)); /* * search the lists for the requested vp */ LIST_FOREACH(spp, &swap_priority, spi_swappri) { TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) { if (sdp->swd_vp == vp) { if (remove) { TAILQ_REMOVE(&spp->spi_swapdev, sdp, swd_next); uvmexp.nswapdev--; } return(sdp); } } } return (NULL); } /* * swaplist_trim: scan priority list for empty priority entries and kill * them. * * => caller must hold both swap_syscall_lock and uvm_swap_data_lock */ static void swaplist_trim(void) { struct swappri *spp, *nextspp; KASSERT(rw_write_held(&swap_syscall_lock)); KASSERT(mutex_owned(&uvm_swap_data_lock)); LIST_FOREACH_SAFE(spp, &swap_priority, spi_swappri, nextspp) { if (!TAILQ_EMPTY(&spp->spi_swapdev)) continue; LIST_REMOVE(spp, spi_swappri); kmem_free(spp, sizeof(*spp)); } } /* * swapdrum_getsdp: given a page offset in /dev/drum, convert it back * to the "swapdev" that maps that section of the drum. * * => each swapdev takes one big contig chunk of the drum * => caller must hold uvm_swap_data_lock */ static struct swapdev * swapdrum_getsdp(int pgno) { struct swapdev *sdp; struct swappri *spp; KASSERT(mutex_owned(&uvm_swap_data_lock)); LIST_FOREACH(spp, &swap_priority, spi_swappri) { TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) { if (sdp->swd_flags & SWF_FAKE) continue; if (pgno >= sdp->swd_drumoffset && pgno < (sdp->swd_drumoffset + sdp->swd_drumsize)) { return sdp; } } } return NULL; } /* * swapdrum_sdp_is: true iff the swap device for pgno is sdp * * => for use in positive assertions only; result is not stable */ static bool __debugused swapdrum_sdp_is(int pgno, struct swapdev *sdp) { bool result; mutex_enter(&uvm_swap_data_lock); result = swapdrum_getsdp(pgno) == sdp; mutex_exit(&uvm_swap_data_lock); return result; } void swapsys_lock(krw_t op) { rw_enter(&swap_syscall_lock, op); } void swapsys_unlock(void) { rw_exit(&swap_syscall_lock); } static void swapent_cvt(struct swapent *se, const struct swapdev *sdp, int inuse) { se->se_dev = sdp->swd_dev; se->se_flags = sdp->swd_flags; se->se_nblks = sdp->swd_nblks; se->se_inuse = inuse; se->se_priority = sdp->swd_priority; KASSERT(sdp->swd_pathlen < sizeof(se->se_path)); strcpy(se->se_path, sdp->swd_path); } int (*uvm_swap_stats13)(const struct sys_swapctl_args *, register_t *) = (void *)enosys; int (*uvm_swap_stats50)(const struct sys_swapctl_args *, register_t *) = (void *)enosys; /* * sys_swapctl: main entry point for swapctl(2) system call * [with two helper functions: swap_on and swap_off] */ int sys_swapctl(struct lwp *l, const struct sys_swapctl_args *uap, register_t *retval) { /* { syscallarg(int) cmd; syscallarg(void *) arg; syscallarg(int) misc; } */ struct vnode *vp; struct nameidata nd; struct swappri *spp; struct swapdev *sdp; #define SWAP_PATH_MAX (PATH_MAX + 1) char *userpath; size_t len = 0; int error; int priority; UVMHIST_FUNC(__func__); UVMHIST_CALLED(pdhist); /* * we handle the non-priv NSWAP and STATS request first. * * SWAP_NSWAP: return number of config'd swap devices * [can also be obtained with uvmexp sysctl] */ if (SCARG(uap, cmd) == SWAP_NSWAP) { const int nswapdev = uvmexp.nswapdev; UVMHIST_LOG(pdhist, "<- done SWAP_NSWAP=%jd", nswapdev, 0, 0, 0); *retval = nswapdev; return 0; } userpath = kmem_alloc(SWAP_PATH_MAX, KM_SLEEP); /* * ensure serialized syscall access by grabbing the swap_syscall_lock */ rw_enter(&swap_syscall_lock, RW_WRITER); /* * SWAP_STATS: get stats on current # of configured swap devs * * note that the swap_priority list can't change as long * as we are holding the swap_syscall_lock. we don't want * to grab the uvm_swap_data_lock because we may fault&sleep during * copyout() and we don't want to be holding that lock then! */ switch (SCARG(uap, cmd)) { case SWAP_STATS13: error = (*uvm_swap_stats13)(uap, retval); goto out; case SWAP_STATS50: error = (*uvm_swap_stats50)(uap, retval); goto out; case SWAP_STATS: error = uvm_swap_stats(SCARG(uap, arg), SCARG(uap, misc), NULL, sizeof(struct swapent), retval); UVMHIST_LOG(pdhist, "<- done SWAP_STATS", 0, 0, 0, 0); goto out; case SWAP_GETDUMPDEV: error = copyout(&dumpdev, SCARG(uap, arg), sizeof(dumpdev)); goto out; default: break; } /* * all other requests require superuser privs. verify. */ if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_SWAPCTL, 0, NULL, NULL, NULL))) goto out; if (SCARG(uap, cmd) == SWAP_DUMPOFF) { /* drop the current dump device */ dumpdev = NODEV; dumpcdev = NODEV; cpu_dumpconf(); goto out; } /* * at this point we expect a path name in arg. we will * use namei() to gain a vnode reference (vref), and lock * the vnode (VOP_LOCK). * * XXX: a NULL arg means use the root vnode pointer (e.g. for * miniroot) */ if (SCARG(uap, arg) == NULL) { vp = rootvp; /* miniroot */ vref(vp); if (vn_lock(vp, LK_EXCLUSIVE)) { vrele(vp); error = EBUSY; goto out; } if (SCARG(uap, cmd) == SWAP_ON && copystr("miniroot", userpath, SWAP_PATH_MAX, &len)) panic("swapctl: miniroot copy failed"); } else { struct pathbuf *pb; /* * This used to allow copying in one extra byte * (SWAP_PATH_MAX instead of PATH_MAX) for SWAP_ON. * This was completely pointless because if anyone * used that extra byte namei would fail with * ENAMETOOLONG anyway, so I've removed the excess * logic. - dholland 20100215 */ error = pathbuf_copyin(SCARG(uap, arg), &pb); if (error) { goto out; } if (SCARG(uap, cmd) == SWAP_ON) { /* get a copy of the string */ pathbuf_copystring(pb, userpath, SWAP_PATH_MAX); len = strlen(userpath) + 1; } NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT, pb); if ((error = namei(&nd))) { pathbuf_destroy(pb); goto out; } vp = nd.ni_vp; pathbuf_destroy(pb); } /* note: "vp" is referenced and locked */ error = 0; /* assume no error */ switch(SCARG(uap, cmd)) { case SWAP_DUMPDEV: if (vp->v_type != VBLK) { error = ENOTBLK; break; } if (bdevsw_lookup(vp->v_rdev)) { dumpdev = vp->v_rdev; dumpcdev = devsw_blk2chr(dumpdev); } else dumpdev = NODEV; cpu_dumpconf(); break; case SWAP_CTL: /* * get new priority, remove old entry (if any) and then * reinsert it in the correct place. finally, prune out * any empty priority structures. */ priority = SCARG(uap, misc); spp = kmem_alloc(sizeof(*spp), KM_SLEEP); mutex_enter(&uvm_swap_data_lock); if ((sdp = swaplist_find(vp, true)) == NULL) { error = ENOENT; } else { swaplist_insert(sdp, spp, priority); swaplist_trim(); } mutex_exit(&uvm_swap_data_lock); if (error) kmem_free(spp, sizeof(*spp)); break; case SWAP_ON: /* * check for duplicates. if none found, then insert a * dummy entry on the list to prevent someone else from * trying to enable this device while we are working on * it. */ priority = SCARG(uap, misc); sdp = kmem_zalloc(sizeof(*sdp), KM_SLEEP); spp = kmem_alloc(sizeof(*spp), KM_SLEEP); sdp->swd_flags = SWF_FAKE; sdp->swd_vp = vp; sdp->swd_dev = (vp->v_type == VBLK) ? vp->v_rdev : NODEV; bufq_alloc(&sdp->swd_tab, "disksort", BUFQ_SORT_RAWBLOCK); mutex_enter(&uvm_swap_data_lock); if (swaplist_find(vp, false) != NULL) { error = EBUSY; mutex_exit(&uvm_swap_data_lock); bufq_free(sdp->swd_tab); kmem_free(sdp, sizeof(*sdp)); kmem_free(spp, sizeof(*spp)); break; } swaplist_insert(sdp, spp, priority); mutex_exit(&uvm_swap_data_lock); KASSERT(len > 0); sdp->swd_pathlen = len; sdp->swd_path = kmem_alloc(len, KM_SLEEP); if (copystr(userpath, sdp->swd_path, len, 0) != 0) panic("swapctl: copystr"); /* * we've now got a FAKE placeholder in the swap list. * now attempt to enable swap on it. if we fail, undo * what we've done and kill the fake entry we just inserted. * if swap_on is a success, it will clear the SWF_FAKE flag */ if ((error = swap_on(l, sdp)) != 0) { mutex_enter(&uvm_swap_data_lock); (void) swaplist_find(vp, true); /* kill fake entry */ swaplist_trim(); mutex_exit(&uvm_swap_data_lock); bufq_free(sdp->swd_tab); kmem_free(sdp->swd_path, sdp->swd_pathlen); kmem_free(sdp, sizeof(*sdp)); break; } break; case SWAP_OFF: mutex_enter(&uvm_swap_data_lock); if ((sdp = swaplist_find(vp, false)) == NULL) { mutex_exit(&uvm_swap_data_lock); error = ENXIO; break; } /* * If a device isn't in use or enabled, we * can't stop swapping from it (again). */ if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0) { mutex_exit(&uvm_swap_data_lock); error = EBUSY; break; } /* * do the real work. */ error = swap_off(l, sdp); break; default: error = EINVAL; } /* * done! release the ref gained by namei() and unlock. */ vput(vp); out: rw_exit(&swap_syscall_lock); kmem_free(userpath, SWAP_PATH_MAX); UVMHIST_LOG(pdhist, "<- done! error=%jd", error, 0, 0, 0); return (error); } /* * uvm_swap_stats: implements swapctl(SWAP_STATS). The function is kept * away from sys_swapctl() in order to allow COMPAT_* swapctl() * emulation to use it directly without going through sys_swapctl(). * The problem with using sys_swapctl() there is that it involves * copying the swapent array to the stackgap, and this array's size * is not known at build time. Hence it would not be possible to * ensure it would fit in the stackgap in any case. */ int uvm_swap_stats(char *ptr, int misc, void (*f)(void *, const struct swapent *), size_t len, register_t *retval) { struct swappri *spp; struct swapdev *sdp; struct swapent sep; int count = 0; int error; KASSERT(len <= sizeof(sep)); if (len == 0) return ENOSYS; if (misc < 0) return EINVAL; if (misc == 0 || uvmexp.nswapdev == 0) return 0; /* Make sure userland cannot exhaust kernel memory */ if ((size_t)misc > (size_t)uvmexp.nswapdev) misc = uvmexp.nswapdev; KASSERT(rw_lock_held(&swap_syscall_lock)); LIST_FOREACH(spp, &swap_priority, spi_swappri) { TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) { int inuse; if (misc-- <= 0) break; inuse = btodb((uint64_t)sdp->swd_npginuse << PAGE_SHIFT); memset(&sep, 0, sizeof(sep)); swapent_cvt(&sep, sdp, inuse); if (f) (*f)(&sep, &sep); if ((error = copyout(&sep, ptr, len)) != 0) return error; ptr += len; count++; } } *retval = count; return 0; } /* * swap_on: attempt to enable a swapdev for swapping. note that the * swapdev is already on the global list, but disabled (marked * SWF_FAKE). * * => we avoid the start of the disk (to protect disk labels) * => we also avoid the miniroot, if we are swapping to root. * => caller should leave uvm_swap_data_lock unlocked, we may lock it * if needed. */ static int swap_on(struct lwp *l, struct swapdev *sdp) { struct vnode *vp; int error, npages, nblocks, size; long addr; vmem_addr_t result; struct vattr va; dev_t dev; UVMHIST_FUNC(__func__); UVMHIST_CALLED(pdhist); /* * we want to enable swapping on sdp. the swd_vp contains * the vnode we want (locked and ref'd), and the swd_dev * contains the dev_t of the file, if it a block device. */ vp = sdp->swd_vp; dev = sdp->swd_dev; /* * open the swap file (mostly useful for block device files to * let device driver know what is up). * * we skip the open/close for root on swap because the root * has already been opened when root was mounted (mountroot). */ if (vp != rootvp) { if ((error = VOP_OPEN(vp, FREAD|FWRITE, l->l_cred))) return (error); } /* XXX this only works for block devices */ UVMHIST_LOG(pdhist, " dev=%jd, major(dev)=%jd", dev, major(dev), 0, 0); /* * we now need to determine the size of the swap area. for * block specials we can call the d_psize function. * for normal files, we must stat [get attrs]. * * we put the result in nblks. * for normal files, we also want the filesystem block size * (which we get with statfs). */ switch (vp->v_type) { case VBLK: if ((nblocks = bdev_size(dev)) == -1) { error = ENXIO; goto bad; } break; case VREG: if ((error = VOP_GETATTR(vp, &va, l->l_cred))) goto bad; nblocks = (int)btodb(va.va_size); sdp->swd_bsize = 1 << vp->v_mount->mnt_fs_bshift; /* * limit the max # of outstanding I/O requests we issue * at any one time. take it easy on NFS servers. */ if (vp->v_tag == VT_NFS) sdp->swd_maxactive = 2; /* XXX */ else sdp->swd_maxactive = 8; /* XXX */ break; default: error = ENXIO; goto bad; } /* * save nblocks in a safe place and convert to pages. */ sdp->swd_nblks = nblocks; npages = dbtob((uint64_t)nblocks) >> PAGE_SHIFT; /* * for block special files, we want to make sure that leave * the disklabel and bootblocks alone, so we arrange to skip * over them (arbitrarily choosing to skip PAGE_SIZE bytes). * note that because of this the "size" can be less than the * actual number of blocks on the device. */ if (vp->v_type == VBLK) { /* we use pages 1 to (size - 1) [inclusive] */ size = npages - 1; addr = 1; } else { /* we use pages 0 to (size - 1) [inclusive] */ size = npages; addr = 0; } /* * make sure we have enough blocks for a reasonable sized swap * area. we want at least one page. */ if (size < 1) { UVMHIST_LOG(pdhist, " size <= 1!!", 0, 0, 0, 0); error = EINVAL; goto bad; } UVMHIST_LOG(pdhist, " dev=%jx: size=%jd addr=%jd", dev, size, addr, 0); /* * now we need to allocate an extent to manage this swap device */ sdp->swd_blist = blist_create(npages); /* mark all expect the `saved' region free. */ blist_free(sdp->swd_blist, addr, size); /* * allocate space to for swap encryption state and mark the * keys uninitialized so we generate them lazily */ sdp->swd_encmap = kmem_zalloc(encmap_size(npages), KM_SLEEP); sdp->swd_encinit = false; /* * if the vnode we are swapping to is the root vnode * (i.e. we are swapping to the miniroot) then we want * to make sure we don't overwrite it. do a statfs to * find its size and skip over it. */ if (vp == rootvp) { struct mount *mp; struct statvfs *sp; int rootblocks, rootpages; mp = rootvnode->v_mount; sp = &mp->mnt_stat; rootblocks = sp->f_blocks * btodb(sp->f_frsize); /* * XXX: sp->f_blocks isn't the total number of * blocks in the filesystem, it's the number of * data blocks. so, our rootblocks almost * definitely underestimates the total size * of the filesystem - how badly depends on the * details of the filesystem type. there isn't * an obvious way to deal with this cleanly * and perfectly, so for now we just pad our * rootblocks estimate with an extra 5 percent. */ rootblocks += (rootblocks >> 5) + (rootblocks >> 6) + (rootblocks >> 7); rootpages = round_page(dbtob(rootblocks)) >> PAGE_SHIFT; if (rootpages > size) panic("swap_on: miniroot larger than swap?"); if (rootpages != blist_fill(sdp->swd_blist, addr, rootpages)) { panic("swap_on: unable to preserve miniroot"); } size -= rootpages; printf("Preserved %d pages of miniroot ", rootpages); printf("leaving %d pages of swap\n", size); } /* * add a ref to vp to reflect usage as a swap device. */ vref(vp); /* * now add the new swapdev to the drum and enable. */ error = vmem_alloc(swapmap, npages, VM_BESTFIT | VM_SLEEP, &result); if (error != 0) panic("swapdrum_add"); /* * If this is the first regular swap create the workqueue. * => Protected by swap_syscall_lock. */ if (vp->v_type != VBLK) { if (sw_reg_count++ == 0) { KASSERT(sw_reg_workqueue == NULL); if (workqueue_create(&sw_reg_workqueue, "swapiod", sw_reg_iodone, NULL, PRIBIO, IPL_BIO, 0) != 0) panic("%s: workqueue_create failed", __func__); } } sdp->swd_drumoffset = (int)result; sdp->swd_drumsize = npages; sdp->swd_npages = size; mutex_enter(&uvm_swap_data_lock); sdp->swd_flags &= ~SWF_FAKE; /* going live */ sdp->swd_flags |= (SWF_INUSE|SWF_ENABLE); uvmexp.swpages += size; uvmexp.swpgavail += size; mutex_exit(&uvm_swap_data_lock); return (0); /* * failure: clean up and return error. */ bad: if (sdp->swd_blist) { blist_destroy(sdp->swd_blist); } if (vp != rootvp) { (void)VOP_CLOSE(vp, FREAD|FWRITE, l->l_cred); } return (error); } /* * swap_off: stop swapping on swapdev * * => swap data should be locked, we will unlock. */ static int swap_off(struct lwp *l, struct swapdev *sdp) { int npages = sdp->swd_npages; int error = 0; UVMHIST_FUNC(__func__); UVMHIST_CALLARGS(pdhist, " dev=%jx, npages=%jd", sdp->swd_dev,npages, 0, 0); KASSERT(rw_write_held(&swap_syscall_lock)); KASSERT(mutex_owned(&uvm_swap_data_lock)); /* disable the swap area being removed */ sdp->swd_flags &= ~SWF_ENABLE; uvmexp.swpgavail -= npages; mutex_exit(&uvm_swap_data_lock); /* * the idea is to find all the pages that are paged out to this * device, and page them all in. in uvm, swap-backed pageable * memory can take two forms: aobjs and anons. call the * swapoff hook for each subsystem to bring in pages. */ if (uao_swap_off(sdp->swd_drumoffset, sdp->swd_drumoffset + sdp->swd_drumsize) || amap_swap_off(sdp->swd_drumoffset, sdp->swd_drumoffset + sdp->swd_drumsize)) { error = ENOMEM; } else if (sdp->swd_npginuse > sdp->swd_npgbad) { error = EBUSY; } if (error) { mutex_enter(&uvm_swap_data_lock); sdp->swd_flags |= SWF_ENABLE; uvmexp.swpgavail += npages; mutex_exit(&uvm_swap_data_lock); return error; } /* * If this is the last regular swap destroy the workqueue. * => Protected by swap_syscall_lock. */ if (sdp->swd_vp->v_type != VBLK) { KASSERT(sw_reg_count > 0); KASSERT(sw_reg_workqueue != NULL); if (--sw_reg_count == 0) { workqueue_destroy(sw_reg_workqueue); sw_reg_workqueue = NULL; } } /* * done with the vnode. * drop our ref on the vnode before calling VOP_CLOSE() * so that spec_close() can tell if this is the last close. */ vrele(sdp->swd_vp); if (sdp->swd_vp != rootvp) { (void) VOP_CLOSE(sdp->swd_vp, FREAD|FWRITE, l->l_cred); } mutex_enter(&uvm_swap_data_lock); uvmexp.swpages -= npages; uvmexp.swpginuse -= sdp->swd_npgbad; if (swaplist_find(sdp->swd_vp, true) == NULL) panic("%s: swapdev not in list", __func__); swaplist_trim(); mutex_exit(&uvm_swap_data_lock); /* * free all resources! */ vmem_free(swapmap, sdp->swd_drumoffset, sdp->swd_drumsize); blist_destroy(sdp->swd_blist); bufq_free(sdp->swd_tab); kmem_free(__UNVOLATILE(sdp->swd_encmap), encmap_size(sdp->swd_drumsize)); explicit_memset(&sdp->swd_enckey, 0, sizeof sdp->swd_enckey); explicit_memset(&sdp->swd_deckey, 0, sizeof sdp->swd_deckey); kmem_free(sdp, sizeof(*sdp)); return (0); } void uvm_swap_shutdown(struct lwp *l) { struct swapdev *sdp; struct swappri *spp; struct vnode *vp; int error; printf("turning off swap..."); rw_enter(&swap_syscall_lock, RW_WRITER); mutex_enter(&uvm_swap_data_lock); again: LIST_FOREACH(spp, &swap_priority, spi_swappri) TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) { if (sdp->swd_flags & SWF_FAKE) continue; if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0) continue; #ifdef DEBUG printf("\nturning off swap on %s...", sdp->swd_path); #endif if (vn_lock(vp = sdp->swd_vp, LK_EXCLUSIVE)) { error = EBUSY; vp = NULL; } else error = 0; if (!error) { error = swap_off(l, sdp); mutex_enter(&uvm_swap_data_lock); } if (error) { printf("stopping swap on %s failed " "with error %d\n", sdp->swd_path, error); TAILQ_REMOVE(&spp->spi_swapdev, sdp, swd_next); uvmexp.nswapdev--; swaplist_trim(); if (vp) vput(vp); } goto again; } printf(" done\n"); mutex_exit(&uvm_swap_data_lock); rw_exit(&swap_syscall_lock); } /* * /dev/drum interface and i/o functions */ /* * swstrategy: perform I/O on the drum * * => we must map the i/o request from the drum to the correct swapdev. */ static void swstrategy(struct buf *bp) { struct swapdev *sdp; struct vnode *vp; int pageno, bn; UVMHIST_FUNC(__func__); UVMHIST_CALLED(pdhist); /* * convert block number to swapdev. note that swapdev can't * be yanked out from under us because we are holding resources * in it (i.e. the blocks we are doing I/O on). */ pageno = dbtob((int64_t)bp->b_blkno) >> PAGE_SHIFT; mutex_enter(&uvm_swap_data_lock); sdp = swapdrum_getsdp(pageno); mutex_exit(&uvm_swap_data_lock); if (sdp == NULL) { bp->b_error = EINVAL; bp->b_resid = bp->b_bcount; biodone(bp); UVMHIST_LOG(pdhist, " failed to get swap device", 0, 0, 0, 0); return; } /* * convert drum page number to block number on this swapdev. */ pageno -= sdp->swd_drumoffset; /* page # on swapdev */ bn = btodb((uint64_t)pageno << PAGE_SHIFT); /* convert to diskblock */ UVMHIST_LOG(pdhist, " Rd/Wr (0/1) %jd: mapoff=%jx bn=%jx bcount=%jd", ((bp->b_flags & B_READ) == 0) ? 1 : 0, sdp->swd_drumoffset, bn, bp->b_bcount); /* * for block devices we finish up here. * for regular files we have to do more work which we delegate * to sw_reg_strategy(). */ vp = sdp->swd_vp; /* swapdev vnode pointer */ switch (vp->v_type) { default: panic("%s: vnode type 0x%x", __func__, vp->v_type); case VBLK: /* * must convert "bp" from an I/O on /dev/drum to an I/O * on the swapdev (sdp). */ bp->b_blkno = bn; /* swapdev block number */ bp->b_dev = sdp->swd_dev; /* swapdev dev_t */ /* * if we are doing a write, we have to redirect the i/o on * drum's v_numoutput counter to the swapdevs. */ if ((bp->b_flags & B_READ) == 0) { mutex_enter(bp->b_objlock); vwakeup(bp); /* kills one 'v_numoutput' on drum */ mutex_exit(bp->b_objlock); mutex_enter(vp->v_interlock); vp->v_numoutput++; /* put it on swapdev */ mutex_exit(vp->v_interlock); } /* * finally plug in swapdev vnode and start I/O */ bp->b_vp = vp; bp->b_objlock = vp->v_interlock; VOP_STRATEGY(vp, bp); return; case VREG: /* * delegate to sw_reg_strategy function. */ sw_reg_strategy(sdp, bp, bn); return; } /* NOTREACHED */ } /* * swread: the read function for the drum (just a call to physio) */ /*ARGSUSED*/ static int swread(dev_t dev, struct uio *uio, int ioflag) { UVMHIST_FUNC(__func__); UVMHIST_CALLARGS(pdhist, " dev=%jx offset=%jx", dev, uio->uio_offset, 0, 0); return (physio(swstrategy, NULL, dev, B_READ, minphys, uio)); } /* * swwrite: the write function for the drum (just a call to physio) */ /*ARGSUSED*/ static int swwrite(dev_t dev, struct uio *uio, int ioflag) { UVMHIST_FUNC(__func__); UVMHIST_CALLARGS(pdhist, " dev=%jx offset=%jx", dev, uio->uio_offset, 0, 0); return (physio(swstrategy, NULL, dev, B_WRITE, minphys, uio)); } const struct bdevsw swap_bdevsw = { .d_open = nullopen, .d_close = nullclose, .d_strategy = swstrategy, .d_ioctl = noioctl, .d_dump = nodump, .d_psize = nosize, .d_discard = nodiscard, .d_flag = D_OTHER }; const struct cdevsw swap_cdevsw = { .d_open = nullopen, .d_close = nullclose, .d_read = swread, .d_write = swwrite, .d_ioctl = noioctl, .d_stop = nostop, .d_tty = notty, .d_poll = nopoll, .d_mmap = nommap, .d_kqfilter = nokqfilter, .d_discard = nodiscard, .d_flag = D_OTHER, }; /* * sw_reg_strategy: handle swap i/o to regular files */ static void sw_reg_strategy(struct swapdev *sdp, struct buf *bp, int bn) { struct vnode *vp; struct vndxfer *vnx; daddr_t nbn; char *addr; off_t byteoff; int s, off, nra, error, sz, resid; UVMHIST_FUNC(__func__); UVMHIST_CALLED(pdhist); /* * allocate a vndxfer head for this transfer and point it to * our buffer. */ vnx = pool_get(&vndxfer_pool, PR_WAITOK); vnx->vx_flags = VX_BUSY; vnx->vx_error = 0; vnx->vx_pending = 0; vnx->vx_bp = bp; vnx->vx_sdp = sdp; /* * setup for main loop where we read filesystem blocks into * our buffer. */ error = 0; bp->b_resid = bp->b_bcount; /* nothing transferred yet! */ addr = bp->b_data; /* current position in buffer */ byteoff = dbtob((uint64_t)bn); for (resid = bp->b_resid; resid; resid -= sz) { struct vndbuf *nbp; /* * translate byteoffset into block number. return values: * vp = vnode of underlying device * nbn = new block number (on underlying vnode dev) * nra = num blocks we can read-ahead (excludes requested * block) */ nra = 0; error = VOP_BMAP(sdp->swd_vp, byteoff / sdp->swd_bsize, &vp, &nbn, &nra); if (error == 0 && nbn == (daddr_t)-1) { /* * this used to just set error, but that doesn't * do the right thing. Instead, it causes random * memory errors. The panic() should remain until * this condition doesn't destabilize the system. */ #if 1 panic("%s: swap to sparse file", __func__); #else error = EIO; /* failure */ #endif } /* * punt if there was an error or a hole in the file. * we must wait for any i/o ops we have already started * to finish before returning. * * XXX we could deal with holes here but it would be * a hassle (in the write case). */ if (error) { s = splbio(); vnx->vx_error = error; /* pass error up */ goto out; } /* * compute the size ("sz") of this transfer (in bytes). */ off = byteoff % sdp->swd_bsize; sz = (1 + nra) * sdp->swd_bsize - off; if (sz > resid) sz = resid; UVMHIST_LOG(pdhist, "sw_reg_strategy: " "vp %#jx/%#jx offset 0x%jx/0x%jx", (uintptr_t)sdp->swd_vp, (uintptr_t)vp, byteoff, nbn); /* * now get a buf structure. note that the vb_buf is * at the front of the nbp structure so that you can * cast pointers between the two structure easily. */ nbp = pool_get(&vndbuf_pool, PR_WAITOK); buf_init(&nbp->vb_buf); nbp->vb_buf.b_flags = bp->b_flags; nbp->vb_buf.b_cflags = bp->b_cflags; nbp->vb_buf.b_oflags = bp->b_oflags; nbp->vb_buf.b_bcount = sz; nbp->vb_buf.b_bufsize = sz; nbp->vb_buf.b_error = 0; nbp->vb_buf.b_data = addr; nbp->vb_buf.b_lblkno = 0; nbp->vb_buf.b_blkno = nbn + btodb(off); nbp->vb_buf.b_rawblkno = nbp->vb_buf.b_blkno; nbp->vb_buf.b_iodone = sw_reg_biodone; nbp->vb_buf.b_vp = vp; nbp->vb_buf.b_objlock = vp->v_interlock; if (vp->v_type == VBLK) { nbp->vb_buf.b_dev = vp->v_rdev; } nbp->vb_xfer = vnx; /* patch it back in to vnx */ /* * Just sort by block number */ s = splbio(); if (vnx->vx_error != 0) { buf_destroy(&nbp->vb_buf); pool_put(&vndbuf_pool, nbp); goto out; } vnx->vx_pending++; /* sort it in and start I/O if we are not over our limit */ /* XXXAD locking */ bufq_put(sdp->swd_tab, &nbp->vb_buf); sw_reg_start(sdp); splx(s); /* * advance to the next I/O */ byteoff += sz; addr += sz; } s = splbio(); out: /* Arrive here at splbio */ vnx->vx_flags &= ~VX_BUSY; if (vnx->vx_pending == 0) { error = vnx->vx_error; pool_put(&vndxfer_pool, vnx); bp->b_error = error; biodone(bp); } splx(s); } /* * sw_reg_start: start an I/O request on the requested swapdev * * => reqs are sorted by b_rawblkno (above) */ static void sw_reg_start(struct swapdev *sdp) { struct buf *bp; struct vnode *vp; UVMHIST_FUNC(__func__); UVMHIST_CALLED(pdhist); /* recursion control */ if ((sdp->swd_flags & SWF_BUSY) != 0) return; sdp->swd_flags |= SWF_BUSY; while (sdp->swd_active < sdp->swd_maxactive) { bp = bufq_get(sdp->swd_tab); if (bp == NULL) break; sdp->swd_active++; UVMHIST_LOG(pdhist, "sw_reg_start: bp %#jx vp %#jx blkno %#jx cnt %jx", (uintptr_t)bp, (uintptr_t)bp->b_vp, (uintptr_t)bp->b_blkno, bp->b_bcount); vp = bp->b_vp; KASSERT(bp->b_objlock == vp->v_interlock); if ((bp->b_flags & B_READ) == 0) { mutex_enter(vp->v_interlock); vp->v_numoutput++; mutex_exit(vp->v_interlock); } VOP_STRATEGY(vp, bp); } sdp->swd_flags &= ~SWF_BUSY; } /* * sw_reg_biodone: one of our i/o's has completed */ static void sw_reg_biodone(struct buf *bp) { workqueue_enqueue(sw_reg_workqueue, &bp->b_work, NULL); } /* * sw_reg_iodone: one of our i/o's has completed and needs post-i/o cleanup * * => note that we can recover the vndbuf struct by casting the buf ptr */ static void sw_reg_iodone(struct work *wk, void *dummy) { struct vndbuf *vbp = (void *)wk; struct vndxfer *vnx = vbp->vb_xfer; struct buf *pbp = vnx->vx_bp; /* parent buffer */ struct swapdev *sdp = vnx->vx_sdp; int s, resid, error; KASSERT(&vbp->vb_buf.b_work == wk); UVMHIST_FUNC(__func__); UVMHIST_CALLARGS(pdhist, " vbp=%#jx vp=%#jx blkno=%jx addr=%#jx", (uintptr_t)vbp, (uintptr_t)vbp->vb_buf.b_vp, vbp->vb_buf.b_blkno, (uintptr_t)vbp->vb_buf.b_data); UVMHIST_LOG(pdhist, " cnt=%jx resid=%jx", vbp->vb_buf.b_bcount, vbp->vb_buf.b_resid, 0, 0); /* * protect vbp at splbio and update. */ s = splbio(); resid = vbp->vb_buf.b_bcount - vbp->vb_buf.b_resid; pbp->b_resid -= resid; vnx->vx_pending--; if (vbp->vb_buf.b_error != 0) { /* pass error upward */ error = vbp->vb_buf.b_error ? vbp->vb_buf.b_error : EIO; UVMHIST_LOG(pdhist, " got error=%jd !", error, 0, 0, 0); vnx->vx_error = error; } /* * kill vbp structure */ buf_destroy(&vbp->vb_buf); pool_put(&vndbuf_pool, vbp); /* * wrap up this transaction if it has run to completion or, in * case of an error, when all auxiliary buffers have returned. */ if (vnx->vx_error != 0) { /* pass error upward */ error = vnx->vx_error; if ((vnx->vx_flags & VX_BUSY) == 0 && vnx->vx_pending == 0) { pbp->b_error = error; biodone(pbp); pool_put(&vndxfer_pool, vnx); } } else if (pbp->b_resid == 0) { KASSERT(vnx->vx_pending == 0); if ((vnx->vx_flags & VX_BUSY) == 0) { UVMHIST_LOG(pdhist, " iodone, pbp=%#jx error=%jd !", (uintptr_t)pbp, vnx->vx_error, 0, 0); biodone(pbp); pool_put(&vndxfer_pool, vnx); } } /* * done! start next swapdev I/O if one is pending */ sdp->swd_active--; sw_reg_start(sdp); splx(s); } /* * uvm_swap_alloc: allocate space on swap * * => allocation is done "round robin" down the priority list, as we * allocate in a priority we "rotate" the circle queue. * => space can be freed with uvm_swap_free * => we return the page slot number in /dev/drum (0 == invalid slot) * => we lock uvm_swap_data_lock * => XXXMRG: "LESSOK" INTERFACE NEEDED TO EXTENT SYSTEM */ int uvm_swap_alloc(int *nslots /* IN/OUT */, bool lessok) { struct swapdev *sdp; struct swappri *spp; UVMHIST_FUNC(__func__); UVMHIST_CALLED(pdhist); /* * no swap devices configured yet? definite failure. */ if (uvmexp.nswapdev < 1) return 0; /* * XXXJAK: BEGIN HACK * * blist_alloc() in subr_blist.c will panic if we try to allocate * too many slots. */ if (*nslots > BLIST_MAX_ALLOC) { if (__predict_false(lessok == false)) return 0; *nslots = BLIST_MAX_ALLOC; } /* XXXJAK: END HACK */ /* * lock data lock, convert slots into blocks, and enter loop */ mutex_enter(&uvm_swap_data_lock); ReTry: /* XXXMRG */ LIST_FOREACH(spp, &swap_priority, spi_swappri) { TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) { uint64_t result; /* if it's not enabled, then we can't swap from it */ if ((sdp->swd_flags & SWF_ENABLE) == 0) continue; if (sdp->swd_npginuse + *nslots > sdp->swd_npages) continue; result = blist_alloc(sdp->swd_blist, *nslots); if (result == BLIST_NONE) { continue; } KASSERT(result < sdp->swd_drumsize); /* * successful allocation! now rotate the tailq. */ TAILQ_REMOVE(&spp->spi_swapdev, sdp, swd_next); TAILQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next); sdp->swd_npginuse += *nslots; uvmexp.swpginuse += *nslots; mutex_exit(&uvm_swap_data_lock); /* done! return drum slot number */ UVMHIST_LOG(pdhist, "success! returning %jd slots starting at %jd", *nslots, result + sdp->swd_drumoffset, 0, 0); return (result + sdp->swd_drumoffset); } } /* XXXMRG: BEGIN HACK */ if (*nslots > 1 && lessok) { *nslots = 1; /* XXXMRG: ugh! blist should support this for us */ goto ReTry; } /* XXXMRG: END HACK */ mutex_exit(&uvm_swap_data_lock); return 0; } /* * uvm_swapisfull: return true if most of available swap is allocated * and in use. we don't count some small portion as it may be inaccessible * to us at any given moment, for example if there is lock contention or if * pages are busy. */ bool uvm_swapisfull(void) { int swpgonly; bool rv; if (uvmexp.swpages == 0) { return true; } mutex_enter(&uvm_swap_data_lock); KASSERT(uvmexp.swpgonly <= uvmexp.swpages); swpgonly = (int)((uint64_t)uvmexp.swpgonly * 100 / uvm_swapisfull_factor); rv = (swpgonly >= uvmexp.swpgavail); mutex_exit(&uvm_swap_data_lock); return (rv); } /* * uvm_swap_markbad: keep track of swap ranges where we've had i/o errors * * => we lock uvm_swap_data_lock */ void uvm_swap_markbad(int startslot, int nslots) { struct swapdev *sdp; UVMHIST_FUNC(__func__); UVMHIST_CALLED(pdhist); mutex_enter(&uvm_swap_data_lock); sdp = swapdrum_getsdp(startslot); KASSERT(sdp != NULL); /* * we just keep track of how many pages have been marked bad * in this device, to make everything add up in swap_off(). * we assume here that the range of slots will all be within * one swap device. */ KASSERT(uvmexp.swpgonly >= nslots); atomic_add_int(&uvmexp.swpgonly, -nslots); sdp->swd_npgbad += nslots; UVMHIST_LOG(pdhist, "now %jd bad", sdp->swd_npgbad, 0,0,0); mutex_exit(&uvm_swap_data_lock); } /* * uvm_swap_free: free swap slots * * => this can be all or part of an allocation made by uvm_swap_alloc * => we lock uvm_swap_data_lock */ void uvm_swap_free(int startslot, int nslots) { struct swapdev *sdp; UVMHIST_FUNC(__func__); UVMHIST_CALLARGS(pdhist, "freeing %jd slots starting at %jd", nslots, startslot, 0, 0); /* * ignore attempts to free the "bad" slot. */ if (startslot == SWSLOT_BAD) { return; } /* * convert drum slot offset back to sdp, free the blocks * in the extent, and return. must hold pri lock to do * lookup and access the extent. */ mutex_enter(&uvm_swap_data_lock); sdp = swapdrum_getsdp(startslot); KASSERT(uvmexp.nswapdev >= 1); KASSERT(sdp != NULL); KASSERT(sdp->swd_npginuse >= nslots); blist_free(sdp->swd_blist, startslot - sdp->swd_drumoffset, nslots); sdp->swd_npginuse -= nslots; uvmexp.swpginuse -= nslots; mutex_exit(&uvm_swap_data_lock); } /* * uvm_swap_put: put any number of pages into a contig place on swap * * => can be sync or async */ int uvm_swap_put(int swslot, struct vm_page **ppsp, int npages, int flags) { int error; error = uvm_swap_io(ppsp, swslot, npages, B_WRITE | ((flags & PGO_SYNCIO) ? 0 : B_ASYNC)); return error; } /* * uvm_swap_get: get a single page from swap * * => usually a sync op (from fault) */ int uvm_swap_get(struct vm_page *page, int swslot, int flags) { int error; atomic_inc_uint(&uvmexp.nswget); KASSERT(flags & PGO_SYNCIO); if (swslot == SWSLOT_BAD) { return EIO; } error = uvm_swap_io(&page, swslot, 1, B_READ | ((flags & PGO_SYNCIO) ? 0 : B_ASYNC)); if (error == 0) { /* * this page is no longer only in swap. */ KASSERT(uvmexp.swpgonly > 0); atomic_dec_uint(&uvmexp.swpgonly); } return error; } /* * uvm_swap_io: do an i/o operation to swap */ static int uvm_swap_io(struct vm_page **pps, int startslot, int npages, int flags) { daddr_t startblk; struct buf *bp; vaddr_t kva; int error, mapinflags; bool write, async, swap_encrypt; UVMHIST_FUNC(__func__); UVMHIST_CALLARGS(pdhist, "<- called, startslot=%jd, npages=%jd, flags=%jd", startslot, npages, flags, 0); write = (flags & B_READ) == 0; async = (flags & B_ASYNC) != 0; swap_encrypt = atomic_load_relaxed(&uvm_swap_encrypt); /* * allocate a buf for the i/o. */ KASSERT(curlwp != uvm.pagedaemon_lwp || (write && async)); bp = getiobuf(swapdev_vp, curlwp != uvm.pagedaemon_lwp); if (bp == NULL) { uvm_aio_aiodone_pages(pps, npages, true, ENOMEM); return ENOMEM; } /* * convert starting drum slot to block number */ startblk = btodb((uint64_t)startslot << PAGE_SHIFT); /* * first, map the pages into the kernel. */ mapinflags = !write ? UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_READ : UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_WRITE; if (write && swap_encrypt) /* need to encrypt in-place */ mapinflags |= UVMPAGER_MAPIN_READ; kva = uvm_pagermapin(pps, npages, mapinflags); /* * encrypt writes in place if requested */ if (write) do { struct swapdev *sdp; int i; /* * Get the swapdev so we can discriminate on the * encryption state. There may or may not be an * encryption key generated; we may or may not be asked * to encrypt swap. * * 1. NO KEY, NO ENCRYPTION: Nothing to do. * * 2. NO KEY, BUT ENCRYPTION: Generate a key, encrypt, * and mark the slots encrypted. * * 3. KEY, BUT NO ENCRYPTION: The slots may already be * marked encrypted from a past life. Mark them not * encrypted. * * 4. KEY, ENCRYPTION: Encrypt and mark the slots * encrypted. */ mutex_enter(&uvm_swap_data_lock); sdp = swapdrum_getsdp(startslot); if (!sdp->swd_encinit) { if (!swap_encrypt) { mutex_exit(&uvm_swap_data_lock); break; } uvm_swap_genkey(sdp); } KASSERT(sdp->swd_encinit); mutex_exit(&uvm_swap_data_lock); for (i = 0; i < npages; i++) { int s = startslot + i; KDASSERT(swapdrum_sdp_is(s, sdp)); KASSERT(s >= sdp->swd_drumoffset); s -= sdp->swd_drumoffset; KASSERT(s < sdp->swd_drumsize); if (swap_encrypt) { uvm_swap_encryptpage(sdp, (void *)(kva + (vsize_t)i*PAGE_SIZE), s); atomic_or_32(&sdp->swd_encmap[s/32], __BIT(s%32)); } else { atomic_and_32(&sdp->swd_encmap[s/32], ~__BIT(s%32)); } } } while (0); /* * fill in the bp/sbp. we currently route our i/o through * /dev/drum's vnode [swapdev_vp]. */ bp->b_cflags = BC_BUSY | BC_NOCACHE; bp->b_flags = (flags & (B_READ|B_ASYNC)); bp->b_proc = &proc0; /* XXX */ bp->b_vnbufs.le_next = NOLIST; bp->b_data = (void *)kva; bp->b_blkno = startblk; bp->b_bufsize = bp->b_bcount = npages << PAGE_SHIFT; /* * bump v_numoutput (counter of number of active outputs). */ if (write) { mutex_enter(swapdev_vp->v_interlock); swapdev_vp->v_numoutput++; mutex_exit(swapdev_vp->v_interlock); } /* * for async ops we must set up the iodone handler. */ if (async) { bp->b_iodone = uvm_aio_aiodone; UVMHIST_LOG(pdhist, "doing async!", 0, 0, 0, 0); if (curlwp == uvm.pagedaemon_lwp) BIO_SETPRIO(bp, BPRIO_TIMECRITICAL); else BIO_SETPRIO(bp, BPRIO_TIMELIMITED); } else { bp->b_iodone = NULL; BIO_SETPRIO(bp, BPRIO_TIMECRITICAL); } UVMHIST_LOG(pdhist, "about to start io: data = %#jx blkno = 0x%jx, bcount = %jd", (uintptr_t)bp->b_data, bp->b_blkno, bp->b_bcount, 0); /* * now we start the I/O, and if async, return. */ VOP_STRATEGY(swapdev_vp, bp); if (async) { /* * Reads are always synchronous; if this changes, we * need to add an asynchronous path for decryption. */ KASSERT(write); return 0; } /* * must be sync i/o. wait for it to finish */ error = biowait(bp); if (error) goto out; /* * decrypt reads in place if needed */ if (!write) do { struct swapdev *sdp; bool encinit; int i; /* * Get the sdp. Everything about it except the encinit * bit, saying whether the encryption key is * initialized or not, and the encrypted bit for each * page, is stable until all swap pages have been * released and the device is removed. */ mutex_enter(&uvm_swap_data_lock); sdp = swapdrum_getsdp(startslot); encinit = sdp->swd_encinit; mutex_exit(&uvm_swap_data_lock); if (!encinit) /* * If there's no encryption key, there's no way * any of these slots can be encrypted, so * nothing to do here. */ break; for (i = 0; i < npages; i++) { int s = startslot + i; KDASSERT(swapdrum_sdp_is(s, sdp)); KASSERT(s >= sdp->swd_drumoffset); s -= sdp->swd_drumoffset; KASSERT(s < sdp->swd_drumsize); if ((atomic_load_relaxed(&sdp->swd_encmap[s/32]) & __BIT(s%32)) == 0) continue; uvm_swap_decryptpage(sdp, (void *)(kva + (vsize_t)i*PAGE_SIZE), s); } } while (0); out: /* * kill the pager mapping */ uvm_pagermapout(kva, npages); /* * now dispose of the buf and we're done. */ if (write) { mutex_enter(swapdev_vp->v_interlock); vwakeup(bp); mutex_exit(swapdev_vp->v_interlock); } putiobuf(bp); UVMHIST_LOG(pdhist, "<- done (sync) error=%jd", error, 0, 0, 0); return (error); } /* * uvm_swap_genkey(sdp) * * Generate a key for swap encryption. */ static void uvm_swap_genkey(struct swapdev *sdp) { uint8_t key[32]; KASSERT(!sdp->swd_encinit); cprng_strong(kern_cprng, key, sizeof key, 0); aes_setenckey256(&sdp->swd_enckey, key); aes_setdeckey256(&sdp->swd_deckey, key); explicit_memset(key, 0, sizeof key); sdp->swd_encinit = true; } /* * uvm_swap_encryptpage(sdp, kva, slot) * * Encrypt one page of data at kva for the specified slot number * in the swap device. */ static void uvm_swap_encryptpage(struct swapdev *sdp, void *kva, int slot) { uint8_t preiv[16] __aligned(16) = {0}, iv[16] __aligned(16); /* iv := AES_k(le32enc(slot) || 0^96) */ le32enc(preiv, slot); aes_enc(&sdp->swd_enckey, (const void *)preiv, iv, AES_256_NROUNDS); /* *kva := AES-CBC_k(iv, *kva) */ aes_cbc_enc(&sdp->swd_enckey, kva, kva, PAGE_SIZE, iv, AES_256_NROUNDS); explicit_memset(&iv, 0, sizeof iv); } /* * uvm_swap_decryptpage(sdp, kva, slot) * * Decrypt one page of data at kva for the specified slot number * in the swap device. */ static void uvm_swap_decryptpage(struct swapdev *sdp, void *kva, int slot) { uint8_t preiv[16] __aligned(16) = {0}, iv[16] __aligned(16); /* iv := AES_k(le32enc(slot) || 0^96) */ le32enc(preiv, slot); aes_enc(&sdp->swd_enckey, (const void *)preiv, iv, AES_256_NROUNDS); /* *kva := AES-CBC^{-1}_k(iv, *kva) */ aes_cbc_dec(&sdp->swd_deckey, kva, kva, PAGE_SIZE, iv, AES_256_NROUNDS); explicit_memset(&iv, 0, sizeof iv); } SYSCTL_SETUP(sysctl_uvmswap_setup, "sysctl uvmswap setup") { sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_BOOL, "swap_encrypt", SYSCTL_DESCR("Encrypt data when swapped out to disk"), NULL, 0, &uvm_swap_encrypt, 0, CTL_VM, CTL_CREATE, CTL_EOL); }