/* $NetBSD: if_sip.c,v 1.149 2010/11/13 13:52:06 uebayasi Exp $ */ /*- * Copyright (c) 2001, 2002 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Jason R. Thorpe. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /*- * Copyright (c) 1999 Network Computer, Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of Network Computer, Inc. nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY NETWORK COMPUTER, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * Device driver for the Silicon Integrated Systems SiS 900, * SiS 7016 10/100, National Semiconductor DP83815 10/100, and * National Semiconductor DP83820 10/100/1000 PCI Ethernet * controllers. * * Originally written to support the SiS 900 by Jason R. Thorpe for * Network Computer, Inc. * * TODO: * * - Reduce the Rx interrupt load. */ #include __KERNEL_RCSID(0, "$NetBSD: if_sip.c,v 1.149 2010/11/13 13:52:06 uebayasi Exp $"); #include "rnd.h" #include #include #include #include #include #include #include #include #include #include #include #if NRND > 0 #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * Transmit descriptor list size. This is arbitrary, but allocate * enough descriptors for 128 pending transmissions, and 8 segments * per packet (64 for DP83820 for jumbo frames). * * This MUST work out to a power of 2. */ #define GSIP_NTXSEGS_ALLOC 16 #define SIP_NTXSEGS_ALLOC 8 #define SIP_TXQUEUELEN 256 #define MAX_SIP_NTXDESC \ (SIP_TXQUEUELEN * MAX(SIP_NTXSEGS_ALLOC, GSIP_NTXSEGS_ALLOC)) /* * Receive descriptor list size. We have one Rx buffer per incoming * packet, so this logic is a little simpler. * * Actually, on the DP83820, we allow the packet to consume more than * one buffer, in order to support jumbo Ethernet frames. In that * case, a packet may consume up to 5 buffers (assuming a 2048 byte * mbuf cluster). 256 receive buffers is only 51 maximum size packets, * so we'd better be quick about handling receive interrupts. */ #define GSIP_NRXDESC 256 #define SIP_NRXDESC 128 #define MAX_SIP_NRXDESC MAX(GSIP_NRXDESC, SIP_NRXDESC) /* * Control structures are DMA'd to the SiS900 chip. We allocate them in * a single clump that maps to a single DMA segment to make several things * easier. */ struct sip_control_data { /* * The transmit descriptors. */ struct sip_desc scd_txdescs[MAX_SIP_NTXDESC]; /* * The receive descriptors. */ struct sip_desc scd_rxdescs[MAX_SIP_NRXDESC]; }; #define SIP_CDOFF(x) offsetof(struct sip_control_data, x) #define SIP_CDTXOFF(x) SIP_CDOFF(scd_txdescs[(x)]) #define SIP_CDRXOFF(x) SIP_CDOFF(scd_rxdescs[(x)]) /* * Software state for transmit jobs. */ struct sip_txsoft { struct mbuf *txs_mbuf; /* head of our mbuf chain */ bus_dmamap_t txs_dmamap; /* our DMA map */ int txs_firstdesc; /* first descriptor in packet */ int txs_lastdesc; /* last descriptor in packet */ SIMPLEQ_ENTRY(sip_txsoft) txs_q; }; SIMPLEQ_HEAD(sip_txsq, sip_txsoft); /* * Software state for receive jobs. */ struct sip_rxsoft { struct mbuf *rxs_mbuf; /* head of our mbuf chain */ bus_dmamap_t rxs_dmamap; /* our DMA map */ }; enum sip_attach_stage { SIP_ATTACH_FIN = 0 , SIP_ATTACH_CREATE_RXMAP , SIP_ATTACH_CREATE_TXMAP , SIP_ATTACH_LOAD_MAP , SIP_ATTACH_CREATE_MAP , SIP_ATTACH_MAP_MEM , SIP_ATTACH_ALLOC_MEM , SIP_ATTACH_INTR , SIP_ATTACH_MAP }; /* * Software state per device. */ struct sip_softc { device_t sc_dev; /* generic device information */ device_suspensor_t sc_suspensor; pmf_qual_t sc_qual; bus_space_tag_t sc_st; /* bus space tag */ bus_space_handle_t sc_sh; /* bus space handle */ bus_size_t sc_sz; /* bus space size */ bus_dma_tag_t sc_dmat; /* bus DMA tag */ pci_chipset_tag_t sc_pc; bus_dma_segment_t sc_seg; struct ethercom sc_ethercom; /* ethernet common data */ const struct sip_product *sc_model; /* which model are we? */ int sc_gigabit; /* 1: 83820, 0: other */ int sc_rev; /* chip revision */ void *sc_ih; /* interrupt cookie */ struct mii_data sc_mii; /* MII/media information */ callout_t sc_tick_ch; /* tick callout */ bus_dmamap_t sc_cddmamap; /* control data DMA map */ #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr /* * Software state for transmit and receive descriptors. */ struct sip_txsoft sc_txsoft[SIP_TXQUEUELEN]; struct sip_rxsoft sc_rxsoft[MAX_SIP_NRXDESC]; /* * Control data structures. */ struct sip_control_data *sc_control_data; #define sc_txdescs sc_control_data->scd_txdescs #define sc_rxdescs sc_control_data->scd_rxdescs #ifdef SIP_EVENT_COUNTERS /* * Event counters. */ struct evcnt sc_ev_txsstall; /* Tx stalled due to no txs */ struct evcnt sc_ev_txdstall; /* Tx stalled due to no txd */ struct evcnt sc_ev_txforceintr; /* Tx interrupts forced */ struct evcnt sc_ev_txdintr; /* Tx descriptor interrupts */ struct evcnt sc_ev_txiintr; /* Tx idle interrupts */ struct evcnt sc_ev_rxintr; /* Rx interrupts */ struct evcnt sc_ev_hiberr; /* HIBERR interrupts */ struct evcnt sc_ev_rxpause; /* PAUSE received */ /* DP83820 only */ struct evcnt sc_ev_txpause; /* PAUSE transmitted */ struct evcnt sc_ev_rxipsum; /* IP checksums checked in-bound */ struct evcnt sc_ev_rxtcpsum; /* TCP checksums checked in-bound */ struct evcnt sc_ev_rxudpsum; /* UDP checksums checked in-boudn */ struct evcnt sc_ev_txipsum; /* IP checksums comp. out-bound */ struct evcnt sc_ev_txtcpsum; /* TCP checksums comp. out-bound */ struct evcnt sc_ev_txudpsum; /* UDP checksums comp. out-bound */ #endif /* SIP_EVENT_COUNTERS */ u_int32_t sc_txcfg; /* prototype TXCFG register */ u_int32_t sc_rxcfg; /* prototype RXCFG register */ u_int32_t sc_imr; /* prototype IMR register */ u_int32_t sc_rfcr; /* prototype RFCR register */ u_int32_t sc_cfg; /* prototype CFG register */ u_int32_t sc_gpior; /* prototype GPIOR register */ u_int32_t sc_tx_fill_thresh; /* transmit fill threshold */ u_int32_t sc_tx_drain_thresh; /* transmit drain threshold */ u_int32_t sc_rx_drain_thresh; /* receive drain threshold */ int sc_flowflags; /* 802.3x flow control flags */ int sc_rx_flow_thresh; /* Rx FIFO threshold for flow control */ int sc_paused; /* paused indication */ int sc_txfree; /* number of free Tx descriptors */ int sc_txnext; /* next ready Tx descriptor */ int sc_txwin; /* Tx descriptors since last intr */ struct sip_txsq sc_txfreeq; /* free Tx descsofts */ struct sip_txsq sc_txdirtyq; /* dirty Tx descsofts */ /* values of interface state at last init */ struct { /* if_capenable */ uint64_t if_capenable; /* ec_capenable */ int ec_capenable; /* VLAN_ATTACHED */ int is_vlan; } sc_prev; short sc_if_flags; int sc_rxptr; /* next ready Rx descriptor/descsoft */ int sc_rxdiscard; int sc_rxlen; struct mbuf *sc_rxhead; struct mbuf *sc_rxtail; struct mbuf **sc_rxtailp; int sc_ntxdesc; int sc_ntxdesc_mask; int sc_nrxdesc_mask; const struct sip_parm { const struct sip_regs { int r_rxcfg; int r_txcfg; } p_regs; const struct sip_bits { uint32_t b_txcfg_mxdma_8; uint32_t b_txcfg_mxdma_16; uint32_t b_txcfg_mxdma_32; uint32_t b_txcfg_mxdma_64; uint32_t b_txcfg_mxdma_128; uint32_t b_txcfg_mxdma_256; uint32_t b_txcfg_mxdma_512; uint32_t b_txcfg_flth_mask; uint32_t b_txcfg_drth_mask; uint32_t b_rxcfg_mxdma_8; uint32_t b_rxcfg_mxdma_16; uint32_t b_rxcfg_mxdma_32; uint32_t b_rxcfg_mxdma_64; uint32_t b_rxcfg_mxdma_128; uint32_t b_rxcfg_mxdma_256; uint32_t b_rxcfg_mxdma_512; uint32_t b_isr_txrcmp; uint32_t b_isr_rxrcmp; uint32_t b_isr_dperr; uint32_t b_isr_sserr; uint32_t b_isr_rmabt; uint32_t b_isr_rtabt; uint32_t b_cmdsts_size_mask; } p_bits; int p_filtmem; int p_rxbuf_len; bus_size_t p_tx_dmamap_size; int p_ntxsegs; int p_ntxsegs_alloc; int p_nrxdesc; } *sc_parm; void (*sc_rxintr)(struct sip_softc *); #if NRND > 0 rndsource_element_t rnd_source; /* random source */ #endif }; #define sc_bits sc_parm->p_bits #define sc_regs sc_parm->p_regs static const struct sip_parm sip_parm = { .p_filtmem = OTHER_RFCR_NS_RFADDR_FILTMEM , .p_rxbuf_len = MCLBYTES - 1 /* field width */ , .p_tx_dmamap_size = MCLBYTES , .p_ntxsegs = 16 , .p_ntxsegs_alloc = SIP_NTXSEGS_ALLOC , .p_nrxdesc = SIP_NRXDESC , .p_bits = { .b_txcfg_mxdma_8 = 0x00200000 /* 8 bytes */ , .b_txcfg_mxdma_16 = 0x00300000 /* 16 bytes */ , .b_txcfg_mxdma_32 = 0x00400000 /* 32 bytes */ , .b_txcfg_mxdma_64 = 0x00500000 /* 64 bytes */ , .b_txcfg_mxdma_128 = 0x00600000 /* 128 bytes */ , .b_txcfg_mxdma_256 = 0x00700000 /* 256 bytes */ , .b_txcfg_mxdma_512 = 0x00000000 /* 512 bytes */ , .b_txcfg_flth_mask = 0x00003f00 /* Tx fill threshold */ , .b_txcfg_drth_mask = 0x0000003f /* Tx drain threshold */ , .b_rxcfg_mxdma_8 = 0x00200000 /* 8 bytes */ , .b_rxcfg_mxdma_16 = 0x00300000 /* 16 bytes */ , .b_rxcfg_mxdma_32 = 0x00400000 /* 32 bytes */ , .b_rxcfg_mxdma_64 = 0x00500000 /* 64 bytes */ , .b_rxcfg_mxdma_128 = 0x00600000 /* 128 bytes */ , .b_rxcfg_mxdma_256 = 0x00700000 /* 256 bytes */ , .b_rxcfg_mxdma_512 = 0x00000000 /* 512 bytes */ , .b_isr_txrcmp = 0x02000000 /* transmit reset complete */ , .b_isr_rxrcmp = 0x01000000 /* receive reset complete */ , .b_isr_dperr = 0x00800000 /* detected parity error */ , .b_isr_sserr = 0x00400000 /* signalled system error */ , .b_isr_rmabt = 0x00200000 /* received master abort */ , .b_isr_rtabt = 0x00100000 /* received target abort */ , .b_cmdsts_size_mask = OTHER_CMDSTS_SIZE_MASK } , .p_regs = { .r_rxcfg = OTHER_SIP_RXCFG, .r_txcfg = OTHER_SIP_TXCFG } }, gsip_parm = { .p_filtmem = DP83820_RFCR_NS_RFADDR_FILTMEM , .p_rxbuf_len = MCLBYTES - 8 , .p_tx_dmamap_size = ETHER_MAX_LEN_JUMBO , .p_ntxsegs = 64 , .p_ntxsegs_alloc = GSIP_NTXSEGS_ALLOC , .p_nrxdesc = GSIP_NRXDESC , .p_bits = { .b_txcfg_mxdma_8 = 0x00100000 /* 8 bytes */ , .b_txcfg_mxdma_16 = 0x00200000 /* 16 bytes */ , .b_txcfg_mxdma_32 = 0x00300000 /* 32 bytes */ , .b_txcfg_mxdma_64 = 0x00400000 /* 64 bytes */ , .b_txcfg_mxdma_128 = 0x00500000 /* 128 bytes */ , .b_txcfg_mxdma_256 = 0x00600000 /* 256 bytes */ , .b_txcfg_mxdma_512 = 0x00700000 /* 512 bytes */ , .b_txcfg_flth_mask = 0x0000ff00 /* Fx fill threshold */ , .b_txcfg_drth_mask = 0x000000ff /* Tx drain threshold */ , .b_rxcfg_mxdma_8 = 0x00100000 /* 8 bytes */ , .b_rxcfg_mxdma_16 = 0x00200000 /* 16 bytes */ , .b_rxcfg_mxdma_32 = 0x00300000 /* 32 bytes */ , .b_rxcfg_mxdma_64 = 0x00400000 /* 64 bytes */ , .b_rxcfg_mxdma_128 = 0x00500000 /* 128 bytes */ , .b_rxcfg_mxdma_256 = 0x00600000 /* 256 bytes */ , .b_rxcfg_mxdma_512 = 0x00700000 /* 512 bytes */ , .b_isr_txrcmp = 0x00400000 /* transmit reset complete */ , .b_isr_rxrcmp = 0x00200000 /* receive reset complete */ , .b_isr_dperr = 0x00100000 /* detected parity error */ , .b_isr_sserr = 0x00080000 /* signalled system error */ , .b_isr_rmabt = 0x00040000 /* received master abort */ , .b_isr_rtabt = 0x00020000 /* received target abort */ , .b_cmdsts_size_mask = DP83820_CMDSTS_SIZE_MASK } , .p_regs = { .r_rxcfg = DP83820_SIP_RXCFG, .r_txcfg = DP83820_SIP_TXCFG } }; static inline int sip_nexttx(const struct sip_softc *sc, int x) { return (x + 1) & sc->sc_ntxdesc_mask; } static inline int sip_nextrx(const struct sip_softc *sc, int x) { return (x + 1) & sc->sc_nrxdesc_mask; } /* 83820 only */ static inline void sip_rxchain_reset(struct sip_softc *sc) { sc->sc_rxtailp = &sc->sc_rxhead; *sc->sc_rxtailp = NULL; sc->sc_rxlen = 0; } /* 83820 only */ static inline void sip_rxchain_link(struct sip_softc *sc, struct mbuf *m) { *sc->sc_rxtailp = sc->sc_rxtail = m; sc->sc_rxtailp = &m->m_next; } #ifdef SIP_EVENT_COUNTERS #define SIP_EVCNT_INCR(ev) (ev)->ev_count++ #else #define SIP_EVCNT_INCR(ev) /* nothing */ #endif #define SIP_CDTXADDR(sc, x) ((sc)->sc_cddma + SIP_CDTXOFF((x))) #define SIP_CDRXADDR(sc, x) ((sc)->sc_cddma + SIP_CDRXOFF((x))) static inline void sip_cdtxsync(struct sip_softc *sc, const int x0, const int n0, const int ops) { int x, n; x = x0; n = n0; /* If it will wrap around, sync to the end of the ring. */ if (x + n > sc->sc_ntxdesc) { bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap, SIP_CDTXOFF(x), sizeof(struct sip_desc) * (sc->sc_ntxdesc - x), ops); n -= (sc->sc_ntxdesc - x); x = 0; } /* Now sync whatever is left. */ bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap, SIP_CDTXOFF(x), sizeof(struct sip_desc) * n, ops); } static inline void sip_cdrxsync(struct sip_softc *sc, int x, int ops) { bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap, SIP_CDRXOFF(x), sizeof(struct sip_desc), ops); } #if 0 #ifdef DP83820 u_int32_t sipd_bufptr; /* pointer to DMA segment */ u_int32_t sipd_cmdsts; /* command/status word */ #else u_int32_t sipd_cmdsts; /* command/status word */ u_int32_t sipd_bufptr; /* pointer to DMA segment */ #endif /* DP83820 */ #endif /* 0 */ static inline volatile uint32_t * sipd_cmdsts(struct sip_softc *sc, struct sip_desc *sipd) { return &sipd->sipd_cbs[(sc->sc_gigabit) ? 1 : 0]; } static inline volatile uint32_t * sipd_bufptr(struct sip_softc *sc, struct sip_desc *sipd) { return &sipd->sipd_cbs[(sc->sc_gigabit) ? 0 : 1]; } static inline void sip_init_rxdesc(struct sip_softc *sc, int x) { struct sip_rxsoft *rxs = &sc->sc_rxsoft[x]; struct sip_desc *sipd = &sc->sc_rxdescs[x]; sipd->sipd_link = htole32(SIP_CDRXADDR(sc, sip_nextrx(sc, x))); *sipd_bufptr(sc, sipd) = htole32(rxs->rxs_dmamap->dm_segs[0].ds_addr); *sipd_cmdsts(sc, sipd) = htole32(CMDSTS_INTR | (sc->sc_parm->p_rxbuf_len & sc->sc_bits.b_cmdsts_size_mask)); sipd->sipd_extsts = 0; sip_cdrxsync(sc, x, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); } #define SIP_CHIP_VERS(sc, v, p, r) \ ((sc)->sc_model->sip_vendor == (v) && \ (sc)->sc_model->sip_product == (p) && \ (sc)->sc_rev == (r)) #define SIP_CHIP_MODEL(sc, v, p) \ ((sc)->sc_model->sip_vendor == (v) && \ (sc)->sc_model->sip_product == (p)) #define SIP_SIS900_REV(sc, rev) \ SIP_CHIP_VERS((sc), PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900, (rev)) #define SIP_TIMEOUT 1000 static int sip_ifflags_cb(struct ethercom *); static void sipcom_start(struct ifnet *); static void sipcom_watchdog(struct ifnet *); static int sipcom_ioctl(struct ifnet *, u_long, void *); static int sipcom_init(struct ifnet *); static void sipcom_stop(struct ifnet *, int); static bool sipcom_reset(struct sip_softc *); static void sipcom_rxdrain(struct sip_softc *); static int sipcom_add_rxbuf(struct sip_softc *, int); static void sipcom_read_eeprom(struct sip_softc *, int, int, u_int16_t *); static void sipcom_tick(void *); static void sipcom_sis900_set_filter(struct sip_softc *); static void sipcom_dp83815_set_filter(struct sip_softc *); static void sipcom_dp83820_read_macaddr(struct sip_softc *, const struct pci_attach_args *, u_int8_t *); static void sipcom_sis900_eeprom_delay(struct sip_softc *sc); static void sipcom_sis900_read_macaddr(struct sip_softc *, const struct pci_attach_args *, u_int8_t *); static void sipcom_dp83815_read_macaddr(struct sip_softc *, const struct pci_attach_args *, u_int8_t *); static int sipcom_intr(void *); static void sipcom_txintr(struct sip_softc *); static void sip_rxintr(struct sip_softc *); static void gsip_rxintr(struct sip_softc *); static int sipcom_dp83820_mii_readreg(device_t, int, int); static void sipcom_dp83820_mii_writereg(device_t, int, int, int); static void sipcom_dp83820_mii_statchg(device_t); static int sipcom_sis900_mii_readreg(device_t, int, int); static void sipcom_sis900_mii_writereg(device_t, int, int, int); static void sipcom_sis900_mii_statchg(device_t); static int sipcom_dp83815_mii_readreg(device_t, int, int); static void sipcom_dp83815_mii_writereg(device_t, int, int, int); static void sipcom_dp83815_mii_statchg(device_t); static void sipcom_mediastatus(struct ifnet *, struct ifmediareq *); static int sipcom_match(device_t, cfdata_t, void *); static void sipcom_attach(device_t, device_t, void *); static void sipcom_do_detach(device_t, enum sip_attach_stage); static int sipcom_detach(device_t, int); static bool sipcom_resume(device_t, const pmf_qual_t *); static bool sipcom_suspend(device_t, const pmf_qual_t *); int gsip_copy_small = 0; int sip_copy_small = 0; CFATTACH_DECL3_NEW(gsip, sizeof(struct sip_softc), sipcom_match, sipcom_attach, sipcom_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN); CFATTACH_DECL3_NEW(sip, sizeof(struct sip_softc), sipcom_match, sipcom_attach, sipcom_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN); /* * Descriptions of the variants of the SiS900. */ struct sip_variant { int (*sipv_mii_readreg)(device_t, int, int); void (*sipv_mii_writereg)(device_t, int, int, int); void (*sipv_mii_statchg)(device_t); void (*sipv_set_filter)(struct sip_softc *); void (*sipv_read_macaddr)(struct sip_softc *, const struct pci_attach_args *, u_int8_t *); }; static u_int32_t sipcom_mii_bitbang_read(device_t); static void sipcom_mii_bitbang_write(device_t, u_int32_t); static const struct mii_bitbang_ops sipcom_mii_bitbang_ops = { sipcom_mii_bitbang_read, sipcom_mii_bitbang_write, { EROMAR_MDIO, /* MII_BIT_MDO */ EROMAR_MDIO, /* MII_BIT_MDI */ EROMAR_MDC, /* MII_BIT_MDC */ EROMAR_MDDIR, /* MII_BIT_DIR_HOST_PHY */ 0, /* MII_BIT_DIR_PHY_HOST */ } }; static const struct sip_variant sipcom_variant_dp83820 = { sipcom_dp83820_mii_readreg, sipcom_dp83820_mii_writereg, sipcom_dp83820_mii_statchg, sipcom_dp83815_set_filter, sipcom_dp83820_read_macaddr, }; static const struct sip_variant sipcom_variant_sis900 = { sipcom_sis900_mii_readreg, sipcom_sis900_mii_writereg, sipcom_sis900_mii_statchg, sipcom_sis900_set_filter, sipcom_sis900_read_macaddr, }; static const struct sip_variant sipcom_variant_dp83815 = { sipcom_dp83815_mii_readreg, sipcom_dp83815_mii_writereg, sipcom_dp83815_mii_statchg, sipcom_dp83815_set_filter, sipcom_dp83815_read_macaddr, }; /* * Devices supported by this driver. */ static const struct sip_product { pci_vendor_id_t sip_vendor; pci_product_id_t sip_product; const char *sip_name; const struct sip_variant *sip_variant; int sip_gigabit; } sipcom_products[] = { { PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83820, "NatSemi DP83820 Gigabit Ethernet", &sipcom_variant_dp83820, 1 }, { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900, "SiS 900 10/100 Ethernet", &sipcom_variant_sis900, 0 }, { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_7016, "SiS 7016 10/100 Ethernet", &sipcom_variant_sis900, 0 }, { PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815, "NatSemi DP83815 10/100 Ethernet", &sipcom_variant_dp83815, 0 }, { 0, 0, NULL, NULL, 0 }, }; static const struct sip_product * sipcom_lookup(const struct pci_attach_args *pa, bool gigabit) { const struct sip_product *sip; for (sip = sipcom_products; sip->sip_name != NULL; sip++) { if (PCI_VENDOR(pa->pa_id) == sip->sip_vendor && PCI_PRODUCT(pa->pa_id) == sip->sip_product && sip->sip_gigabit == gigabit) return sip; } return NULL; } /* * I really hate stupid hardware vendors. There's a bit in the EEPROM * which indicates if the card can do 64-bit data transfers. Unfortunately, * several vendors of 32-bit cards fail to clear this bit in the EEPROM, * which means we try to use 64-bit data transfers on those cards if we * happen to be plugged into a 32-bit slot. * * What we do is use this table of cards known to be 64-bit cards. If * you have a 64-bit card who's subsystem ID is not listed in this table, * send the output of "pcictl dump ..." of the device to me so that your * card will use the 64-bit data path when plugged into a 64-bit slot. * * -- Jason R. Thorpe * June 30, 2002 */ static int sipcom_check_64bit(const struct pci_attach_args *pa) { static const struct { pci_vendor_id_t c64_vendor; pci_product_id_t c64_product; } card64[] = { /* Asante GigaNIX */ { 0x128a, 0x0002 }, /* Accton EN1407-T, Planex GN-1000TE */ { 0x1113, 0x1407 }, /* Netgear GA-621 */ { 0x1385, 0x621a }, /* SMC EZ Card */ { 0x10b8, 0x9462 }, { 0, 0} }; pcireg_t subsys; int i; subsys = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG); for (i = 0; card64[i].c64_vendor != 0; i++) { if (PCI_VENDOR(subsys) == card64[i].c64_vendor && PCI_PRODUCT(subsys) == card64[i].c64_product) return (1); } return (0); } static int sipcom_match(device_t parent, cfdata_t cf, void *aux) { struct pci_attach_args *pa = aux; if (sipcom_lookup(pa, strcmp(cf->cf_name, "gsip") == 0) != NULL) return 1; return 0; } static void sipcom_dp83820_attach(struct sip_softc *sc, struct pci_attach_args *pa) { u_int32_t reg; int i; /* * Cause the chip to load configuration data from the EEPROM. */ bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_PTSCR, PTSCR_EELOAD_EN); for (i = 0; i < 10000; i++) { delay(10); if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) & PTSCR_EELOAD_EN) == 0) break; } if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) & PTSCR_EELOAD_EN) { printf("%s: timeout loading configuration from EEPROM\n", device_xname(sc->sc_dev)); return; } sc->sc_gpior = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_GPIOR); reg = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG); if (reg & CFG_PCI64_DET) { printf("%s: 64-bit PCI slot detected", device_xname(sc->sc_dev)); /* * Check to see if this card is 64-bit. If so, enable 64-bit * data transfers. * * We can't use the DATA64_EN bit in the EEPROM, because * vendors of 32-bit cards fail to clear that bit in many * cases (yet the card still detects that it's in a 64-bit * slot; go figure). */ if (sipcom_check_64bit(pa)) { sc->sc_cfg |= CFG_DATA64_EN; printf(", using 64-bit data transfers"); } printf("\n"); } /* * XXX Need some PCI flags indicating support for * XXX 64-bit addressing. */ #if 0 if (reg & CFG_M64ADDR) sc->sc_cfg |= CFG_M64ADDR; if (reg & CFG_T64ADDR) sc->sc_cfg |= CFG_T64ADDR; #endif if (reg & (CFG_TBI_EN|CFG_EXT_125)) { const char *sep = ""; printf("%s: using ", device_xname(sc->sc_dev)); if (reg & CFG_EXT_125) { sc->sc_cfg |= CFG_EXT_125; printf("%s125MHz clock", sep); sep = ", "; } if (reg & CFG_TBI_EN) { sc->sc_cfg |= CFG_TBI_EN; printf("%sten-bit interface", sep); sep = ", "; } printf("\n"); } if ((pa->pa_flags & PCI_FLAGS_MRM_OKAY) == 0 || (reg & CFG_MRM_DIS) != 0) sc->sc_cfg |= CFG_MRM_DIS; if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0 || (reg & CFG_MWI_DIS) != 0) sc->sc_cfg |= CFG_MWI_DIS; /* * Use the extended descriptor format on the DP83820. This * gives us an interface to VLAN tagging and IPv4/TCP/UDP * checksumming. */ sc->sc_cfg |= CFG_EXTSTS_EN; } static int sipcom_detach(device_t self, int flags) { int s; s = splnet(); sipcom_do_detach(self, SIP_ATTACH_FIN); splx(s); return 0; } static void sipcom_do_detach(device_t self, enum sip_attach_stage stage) { int i; struct sip_softc *sc = device_private(self); struct ifnet *ifp = &sc->sc_ethercom.ec_if; /* * Free any resources we've allocated during attach. * Do this in reverse order and fall through. */ switch (stage) { case SIP_ATTACH_FIN: sipcom_stop(ifp, 1); pmf_device_deregister(self); #ifdef SIP_EVENT_COUNTERS /* * Attach event counters. */ evcnt_detach(&sc->sc_ev_txforceintr); evcnt_detach(&sc->sc_ev_txdstall); evcnt_detach(&sc->sc_ev_txsstall); evcnt_detach(&sc->sc_ev_hiberr); evcnt_detach(&sc->sc_ev_rxintr); evcnt_detach(&sc->sc_ev_txiintr); evcnt_detach(&sc->sc_ev_txdintr); if (!sc->sc_gigabit) { evcnt_detach(&sc->sc_ev_rxpause); } else { evcnt_detach(&sc->sc_ev_txudpsum); evcnt_detach(&sc->sc_ev_txtcpsum); evcnt_detach(&sc->sc_ev_txipsum); evcnt_detach(&sc->sc_ev_rxudpsum); evcnt_detach(&sc->sc_ev_rxtcpsum); evcnt_detach(&sc->sc_ev_rxipsum); evcnt_detach(&sc->sc_ev_txpause); evcnt_detach(&sc->sc_ev_rxpause); } #endif /* SIP_EVENT_COUNTERS */ #if NRND > 0 rnd_detach_source(&sc->rnd_source); #endif ether_ifdetach(ifp); if_detach(ifp); mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY); /*FALLTHROUGH*/ case SIP_ATTACH_CREATE_RXMAP: for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) { if (sc->sc_rxsoft[i].rxs_dmamap != NULL) bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxsoft[i].rxs_dmamap); } /*FALLTHROUGH*/ case SIP_ATTACH_CREATE_TXMAP: for (i = 0; i < SIP_TXQUEUELEN; i++) { if (sc->sc_txsoft[i].txs_dmamap != NULL) bus_dmamap_destroy(sc->sc_dmat, sc->sc_txsoft[i].txs_dmamap); } /*FALLTHROUGH*/ case SIP_ATTACH_LOAD_MAP: bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap); /*FALLTHROUGH*/ case SIP_ATTACH_CREATE_MAP: bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap); /*FALLTHROUGH*/ case SIP_ATTACH_MAP_MEM: bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data, sizeof(struct sip_control_data)); /*FALLTHROUGH*/ case SIP_ATTACH_ALLOC_MEM: bus_dmamem_free(sc->sc_dmat, &sc->sc_seg, 1); /* FALLTHROUGH*/ case SIP_ATTACH_INTR: pci_intr_disestablish(sc->sc_pc, sc->sc_ih); /* FALLTHROUGH*/ case SIP_ATTACH_MAP: bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz); break; default: break; } return; } static bool sipcom_resume(device_t self, const pmf_qual_t *qual) { struct sip_softc *sc = device_private(self); return sipcom_reset(sc); } static bool sipcom_suspend(device_t self, const pmf_qual_t *qual) { struct sip_softc *sc = device_private(self); sipcom_rxdrain(sc); return true; } static void sipcom_attach(device_t parent, device_t self, void *aux) { struct sip_softc *sc = device_private(self); struct pci_attach_args *pa = aux; struct ifnet *ifp = &sc->sc_ethercom.ec_if; pci_chipset_tag_t pc = pa->pa_pc; pci_intr_handle_t ih; const char *intrstr = NULL; bus_space_tag_t iot, memt; bus_space_handle_t ioh, memh; bus_size_t iosz, memsz; int ioh_valid, memh_valid; int i, rseg, error; const struct sip_product *sip; u_int8_t enaddr[ETHER_ADDR_LEN]; pcireg_t csr; pcireg_t memtype; bus_size_t tx_dmamap_size; int ntxsegs_alloc; cfdata_t cf = device_cfdata(self); callout_init(&sc->sc_tick_ch, 0); sip = sipcom_lookup(pa, strcmp(cf->cf_name, "gsip") == 0); if (sip == NULL) { printf("\n"); panic("%s: impossible", __func__); } sc->sc_dev = self; sc->sc_gigabit = sip->sip_gigabit; pmf_self_suspensor_init(self, &sc->sc_suspensor, &sc->sc_qual); sc->sc_pc = pc; if (sc->sc_gigabit) { sc->sc_rxintr = gsip_rxintr; sc->sc_parm = &gsip_parm; } else { sc->sc_rxintr = sip_rxintr; sc->sc_parm = &sip_parm; } tx_dmamap_size = sc->sc_parm->p_tx_dmamap_size; ntxsegs_alloc = sc->sc_parm->p_ntxsegs_alloc; sc->sc_ntxdesc = SIP_TXQUEUELEN * ntxsegs_alloc; sc->sc_ntxdesc_mask = sc->sc_ntxdesc - 1; sc->sc_nrxdesc_mask = sc->sc_parm->p_nrxdesc - 1; sc->sc_rev = PCI_REVISION(pa->pa_class); printf(": %s, rev %#02x\n", sip->sip_name, sc->sc_rev); sc->sc_model = sip; /* * XXX Work-around broken PXE firmware on some boards. * * The DP83815 shares an address decoder with the MEM BAR * and the ROM BAR. Make sure the ROM BAR is disabled, * so that memory mapped access works. */ pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM, pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM) & ~PCI_MAPREG_ROM_ENABLE); /* * Map the device. */ ioh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGIOA, PCI_MAPREG_TYPE_IO, 0, &iot, &ioh, NULL, &iosz) == 0); if (sc->sc_gigabit) { memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, SIP_PCI_CFGMA); switch (memtype) { case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT: case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT: memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA, memtype, 0, &memt, &memh, NULL, &memsz) == 0); break; default: memh_valid = 0; } } else { memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA, PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0, &memt, &memh, NULL, &memsz) == 0); } if (memh_valid) { sc->sc_st = memt; sc->sc_sh = memh; sc->sc_sz = memsz; } else if (ioh_valid) { sc->sc_st = iot; sc->sc_sh = ioh; sc->sc_sz = iosz; } else { printf("%s: unable to map device registers\n", device_xname(sc->sc_dev)); return; } sc->sc_dmat = pa->pa_dmat; /* * Make sure bus mastering is enabled. Also make sure * Write/Invalidate is enabled if we're allowed to use it. */ csr = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG); if (pa->pa_flags & PCI_FLAGS_MWI_OKAY) csr |= PCI_COMMAND_INVALIDATE_ENABLE; pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, csr | PCI_COMMAND_MASTER_ENABLE); /* power up chip */ error = pci_activate(pa->pa_pc, pa->pa_tag, self, pci_activate_null); if (error != 0 && error != EOPNOTSUPP) { aprint_error_dev(sc->sc_dev, "cannot activate %d\n", error); return; } /* * Map and establish our interrupt. */ if (pci_intr_map(pa, &ih)) { aprint_error_dev(sc->sc_dev, "unable to map interrupt\n"); return; } intrstr = pci_intr_string(pc, ih); sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, sipcom_intr, sc); if (sc->sc_ih == NULL) { aprint_error_dev(sc->sc_dev, "unable to establish interrupt"); if (intrstr != NULL) aprint_error(" at %s", intrstr); aprint_error("\n"); return sipcom_do_detach(self, SIP_ATTACH_MAP); } aprint_normal_dev(sc->sc_dev, "interrupting at %s\n", intrstr); SIMPLEQ_INIT(&sc->sc_txfreeq); SIMPLEQ_INIT(&sc->sc_txdirtyq); /* * Allocate the control data structures, and create and load the * DMA map for it. */ if ((error = bus_dmamem_alloc(sc->sc_dmat, sizeof(struct sip_control_data), PAGE_SIZE, 0, &sc->sc_seg, 1, &rseg, 0)) != 0) { aprint_error_dev(sc->sc_dev, "unable to allocate control data, error = %d\n", error); return sipcom_do_detach(self, SIP_ATTACH_INTR); } if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_seg, rseg, sizeof(struct sip_control_data), (void **)&sc->sc_control_data, BUS_DMA_COHERENT|BUS_DMA_NOCACHE)) != 0) { aprint_error_dev(sc->sc_dev, "unable to map control data, error = %d\n", error); sipcom_do_detach(self, SIP_ATTACH_ALLOC_MEM); } if ((error = bus_dmamap_create(sc->sc_dmat, sizeof(struct sip_control_data), 1, sizeof(struct sip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) { aprint_error_dev(sc->sc_dev, "unable to create control data DMA map, " "error = %d\n", error); sipcom_do_detach(self, SIP_ATTACH_MAP_MEM); } if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap, sc->sc_control_data, sizeof(struct sip_control_data), NULL, 0)) != 0) { aprint_error_dev(sc->sc_dev, "unable to load control data DMA map, error = %d\n", error); sipcom_do_detach(self, SIP_ATTACH_CREATE_MAP); } /* * Create the transmit buffer DMA maps. */ for (i = 0; i < SIP_TXQUEUELEN; i++) { if ((error = bus_dmamap_create(sc->sc_dmat, tx_dmamap_size, sc->sc_parm->p_ntxsegs, MCLBYTES, 0, 0, &sc->sc_txsoft[i].txs_dmamap)) != 0) { aprint_error_dev(sc->sc_dev, "unable to create tx DMA map %d, " "error = %d\n", i, error); sipcom_do_detach(self, SIP_ATTACH_CREATE_TXMAP); } } /* * Create the receive buffer DMA maps. */ for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) { if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) { aprint_error_dev(sc->sc_dev, "unable to create rx DMA map %d, " "error = %d\n", i, error); sipcom_do_detach(self, SIP_ATTACH_CREATE_RXMAP); } sc->sc_rxsoft[i].rxs_mbuf = NULL; } /* * Reset the chip to a known state. */ sipcom_reset(sc); /* * Read the Ethernet address from the EEPROM. This might * also fetch other stuff from the EEPROM and stash it * in the softc. */ sc->sc_cfg = 0; if (!sc->sc_gigabit) { if (SIP_SIS900_REV(sc,SIS_REV_635) || SIP_SIS900_REV(sc,SIS_REV_900B)) sc->sc_cfg |= (CFG_PESEL | CFG_RNDCNT); if (SIP_SIS900_REV(sc,SIS_REV_635) || SIP_SIS900_REV(sc,SIS_REV_960) || SIP_SIS900_REV(sc,SIS_REV_900B)) sc->sc_cfg |= (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG) & CFG_EDBMASTEN); } (*sip->sip_variant->sipv_read_macaddr)(sc, pa, enaddr); printf("%s: Ethernet address %s\n", device_xname(sc->sc_dev), ether_sprintf(enaddr)); /* * Initialize the configuration register: aggressive PCI * bus request algorithm, default backoff, default OW timer, * default parity error detection. * * NOTE: "Big endian mode" is useless on the SiS900 and * friends -- it affects packet data, not descriptors. */ if (sc->sc_gigabit) sipcom_dp83820_attach(sc, pa); /* * Initialize our media structures and probe the MII. */ sc->sc_mii.mii_ifp = ifp; sc->sc_mii.mii_readreg = sip->sip_variant->sipv_mii_readreg; sc->sc_mii.mii_writereg = sip->sip_variant->sipv_mii_writereg; sc->sc_mii.mii_statchg = sip->sip_variant->sipv_mii_statchg; sc->sc_ethercom.ec_mii = &sc->sc_mii; ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, ether_mediachange, sipcom_mediastatus); /* * XXX We cannot handle flow control on the DP83815. */ if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815)) mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY, MII_OFFSET_ANY, 0); else mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY, MII_OFFSET_ANY, MIIF_DOPAUSE); if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) { ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL); ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE); } else ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO); ifp = &sc->sc_ethercom.ec_if; strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ); ifp->if_softc = sc; ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; sc->sc_if_flags = ifp->if_flags; ifp->if_ioctl = sipcom_ioctl; ifp->if_start = sipcom_start; ifp->if_watchdog = sipcom_watchdog; ifp->if_init = sipcom_init; ifp->if_stop = sipcom_stop; IFQ_SET_READY(&ifp->if_snd); /* * We can support 802.1Q VLAN-sized frames. */ sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU; if (sc->sc_gigabit) { /* * And the DP83820 can do VLAN tagging in hardware, and * support the jumbo Ethernet MTU. */ sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING | ETHERCAP_JUMBO_MTU; /* * The DP83820 can do IPv4, TCPv4, and UDPv4 checksums * in hardware. */ ifp->if_capabilities |= IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx | IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx; } /* * Attach the interface. */ if_attach(ifp); ether_ifattach(ifp, enaddr); ether_set_ifflags_cb(&sc->sc_ethercom, sip_ifflags_cb); sc->sc_prev.ec_capenable = sc->sc_ethercom.ec_capenable; sc->sc_prev.is_vlan = VLAN_ATTACHED(&(sc)->sc_ethercom); sc->sc_prev.if_capenable = ifp->if_capenable; #if NRND > 0 rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev), RND_TYPE_NET, 0); #endif /* * The number of bytes that must be available in * the Tx FIFO before the bus master can DMA more * data into the FIFO. */ sc->sc_tx_fill_thresh = 64 / 32; /* * Start at a drain threshold of 512 bytes. We will * increase it if a DMA underrun occurs. * * XXX The minimum value of this variable should be * tuned. We may be able to improve performance * by starting with a lower value. That, however, * may trash the first few outgoing packets if the * PCI bus is saturated. */ if (sc->sc_gigabit) sc->sc_tx_drain_thresh = 6400 / 32; /* from FreeBSD nge(4) */ else sc->sc_tx_drain_thresh = 1504 / 32; /* * Initialize the Rx FIFO drain threshold. * * This is in units of 8 bytes. * * We should never set this value lower than 2; 14 bytes are * required to filter the packet. */ sc->sc_rx_drain_thresh = 128 / 8; #ifdef SIP_EVENT_COUNTERS /* * Attach event counters. */ evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC, NULL, device_xname(sc->sc_dev), "txsstall"); evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC, NULL, device_xname(sc->sc_dev), "txdstall"); evcnt_attach_dynamic(&sc->sc_ev_txforceintr, EVCNT_TYPE_INTR, NULL, device_xname(sc->sc_dev), "txforceintr"); evcnt_attach_dynamic(&sc->sc_ev_txdintr, EVCNT_TYPE_INTR, NULL, device_xname(sc->sc_dev), "txdintr"); evcnt_attach_dynamic(&sc->sc_ev_txiintr, EVCNT_TYPE_INTR, NULL, device_xname(sc->sc_dev), "txiintr"); evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR, NULL, device_xname(sc->sc_dev), "rxintr"); evcnt_attach_dynamic(&sc->sc_ev_hiberr, EVCNT_TYPE_INTR, NULL, device_xname(sc->sc_dev), "hiberr"); if (!sc->sc_gigabit) { evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_INTR, NULL, device_xname(sc->sc_dev), "rxpause"); } else { evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_MISC, NULL, device_xname(sc->sc_dev), "rxpause"); evcnt_attach_dynamic(&sc->sc_ev_txpause, EVCNT_TYPE_MISC, NULL, device_xname(sc->sc_dev), "txpause"); evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC, NULL, device_xname(sc->sc_dev), "rxipsum"); evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC, NULL, device_xname(sc->sc_dev), "rxtcpsum"); evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC, NULL, device_xname(sc->sc_dev), "rxudpsum"); evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC, NULL, device_xname(sc->sc_dev), "txipsum"); evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC, NULL, device_xname(sc->sc_dev), "txtcpsum"); evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC, NULL, device_xname(sc->sc_dev), "txudpsum"); } #endif /* SIP_EVENT_COUNTERS */ if (pmf_device_register(self, sipcom_suspend, sipcom_resume)) pmf_class_network_register(self, ifp); else aprint_error_dev(self, "couldn't establish power handler\n"); } static inline void sipcom_set_extsts(struct sip_softc *sc, int lasttx, struct mbuf *m0, uint64_t capenable) { struct m_tag *mtag; u_int32_t extsts; #ifdef DEBUG struct ifnet *ifp = &sc->sc_ethercom.ec_if; #endif /* * If VLANs are enabled and the packet has a VLAN tag, set * up the descriptor to encapsulate the packet for us. * * This apparently has to be on the last descriptor of * the packet. */ /* * Byte swapping is tricky. We need to provide the tag * in a network byte order. On a big-endian machine, * the byteorder is correct, but we need to swap it * anyway, because this will be undone by the outside * htole32(). That's why there must be an * unconditional swap instead of htons() inside. */ if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0)) != NULL) { sc->sc_txdescs[lasttx].sipd_extsts |= htole32(EXTSTS_VPKT | (bswap16(VLAN_TAG_VALUE(mtag)) & EXTSTS_VTCI)); } /* * If the upper-layer has requested IPv4/TCPv4/UDPv4 * checksumming, set up the descriptor to do this work * for us. * * This apparently has to be on the first descriptor of * the packet. * * Byte-swap constants so the compiler can optimize. */ extsts = 0; if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) { KDASSERT(ifp->if_capenable & IFCAP_CSUM_IPv4_Tx); SIP_EVCNT_INCR(&sc->sc_ev_txipsum); extsts |= htole32(EXTSTS_IPPKT); } if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) { KDASSERT(ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx); SIP_EVCNT_INCR(&sc->sc_ev_txtcpsum); extsts |= htole32(EXTSTS_TCPPKT); } else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) { KDASSERT(ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx); SIP_EVCNT_INCR(&sc->sc_ev_txudpsum); extsts |= htole32(EXTSTS_UDPPKT); } sc->sc_txdescs[sc->sc_txnext].sipd_extsts |= extsts; } /* * sip_start: [ifnet interface function] * * Start packet transmission on the interface. */ static void sipcom_start(struct ifnet *ifp) { struct sip_softc *sc = ifp->if_softc; struct mbuf *m0; struct mbuf *m; struct sip_txsoft *txs; bus_dmamap_t dmamap; int error, nexttx, lasttx, seg; int ofree = sc->sc_txfree; #if 0 int firsttx = sc->sc_txnext; #endif /* * If we've been told to pause, don't transmit any more packets. */ if (!sc->sc_gigabit && sc->sc_paused) ifp->if_flags |= IFF_OACTIVE; if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING) return; /* * Loop through the send queue, setting up transmit descriptors * until we drain the queue, or use up all available transmit * descriptors. */ for (;;) { /* Get a work queue entry. */ if ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) == NULL) { SIP_EVCNT_INCR(&sc->sc_ev_txsstall); break; } /* * Grab a packet off the queue. */ IFQ_POLL(&ifp->if_snd, m0); if (m0 == NULL) break; m = NULL; dmamap = txs->txs_dmamap; /* * Load the DMA map. If this fails, the packet either * didn't fit in the alloted number of segments, or we * were short on resources. */ error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0, BUS_DMA_WRITE|BUS_DMA_NOWAIT); /* In the non-gigabit case, we'll copy and try again. */ if (error != 0 && !sc->sc_gigabit) { MGETHDR(m, M_DONTWAIT, MT_DATA); if (m == NULL) { printf("%s: unable to allocate Tx mbuf\n", device_xname(sc->sc_dev)); break; } MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner); if (m0->m_pkthdr.len > MHLEN) { MCLGET(m, M_DONTWAIT); if ((m->m_flags & M_EXT) == 0) { printf("%s: unable to allocate Tx " "cluster\n", device_xname(sc->sc_dev)); m_freem(m); break; } } m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *)); m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len; error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m, BUS_DMA_WRITE|BUS_DMA_NOWAIT); if (error) { printf("%s: unable to load Tx buffer, " "error = %d\n", device_xname(sc->sc_dev), error); break; } } else if (error == EFBIG) { /* * For the too-many-segments case, we simply * report an error and drop the packet, * since we can't sanely copy a jumbo packet * to a single buffer. */ printf("%s: Tx packet consumes too many " "DMA segments, dropping...\n", device_xname(sc->sc_dev)); IFQ_DEQUEUE(&ifp->if_snd, m0); m_freem(m0); continue; } else if (error != 0) { /* * Short on resources, just stop for now. */ break; } /* * Ensure we have enough descriptors free to describe * the packet. Note, we always reserve one descriptor * at the end of the ring as a termination point, to * prevent wrap-around. */ if (dmamap->dm_nsegs > (sc->sc_txfree - 1)) { /* * Not enough free descriptors to transmit this * packet. We haven't committed anything yet, * so just unload the DMA map, put the packet * back on the queue, and punt. Notify the upper * layer that there are not more slots left. * * XXX We could allocate an mbuf and copy, but * XXX is it worth it? */ ifp->if_flags |= IFF_OACTIVE; bus_dmamap_unload(sc->sc_dmat, dmamap); if (m != NULL) m_freem(m); SIP_EVCNT_INCR(&sc->sc_ev_txdstall); break; } IFQ_DEQUEUE(&ifp->if_snd, m0); if (m != NULL) { m_freem(m0); m0 = m; } /* * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET. */ /* Sync the DMA map. */ bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE); /* * Initialize the transmit descriptors. */ for (nexttx = lasttx = sc->sc_txnext, seg = 0; seg < dmamap->dm_nsegs; seg++, nexttx = sip_nexttx(sc, nexttx)) { /* * If this is the first descriptor we're * enqueueing, don't set the OWN bit just * yet. That could cause a race condition. * We'll do it below. */ *sipd_bufptr(sc, &sc->sc_txdescs[nexttx]) = htole32(dmamap->dm_segs[seg].ds_addr); *sipd_cmdsts(sc, &sc->sc_txdescs[nexttx]) = htole32((nexttx == sc->sc_txnext ? 0 : CMDSTS_OWN) | CMDSTS_MORE | dmamap->dm_segs[seg].ds_len); sc->sc_txdescs[nexttx].sipd_extsts = 0; lasttx = nexttx; } /* Clear the MORE bit on the last segment. */ *sipd_cmdsts(sc, &sc->sc_txdescs[lasttx]) &= htole32(~CMDSTS_MORE); /* * If we're in the interrupt delay window, delay the * interrupt. */ if (++sc->sc_txwin >= (SIP_TXQUEUELEN * 2 / 3)) { SIP_EVCNT_INCR(&sc->sc_ev_txforceintr); *sipd_cmdsts(sc, &sc->sc_txdescs[lasttx]) |= htole32(CMDSTS_INTR); sc->sc_txwin = 0; } if (sc->sc_gigabit) sipcom_set_extsts(sc, lasttx, m0, ifp->if_capenable); /* Sync the descriptors we're using. */ sip_cdtxsync(sc, sc->sc_txnext, dmamap->dm_nsegs, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); /* * The entire packet is set up. Give the first descrptor * to the chip now. */ *sipd_cmdsts(sc, &sc->sc_txdescs[sc->sc_txnext]) |= htole32(CMDSTS_OWN); sip_cdtxsync(sc, sc->sc_txnext, 1, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); /* * Store a pointer to the packet so we can free it later, * and remember what txdirty will be once the packet is * done. */ txs->txs_mbuf = m0; txs->txs_firstdesc = sc->sc_txnext; txs->txs_lastdesc = lasttx; /* Advance the tx pointer. */ sc->sc_txfree -= dmamap->dm_nsegs; sc->sc_txnext = nexttx; SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q); SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q); /* * Pass the packet to any BPF listeners. */ bpf_mtap(ifp, m0); } if (txs == NULL || sc->sc_txfree == 0) { /* No more slots left; notify upper layer. */ ifp->if_flags |= IFF_OACTIVE; } if (sc->sc_txfree != ofree) { /* * Start the transmit process. Note, the manual says * that if there are no pending transmissions in the * chip's internal queue (indicated by TXE being clear), * then the driver software must set the TXDP to the * first descriptor to be transmitted. However, if we * do this, it causes serious performance degredation on * the DP83820 under load, not setting TXDP doesn't seem * to adversely affect the SiS 900 or DP83815. * * Well, I guess it wouldn't be the first time a manual * has lied -- and they could be speaking of the NULL- * terminated descriptor list case, rather than OWN- * terminated rings. */ #if 0 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR) & CR_TXE) == 0) { bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXDP, SIP_CDTXADDR(sc, firsttx)); bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE); } #else bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE); #endif /* Set a watchdog timer in case the chip flakes out. */ /* Gigabit autonegotiation takes 5 seconds. */ ifp->if_timer = (sc->sc_gigabit) ? 10 : 5; } } /* * sip_watchdog: [ifnet interface function] * * Watchdog timer handler. */ static void sipcom_watchdog(struct ifnet *ifp) { struct sip_softc *sc = ifp->if_softc; /* * The chip seems to ignore the CMDSTS_INTR bit sometimes! * If we get a timeout, try and sweep up transmit descriptors. * If we manage to sweep them all up, ignore the lack of * interrupt. */ sipcom_txintr(sc); if (sc->sc_txfree != sc->sc_ntxdesc) { printf("%s: device timeout\n", device_xname(sc->sc_dev)); ifp->if_oerrors++; /* Reset the interface. */ (void) sipcom_init(ifp); } else if (ifp->if_flags & IFF_DEBUG) printf("%s: recovered from device timeout\n", device_xname(sc->sc_dev)); /* Try to get more packets going. */ sipcom_start(ifp); } /* If the interface is up and running, only modify the receive * filter when setting promiscuous or debug mode. Otherwise fall * through to ether_ioctl, which will reset the chip. */ static int sip_ifflags_cb(struct ethercom *ec) { #define COMPARE_EC(sc) (((sc)->sc_prev.ec_capenable \ == (sc)->sc_ethercom.ec_capenable) \ && ((sc)->sc_prev.is_vlan == \ VLAN_ATTACHED(&(sc)->sc_ethercom) )) #define COMPARE_IC(sc, ifp) ((sc)->sc_prev.if_capenable == (ifp)->if_capenable) struct ifnet *ifp = &ec->ec_if; struct sip_softc *sc = ifp->if_softc; int change = ifp->if_flags ^ sc->sc_if_flags; if ((change & ~(IFF_CANTCHANGE|IFF_DEBUG)) != 0 || !COMPARE_EC(sc) || !COMPARE_IC(sc, ifp)) return ENETRESET; /* Set up the receive filter. */ (*sc->sc_model->sip_variant->sipv_set_filter)(sc); return 0; } /* * sip_ioctl: [ifnet interface function] * * Handle control requests from the operator. */ static int sipcom_ioctl(struct ifnet *ifp, u_long cmd, void *data) { struct sip_softc *sc = ifp->if_softc; struct ifreq *ifr = (struct ifreq *)data; int s, error; s = splnet(); switch (cmd) { case SIOCSIFMEDIA: /* Flow control requires full-duplex mode. */ if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO || (ifr->ifr_media & IFM_FDX) == 0) ifr->ifr_media &= ~IFM_ETH_FMASK; /* XXX */ if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815)) ifr->ifr_media &= ~IFM_ETH_FMASK; if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) { if (sc->sc_gigabit && (ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) { /* We can do both TXPAUSE and RXPAUSE. */ ifr->ifr_media |= IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE; } else if (ifr->ifr_media & IFM_FLOW) { /* * Both TXPAUSE and RXPAUSE must be set. * (SiS900 and DP83815 don't have PAUSE_ASYM * feature.) * * XXX Can SiS900 and DP83815 send PAUSE? */ ifr->ifr_media |= IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE; } sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK; } /*FALLTHROUGH*/ default: if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET) break; error = 0; if (cmd == SIOCSIFCAP) error = (*ifp->if_init)(ifp); else if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI) ; else if (ifp->if_flags & IFF_RUNNING) { /* * Multicast list has changed; set the hardware filter * accordingly. */ (*sc->sc_model->sip_variant->sipv_set_filter)(sc); } break; } /* Try to get more packets going. */ sipcom_start(ifp); sc->sc_if_flags = ifp->if_flags; splx(s); return (error); } /* * sip_intr: * * Interrupt service routine. */ static int sipcom_intr(void *arg) { struct sip_softc *sc = arg; struct ifnet *ifp = &sc->sc_ethercom.ec_if; u_int32_t isr; int handled = 0; if (!device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER)) return 0; /* Disable interrupts. */ bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IER, 0); for (;;) { /* Reading clears interrupt. */ isr = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ISR); if ((isr & sc->sc_imr) == 0) break; #if NRND > 0 if (RND_ENABLED(&sc->rnd_source)) rnd_add_uint32(&sc->rnd_source, isr); #endif handled = 1; if ((ifp->if_flags & IFF_RUNNING) == 0) break; if (isr & (ISR_RXORN|ISR_RXIDLE|ISR_RXDESC)) { SIP_EVCNT_INCR(&sc->sc_ev_rxintr); /* Grab any new packets. */ (*sc->sc_rxintr)(sc); if (isr & ISR_RXORN) { printf("%s: receive FIFO overrun\n", device_xname(sc->sc_dev)); /* XXX adjust rx_drain_thresh? */ } if (isr & ISR_RXIDLE) { printf("%s: receive ring overrun\n", device_xname(sc->sc_dev)); /* Get the receive process going again. */ bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr)); bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_RXE); } } if (isr & (ISR_TXURN|ISR_TXDESC|ISR_TXIDLE)) { #ifdef SIP_EVENT_COUNTERS if (isr & ISR_TXDESC) SIP_EVCNT_INCR(&sc->sc_ev_txdintr); else if (isr & ISR_TXIDLE) SIP_EVCNT_INCR(&sc->sc_ev_txiintr); #endif /* Sweep up transmit descriptors. */ sipcom_txintr(sc); if (isr & ISR_TXURN) { u_int32_t thresh; int txfifo_size = (sc->sc_gigabit) ? DP83820_SIP_TXFIFO_SIZE : OTHER_SIP_TXFIFO_SIZE; printf("%s: transmit FIFO underrun", device_xname(sc->sc_dev)); thresh = sc->sc_tx_drain_thresh + 1; if (thresh <= __SHIFTOUT_MASK(sc->sc_bits.b_txcfg_drth_mask) && (thresh * 32) <= (txfifo_size - (sc->sc_tx_fill_thresh * 32))) { printf("; increasing Tx drain " "threshold to %u bytes\n", thresh * 32); sc->sc_tx_drain_thresh = thresh; (void) sipcom_init(ifp); } else { (void) sipcom_init(ifp); printf("\n"); } } } if (sc->sc_imr & (ISR_PAUSE_END|ISR_PAUSE_ST)) { if (isr & ISR_PAUSE_ST) { sc->sc_paused = 1; SIP_EVCNT_INCR(&sc->sc_ev_rxpause); ifp->if_flags |= IFF_OACTIVE; } if (isr & ISR_PAUSE_END) { sc->sc_paused = 0; ifp->if_flags &= ~IFF_OACTIVE; } } if (isr & ISR_HIBERR) { int want_init = 0; SIP_EVCNT_INCR(&sc->sc_ev_hiberr); #define PRINTERR(bit, str) \ do { \ if ((isr & (bit)) != 0) { \ if ((ifp->if_flags & IFF_DEBUG) != 0) \ printf("%s: %s\n", \ device_xname(sc->sc_dev), str); \ want_init = 1; \ } \ } while (/*CONSTCOND*/0) PRINTERR(sc->sc_bits.b_isr_dperr, "parity error"); PRINTERR(sc->sc_bits.b_isr_sserr, "system error"); PRINTERR(sc->sc_bits.b_isr_rmabt, "master abort"); PRINTERR(sc->sc_bits.b_isr_rtabt, "target abort"); PRINTERR(ISR_RXSOVR, "receive status FIFO overrun"); /* * Ignore: * Tx reset complete * Rx reset complete */ if (want_init) (void) sipcom_init(ifp); #undef PRINTERR } } /* Re-enable interrupts. */ bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IER, IER_IE); /* Try to get more packets going. */ sipcom_start(ifp); return (handled); } /* * sip_txintr: * * Helper; handle transmit interrupts. */ static void sipcom_txintr(struct sip_softc *sc) { struct ifnet *ifp = &sc->sc_ethercom.ec_if; struct sip_txsoft *txs; u_int32_t cmdsts; if (sc->sc_paused == 0) ifp->if_flags &= ~IFF_OACTIVE; /* * Go through our Tx list and free mbufs for those * frames which have been transmitted. */ while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) { sip_cdtxsync(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE); cmdsts = le32toh(*sipd_cmdsts(sc, &sc->sc_txdescs[txs->txs_lastdesc])); if (cmdsts & CMDSTS_OWN) break; SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q); sc->sc_txfree += txs->txs_dmamap->dm_nsegs; bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap, 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap); m_freem(txs->txs_mbuf); txs->txs_mbuf = NULL; SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q); /* * Check for errors and collisions. */ if (cmdsts & (CMDSTS_Tx_TXA|CMDSTS_Tx_TFU|CMDSTS_Tx_ED|CMDSTS_Tx_EC)) { ifp->if_oerrors++; if (cmdsts & CMDSTS_Tx_EC) ifp->if_collisions += 16; if (ifp->if_flags & IFF_DEBUG) { if (cmdsts & CMDSTS_Tx_ED) printf("%s: excessive deferral\n", device_xname(sc->sc_dev)); if (cmdsts & CMDSTS_Tx_EC) printf("%s: excessive collisions\n", device_xname(sc->sc_dev)); } } else { /* Packet was transmitted successfully. */ ifp->if_opackets++; ifp->if_collisions += CMDSTS_COLLISIONS(cmdsts); } } /* * If there are no more pending transmissions, cancel the watchdog * timer. */ if (txs == NULL) { ifp->if_timer = 0; sc->sc_txwin = 0; } } /* * gsip_rxintr: * * Helper; handle receive interrupts on gigabit parts. */ static void gsip_rxintr(struct sip_softc *sc) { struct ifnet *ifp = &sc->sc_ethercom.ec_if; struct sip_rxsoft *rxs; struct mbuf *m; u_int32_t cmdsts, extsts; int i, len; for (i = sc->sc_rxptr;; i = sip_nextrx(sc, i)) { rxs = &sc->sc_rxsoft[i]; sip_cdrxsync(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE); cmdsts = le32toh(*sipd_cmdsts(sc, &sc->sc_rxdescs[i])); extsts = le32toh(sc->sc_rxdescs[i].sipd_extsts); len = CMDSTS_SIZE(sc, cmdsts); /* * NOTE: OWN is set if owned by _consumer_. We're the * consumer of the receive ring, so if the bit is clear, * we have processed all of the packets. */ if ((cmdsts & CMDSTS_OWN) == 0) { /* * We have processed all of the receive buffers. */ break; } if (__predict_false(sc->sc_rxdiscard)) { sip_init_rxdesc(sc, i); if ((cmdsts & CMDSTS_MORE) == 0) { /* Reset our state. */ sc->sc_rxdiscard = 0; } continue; } bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0, rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD); m = rxs->rxs_mbuf; /* * Add a new receive buffer to the ring. */ if (sipcom_add_rxbuf(sc, i) != 0) { /* * Failed, throw away what we've done so * far, and discard the rest of the packet. */ ifp->if_ierrors++; bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0, rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD); sip_init_rxdesc(sc, i); if (cmdsts & CMDSTS_MORE) sc->sc_rxdiscard = 1; if (sc->sc_rxhead != NULL) m_freem(sc->sc_rxhead); sip_rxchain_reset(sc); continue; } sip_rxchain_link(sc, m); m->m_len = len; /* * If this is not the end of the packet, keep * looking. */ if (cmdsts & CMDSTS_MORE) { sc->sc_rxlen += len; continue; } /* * Okay, we have the entire packet now. The chip includes * the FCS, so we need to trim it. */ m->m_len -= ETHER_CRC_LEN; *sc->sc_rxtailp = NULL; len = m->m_len + sc->sc_rxlen; m = sc->sc_rxhead; sip_rxchain_reset(sc); /* * If an error occurred, update stats and drop the packet. */ if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT| CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) { ifp->if_ierrors++; if ((cmdsts & CMDSTS_Rx_RXA) != 0 && (cmdsts & CMDSTS_Rx_RXO) == 0) { /* Receive overrun handled elsewhere. */ printf("%s: receive descriptor error\n", device_xname(sc->sc_dev)); } #define PRINTERR(bit, str) \ if ((ifp->if_flags & IFF_DEBUG) != 0 && \ (cmdsts & (bit)) != 0) \ printf("%s: %s\n", device_xname(sc->sc_dev), str) PRINTERR(CMDSTS_Rx_RUNT, "runt packet"); PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error"); PRINTERR(CMDSTS_Rx_CRCE, "CRC error"); PRINTERR(CMDSTS_Rx_FAE, "frame alignment error"); #undef PRINTERR m_freem(m); continue; } /* * If the packet is small enough to fit in a * single header mbuf, allocate one and copy * the data into it. This greatly reduces * memory consumption when we receive lots * of small packets. */ if (gsip_copy_small != 0 && len <= (MHLEN - 2)) { struct mbuf *nm; MGETHDR(nm, M_DONTWAIT, MT_DATA); if (nm == NULL) { ifp->if_ierrors++; m_freem(m); continue; } MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner); nm->m_data += 2; nm->m_pkthdr.len = nm->m_len = len; m_copydata(m, 0, len, mtod(nm, void *)); m_freem(m); m = nm; } #ifndef __NO_STRICT_ALIGNMENT else { /* * The DP83820's receive buffers must be 4-byte * aligned. But this means that the data after * the Ethernet header is misaligned. To compensate, * we have artificially shortened the buffer size * in the descriptor, and we do an overlapping copy * of the data two bytes further in (in the first * buffer of the chain only). */ memmove(mtod(m, char *) + 2, mtod(m, void *), m->m_len); m->m_data += 2; } #endif /* ! __NO_STRICT_ALIGNMENT */ /* * If VLANs are enabled, VLAN packets have been unwrapped * for us. Associate the tag with the packet. */ /* * Again, byte swapping is tricky. Hardware provided * the tag in the network byte order, but extsts was * passed through le32toh() in the meantime. On a * big-endian machine, we need to swap it again. On a * little-endian machine, we need to convert from the * network to host byte order. This means that we must * swap it in any case, so unconditional swap instead * of htons() is used. */ if ((extsts & EXTSTS_VPKT) != 0) { VLAN_INPUT_TAG(ifp, m, bswap16(extsts & EXTSTS_VTCI), continue); } /* * Set the incoming checksum information for the * packet. */ if ((extsts & EXTSTS_IPPKT) != 0) { SIP_EVCNT_INCR(&sc->sc_ev_rxipsum); m->m_pkthdr.csum_flags |= M_CSUM_IPv4; if (extsts & EXTSTS_Rx_IPERR) m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD; if (extsts & EXTSTS_TCPPKT) { SIP_EVCNT_INCR(&sc->sc_ev_rxtcpsum); m->m_pkthdr.csum_flags |= M_CSUM_TCPv4; if (extsts & EXTSTS_Rx_TCPERR) m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD; } else if (extsts & EXTSTS_UDPPKT) { SIP_EVCNT_INCR(&sc->sc_ev_rxudpsum); m->m_pkthdr.csum_flags |= M_CSUM_UDPv4; if (extsts & EXTSTS_Rx_UDPERR) m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD; } } ifp->if_ipackets++; m->m_pkthdr.rcvif = ifp; m->m_pkthdr.len = len; /* * Pass this up to any BPF listeners, but only * pass if up the stack if it's for us. */ bpf_mtap(ifp, m); /* Pass it on. */ (*ifp->if_input)(ifp, m); } /* Update the receive pointer. */ sc->sc_rxptr = i; } /* * sip_rxintr: * * Helper; handle receive interrupts on 10/100 parts. */ static void sip_rxintr(struct sip_softc *sc) { struct ifnet *ifp = &sc->sc_ethercom.ec_if; struct sip_rxsoft *rxs; struct mbuf *m; u_int32_t cmdsts; int i, len; for (i = sc->sc_rxptr;; i = sip_nextrx(sc, i)) { rxs = &sc->sc_rxsoft[i]; sip_cdrxsync(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE); cmdsts = le32toh(*sipd_cmdsts(sc, &sc->sc_rxdescs[i])); /* * NOTE: OWN is set if owned by _consumer_. We're the * consumer of the receive ring, so if the bit is clear, * we have processed all of the packets. */ if ((cmdsts & CMDSTS_OWN) == 0) { /* * We have processed all of the receive buffers. */ break; } /* * If any collisions were seen on the wire, count one. */ if (cmdsts & CMDSTS_Rx_COL) ifp->if_collisions++; /* * If an error occurred, update stats, clear the status * word, and leave the packet buffer in place. It will * simply be reused the next time the ring comes around. */ if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT| CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) { ifp->if_ierrors++; if ((cmdsts & CMDSTS_Rx_RXA) != 0 && (cmdsts & CMDSTS_Rx_RXO) == 0) { /* Receive overrun handled elsewhere. */ printf("%s: receive descriptor error\n", device_xname(sc->sc_dev)); } #define PRINTERR(bit, str) \ if ((ifp->if_flags & IFF_DEBUG) != 0 && \ (cmdsts & (bit)) != 0) \ printf("%s: %s\n", device_xname(sc->sc_dev), str) PRINTERR(CMDSTS_Rx_RUNT, "runt packet"); PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error"); PRINTERR(CMDSTS_Rx_CRCE, "CRC error"); PRINTERR(CMDSTS_Rx_FAE, "frame alignment error"); #undef PRINTERR sip_init_rxdesc(sc, i); continue; } bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0, rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD); /* * No errors; receive the packet. Note, the SiS 900 * includes the CRC with every packet. */ len = CMDSTS_SIZE(sc, cmdsts) - ETHER_CRC_LEN; #ifdef __NO_STRICT_ALIGNMENT /* * If the packet is small enough to fit in a * single header mbuf, allocate one and copy * the data into it. This greatly reduces * memory consumption when we receive lots * of small packets. * * Otherwise, we add a new buffer to the receive * chain. If this fails, we drop the packet and * recycle the old buffer. */ if (sip_copy_small != 0 && len <= MHLEN) { MGETHDR(m, M_DONTWAIT, MT_DATA); if (m == NULL) goto dropit; MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner); memcpy(mtod(m, void *), mtod(rxs->rxs_mbuf, void *), len); sip_init_rxdesc(sc, i); bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0, rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD); } else { m = rxs->rxs_mbuf; if (sipcom_add_rxbuf(sc, i) != 0) { dropit: ifp->if_ierrors++; sip_init_rxdesc(sc, i); bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0, rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD); continue; } } #else /* * The SiS 900's receive buffers must be 4-byte aligned. * But this means that the data after the Ethernet header * is misaligned. We must allocate a new buffer and * copy the data, shifted forward 2 bytes. */ MGETHDR(m, M_DONTWAIT, MT_DATA); if (m == NULL) { dropit: ifp->if_ierrors++; sip_init_rxdesc(sc, i); bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0, rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD); continue; } MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner); if (len > (MHLEN - 2)) { MCLGET(m, M_DONTWAIT); if ((m->m_flags & M_EXT) == 0) { m_freem(m); goto dropit; } } m->m_data += 2; /* * Note that we use clusters for incoming frames, so the * buffer is virtually contiguous. */ memcpy(mtod(m, void *), mtod(rxs->rxs_mbuf, void *), len); /* Allow the receive descriptor to continue using its mbuf. */ sip_init_rxdesc(sc, i); bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0, rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD); #endif /* __NO_STRICT_ALIGNMENT */ ifp->if_ipackets++; m->m_pkthdr.rcvif = ifp; m->m_pkthdr.len = m->m_len = len; /* * Pass this up to any BPF listeners, but only * pass if up the stack if it's for us. */ bpf_mtap(ifp, m); /* Pass it on. */ (*ifp->if_input)(ifp, m); } /* Update the receive pointer. */ sc->sc_rxptr = i; } /* * sip_tick: * * One second timer, used to tick the MII. */ static void sipcom_tick(void *arg) { struct sip_softc *sc = arg; int s; s = splnet(); #ifdef SIP_EVENT_COUNTERS if (sc->sc_gigabit) { /* Read PAUSE related counts from MIB registers. */ sc->sc_ev_rxpause.ev_count += bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_NS_MIB(MIB_RXPauseFrames)) & 0xffff; sc->sc_ev_txpause.ev_count += bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_NS_MIB(MIB_TXPauseFrames)) & 0xffff; bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_MIBC, MIBC_ACLR); } #endif /* SIP_EVENT_COUNTERS */ mii_tick(&sc->sc_mii); splx(s); callout_reset(&sc->sc_tick_ch, hz, sipcom_tick, sc); } /* * sip_reset: * * Perform a soft reset on the SiS 900. */ static bool sipcom_reset(struct sip_softc *sc) { bus_space_tag_t st = sc->sc_st; bus_space_handle_t sh = sc->sc_sh; int i; bus_space_write_4(st, sh, SIP_IER, 0); bus_space_write_4(st, sh, SIP_IMR, 0); bus_space_write_4(st, sh, SIP_RFCR, 0); bus_space_write_4(st, sh, SIP_CR, CR_RST); for (i = 0; i < SIP_TIMEOUT; i++) { if ((bus_space_read_4(st, sh, SIP_CR) & CR_RST) == 0) break; delay(2); } if (i == SIP_TIMEOUT) { printf("%s: reset failed to complete\n", device_xname(sc->sc_dev)); return false; } delay(1000); if (sc->sc_gigabit) { /* * Set the general purpose I/O bits. Do it here in case we * need to have GPIO set up to talk to the media interface. */ bus_space_write_4(st, sh, SIP_GPIOR, sc->sc_gpior); delay(1000); } return true; } static void sipcom_dp83820_init(struct sip_softc *sc, uint64_t capenable) { u_int32_t reg; bus_space_tag_t st = sc->sc_st; bus_space_handle_t sh = sc->sc_sh; /* * Initialize the VLAN/IP receive control register. * We enable checksum computation on all incoming * packets, and do not reject packets w/ bad checksums. */ reg = 0; if (capenable & (IFCAP_CSUM_IPv4_Rx|IFCAP_CSUM_TCPv4_Rx|IFCAP_CSUM_UDPv4_Rx)) reg |= VRCR_IPEN; if (VLAN_ATTACHED(&sc->sc_ethercom)) reg |= VRCR_VTDEN|VRCR_VTREN; bus_space_write_4(st, sh, SIP_VRCR, reg); /* * Initialize the VLAN/IP transmit control register. * We enable outgoing checksum computation on a * per-packet basis. */ reg = 0; if (capenable & (IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_UDPv4_Tx)) reg |= VTCR_PPCHK; if (VLAN_ATTACHED(&sc->sc_ethercom)) reg |= VTCR_VPPTI; bus_space_write_4(st, sh, SIP_VTCR, reg); /* * If we're using VLANs, initialize the VLAN data register. * To understand why we bswap the VLAN Ethertype, see section * 4.2.36 of the DP83820 manual. */ if (VLAN_ATTACHED(&sc->sc_ethercom)) bus_space_write_4(st, sh, SIP_VDR, bswap16(ETHERTYPE_VLAN)); } /* * sip_init: [ ifnet interface function ] * * Initialize the interface. Must be called at splnet(). */ static int sipcom_init(struct ifnet *ifp) { struct sip_softc *sc = ifp->if_softc; bus_space_tag_t st = sc->sc_st; bus_space_handle_t sh = sc->sc_sh; struct sip_txsoft *txs; struct sip_rxsoft *rxs; struct sip_desc *sipd; int i, error = 0; if (device_is_active(sc->sc_dev)) { /* * Cancel any pending I/O. */ sipcom_stop(ifp, 0); } else if (!pmf_device_subtree_resume(sc->sc_dev, &sc->sc_qual) || !device_is_active(sc->sc_dev)) return 0; /* * Reset the chip to a known state. */ if (!sipcom_reset(sc)) return EBUSY; if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815)) { /* * DP83815 manual, page 78: * 4.4 Recommended Registers Configuration * For optimum performance of the DP83815, version noted * as DP83815CVNG (SRR = 203h), the listed register * modifications must be followed in sequence... * * It's not clear if this should be 302h or 203h because that * chip name is listed as SRR 302h in the description of the * SRR register. However, my revision 302h DP83815 on the * Netgear FA311 purchased in 02/2001 needs these settings * to avoid tons of errors in AcceptPerfectMatch (non- * IFF_PROMISC) mode. I do not know if other revisions need * this set or not. [briggs -- 09 March 2001] * * Note that only the low-order 12 bits of 0xe4 are documented * and that this sets reserved bits in that register. */ bus_space_write_4(st, sh, 0x00cc, 0x0001); bus_space_write_4(st, sh, 0x00e4, 0x189C); bus_space_write_4(st, sh, 0x00fc, 0x0000); bus_space_write_4(st, sh, 0x00f4, 0x5040); bus_space_write_4(st, sh, 0x00f8, 0x008c); bus_space_write_4(st, sh, 0x00cc, 0x0000); } /* * Initialize the transmit descriptor ring. */ for (i = 0; i < sc->sc_ntxdesc; i++) { sipd = &sc->sc_txdescs[i]; memset(sipd, 0, sizeof(struct sip_desc)); sipd->sipd_link = htole32(SIP_CDTXADDR(sc, sip_nexttx(sc, i))); } sip_cdtxsync(sc, 0, sc->sc_ntxdesc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); sc->sc_txfree = sc->sc_ntxdesc; sc->sc_txnext = 0; sc->sc_txwin = 0; /* * Initialize the transmit job descriptors. */ SIMPLEQ_INIT(&sc->sc_txfreeq); SIMPLEQ_INIT(&sc->sc_txdirtyq); for (i = 0; i < SIP_TXQUEUELEN; i++) { txs = &sc->sc_txsoft[i]; txs->txs_mbuf = NULL; SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q); } /* * Initialize the receive descriptor and receive job * descriptor rings. */ for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) { rxs = &sc->sc_rxsoft[i]; if (rxs->rxs_mbuf == NULL) { if ((error = sipcom_add_rxbuf(sc, i)) != 0) { printf("%s: unable to allocate or map rx " "buffer %d, error = %d\n", device_xname(sc->sc_dev), i, error); /* * XXX Should attempt to run with fewer receive * XXX buffers instead of just failing. */ sipcom_rxdrain(sc); goto out; } } else sip_init_rxdesc(sc, i); } sc->sc_rxptr = 0; sc->sc_rxdiscard = 0; sip_rxchain_reset(sc); /* * Set the configuration register; it's already initialized * in sip_attach(). */ bus_space_write_4(st, sh, SIP_CFG, sc->sc_cfg); /* * Initialize the prototype TXCFG register. */ if (sc->sc_gigabit) { sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_512; sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_512; } else if ((SIP_SIS900_REV(sc, SIS_REV_635) || SIP_SIS900_REV(sc, SIS_REV_960) || SIP_SIS900_REV(sc, SIS_REV_900B)) && (sc->sc_cfg & CFG_EDBMASTEN)) { sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_64; sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_64; } else { sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_512; sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_512; } sc->sc_txcfg |= TXCFG_ATP | __SHIFTIN(sc->sc_tx_fill_thresh, sc->sc_bits.b_txcfg_flth_mask) | sc->sc_tx_drain_thresh; bus_space_write_4(st, sh, sc->sc_regs.r_txcfg, sc->sc_txcfg); /* * Initialize the receive drain threshold if we have never * done so. */ if (sc->sc_rx_drain_thresh == 0) { /* * XXX This value should be tuned. This is set to the * maximum of 248 bytes, and we may be able to improve * performance by decreasing it (although we should never * set this value lower than 2; 14 bytes are required to * filter the packet). */ sc->sc_rx_drain_thresh = __SHIFTOUT_MASK(RXCFG_DRTH_MASK); } /* * Initialize the prototype RXCFG register. */ sc->sc_rxcfg |= __SHIFTIN(sc->sc_rx_drain_thresh, RXCFG_DRTH_MASK); /* * Accept long packets (including FCS) so we can handle * 802.1q-tagged frames and jumbo frames properly. */ if ((sc->sc_gigabit && ifp->if_mtu > ETHERMTU) || (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)) sc->sc_rxcfg |= RXCFG_ALP; /* * Checksum offloading is disabled if the user selects an MTU * larger than 8109. (FreeBSD says 8152, but there is emperical * evidence that >8109 does not work on some boards, such as the * Planex GN-1000TE). */ if (sc->sc_gigabit && ifp->if_mtu > 8109 && (ifp->if_capenable & (IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_IPv4_Rx| IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_TCPv4_Rx| IFCAP_CSUM_UDPv4_Tx|IFCAP_CSUM_UDPv4_Rx))) { printf("%s: Checksum offloading does not work if MTU > 8109 - " "disabled.\n", device_xname(sc->sc_dev)); ifp->if_capenable &= ~(IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_IPv4_Rx| IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_TCPv4_Rx| IFCAP_CSUM_UDPv4_Tx|IFCAP_CSUM_UDPv4_Rx); ifp->if_csum_flags_tx = 0; ifp->if_csum_flags_rx = 0; } bus_space_write_4(st, sh, sc->sc_regs.r_rxcfg, sc->sc_rxcfg); if (sc->sc_gigabit) sipcom_dp83820_init(sc, ifp->if_capenable); /* * Give the transmit and receive rings to the chip. */ bus_space_write_4(st, sh, SIP_TXDP, SIP_CDTXADDR(sc, sc->sc_txnext)); bus_space_write_4(st, sh, SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr)); /* * Initialize the interrupt mask. */ sc->sc_imr = sc->sc_bits.b_isr_dperr | sc->sc_bits.b_isr_sserr | sc->sc_bits.b_isr_rmabt | sc->sc_bits.b_isr_rtabt | ISR_RXSOVR | ISR_TXURN|ISR_TXDESC|ISR_TXIDLE|ISR_RXORN|ISR_RXIDLE|ISR_RXDESC; bus_space_write_4(st, sh, SIP_IMR, sc->sc_imr); /* Set up the receive filter. */ (*sc->sc_model->sip_variant->sipv_set_filter)(sc); /* * Tune sc_rx_flow_thresh. * XXX "More than 8KB" is too short for jumbo frames. * XXX TODO: Threshold value should be user-settable. */ sc->sc_rx_flow_thresh = (PCR_PS_STHI_8 | PCR_PS_STLO_4 | PCR_PS_FFHI_8 | PCR_PS_FFLO_4 | (PCR_PAUSE_CNT & PCR_PAUSE_CNT_MASK)); /* * Set the current media. Do this after initializing the prototype * IMR, since sip_mii_statchg() modifies the IMR for 802.3x flow * control. */ if ((error = ether_mediachange(ifp)) != 0) goto out; /* * Set the interrupt hold-off timer to 100us. */ if (sc->sc_gigabit) bus_space_write_4(st, sh, SIP_IHR, 0x01); /* * Enable interrupts. */ bus_space_write_4(st, sh, SIP_IER, IER_IE); /* * Start the transmit and receive processes. */ bus_space_write_4(st, sh, SIP_CR, CR_RXE | CR_TXE); /* * Start the one second MII clock. */ callout_reset(&sc->sc_tick_ch, hz, sipcom_tick, sc); /* * ...all done! */ ifp->if_flags |= IFF_RUNNING; ifp->if_flags &= ~IFF_OACTIVE; sc->sc_if_flags = ifp->if_flags; sc->sc_prev.ec_capenable = sc->sc_ethercom.ec_capenable; sc->sc_prev.is_vlan = VLAN_ATTACHED(&(sc)->sc_ethercom); sc->sc_prev.if_capenable = ifp->if_capenable; out: if (error) printf("%s: interface not running\n", device_xname(sc->sc_dev)); return (error); } /* * sip_drain: * * Drain the receive queue. */ static void sipcom_rxdrain(struct sip_softc *sc) { struct sip_rxsoft *rxs; int i; for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) { rxs = &sc->sc_rxsoft[i]; if (rxs->rxs_mbuf != NULL) { bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap); m_freem(rxs->rxs_mbuf); rxs->rxs_mbuf = NULL; } } } /* * sip_stop: [ ifnet interface function ] * * Stop transmission on the interface. */ static void sipcom_stop(struct ifnet *ifp, int disable) { struct sip_softc *sc = ifp->if_softc; bus_space_tag_t st = sc->sc_st; bus_space_handle_t sh = sc->sc_sh; struct sip_txsoft *txs; u_int32_t cmdsts = 0; /* DEBUG */ /* * Stop the one second clock. */ callout_stop(&sc->sc_tick_ch); /* Down the MII. */ mii_down(&sc->sc_mii); if (device_is_active(sc->sc_dev)) { /* * Disable interrupts. */ bus_space_write_4(st, sh, SIP_IER, 0); /* * Stop receiver and transmitter. */ bus_space_write_4(st, sh, SIP_CR, CR_RXD | CR_TXD); } /* * Release any queued transmit buffers. */ while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) { if ((ifp->if_flags & IFF_DEBUG) != 0 && SIMPLEQ_NEXT(txs, txs_q) == NULL && (le32toh(*sipd_cmdsts(sc, &sc->sc_txdescs[txs->txs_lastdesc])) & CMDSTS_INTR) == 0) printf("%s: sip_stop: last descriptor does not " "have INTR bit set\n", device_xname(sc->sc_dev)); SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q); #ifdef DIAGNOSTIC if (txs->txs_mbuf == NULL) { printf("%s: dirty txsoft with no mbuf chain\n", device_xname(sc->sc_dev)); panic("sip_stop"); } #endif cmdsts |= /* DEBUG */ le32toh(*sipd_cmdsts(sc, &sc->sc_txdescs[txs->txs_lastdesc])); bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap); m_freem(txs->txs_mbuf); txs->txs_mbuf = NULL; SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q); } /* * Mark the interface down and cancel the watchdog timer. */ ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); ifp->if_timer = 0; if (disable) pmf_device_recursive_suspend(sc->sc_dev, &sc->sc_qual); if ((ifp->if_flags & IFF_DEBUG) != 0 && (cmdsts & CMDSTS_INTR) == 0 && sc->sc_txfree != sc->sc_ntxdesc) printf("%s: sip_stop: no INTR bits set in dirty tx " "descriptors\n", device_xname(sc->sc_dev)); } /* * sip_read_eeprom: * * Read data from the serial EEPROM. */ static void sipcom_read_eeprom(struct sip_softc *sc, int word, int wordcnt, u_int16_t *data) { bus_space_tag_t st = sc->sc_st; bus_space_handle_t sh = sc->sc_sh; u_int16_t reg; int i, x; for (i = 0; i < wordcnt; i++) { /* Send CHIP SELECT. */ reg = EROMAR_EECS; bus_space_write_4(st, sh, SIP_EROMAR, reg); /* Shift in the READ opcode. */ for (x = 3; x > 0; x--) { if (SIP_EEPROM_OPC_READ & (1 << (x - 1))) reg |= EROMAR_EEDI; else reg &= ~EROMAR_EEDI; bus_space_write_4(st, sh, SIP_EROMAR, reg); bus_space_write_4(st, sh, SIP_EROMAR, reg | EROMAR_EESK); delay(4); bus_space_write_4(st, sh, SIP_EROMAR, reg); delay(4); } /* Shift in address. */ for (x = 6; x > 0; x--) { if ((word + i) & (1 << (x - 1))) reg |= EROMAR_EEDI; else reg &= ~EROMAR_EEDI; bus_space_write_4(st, sh, SIP_EROMAR, reg); bus_space_write_4(st, sh, SIP_EROMAR, reg | EROMAR_EESK); delay(4); bus_space_write_4(st, sh, SIP_EROMAR, reg); delay(4); } /* Shift out data. */ reg = EROMAR_EECS; data[i] = 0; for (x = 16; x > 0; x--) { bus_space_write_4(st, sh, SIP_EROMAR, reg | EROMAR_EESK); delay(4); if (bus_space_read_4(st, sh, SIP_EROMAR) & EROMAR_EEDO) data[i] |= (1 << (x - 1)); bus_space_write_4(st, sh, SIP_EROMAR, reg); delay(4); } /* Clear CHIP SELECT. */ bus_space_write_4(st, sh, SIP_EROMAR, 0); delay(4); } } /* * sipcom_add_rxbuf: * * Add a receive buffer to the indicated descriptor. */ static int sipcom_add_rxbuf(struct sip_softc *sc, int idx) { struct sip_rxsoft *rxs = &sc->sc_rxsoft[idx]; struct mbuf *m; int error; MGETHDR(m, M_DONTWAIT, MT_DATA); if (m == NULL) return (ENOBUFS); MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner); MCLGET(m, M_DONTWAIT); if ((m->m_flags & M_EXT) == 0) { m_freem(m); return (ENOBUFS); } /* XXX I don't believe this is necessary. --dyoung */ if (sc->sc_gigabit) m->m_len = sc->sc_parm->p_rxbuf_len; if (rxs->rxs_mbuf != NULL) bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap); rxs->rxs_mbuf = m; error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap, m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_READ|BUS_DMA_NOWAIT); if (error) { printf("%s: can't load rx DMA map %d, error = %d\n", device_xname(sc->sc_dev), idx, error); panic("%s", __func__); /* XXX */ } bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0, rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD); sip_init_rxdesc(sc, idx); return (0); } /* * sip_sis900_set_filter: * * Set up the receive filter. */ static void sipcom_sis900_set_filter(struct sip_softc *sc) { bus_space_tag_t st = sc->sc_st; bus_space_handle_t sh = sc->sc_sh; struct ethercom *ec = &sc->sc_ethercom; struct ifnet *ifp = &sc->sc_ethercom.ec_if; struct ether_multi *enm; const u_int8_t *cp; struct ether_multistep step; u_int32_t crc, mchash[16]; /* * Initialize the prototype RFCR. */ sc->sc_rfcr = RFCR_RFEN; if (ifp->if_flags & IFF_BROADCAST) sc->sc_rfcr |= RFCR_AAB; if (ifp->if_flags & IFF_PROMISC) { sc->sc_rfcr |= RFCR_AAP; goto allmulti; } /* * Set up the multicast address filter by passing all multicast * addresses through a CRC generator, and then using the high-order * 6 bits as an index into the 128 bit multicast hash table (only * the lower 16 bits of each 32 bit multicast hash register are * valid). The high order bits select the register, while the * rest of the bits select the bit within the register. */ memset(mchash, 0, sizeof(mchash)); /* * SiS900 (at least SiS963) requires us to register the address of * the PAUSE packet (01:80:c2:00:00:01) into the address filter. */ crc = 0x0ed423f9; if (SIP_SIS900_REV(sc, SIS_REV_635) || SIP_SIS900_REV(sc, SIS_REV_960) || SIP_SIS900_REV(sc, SIS_REV_900B)) { /* Just want the 8 most significant bits. */ crc >>= 24; } else { /* Just want the 7 most significant bits. */ crc >>= 25; } /* Set the corresponding bit in the hash table. */ mchash[crc >> 4] |= 1 << (crc & 0xf); ETHER_FIRST_MULTI(step, ec, enm); while (enm != NULL) { if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) { /* * We must listen to a range of multicast addresses. * For now, just accept all multicasts, rather than * trying to set only those filter bits needed to match * the range. (At this time, the only use of address * ranges is for IP multicast routing, for which the * range is big enough to require all bits set.) */ goto allmulti; } crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN); if (SIP_SIS900_REV(sc, SIS_REV_635) || SIP_SIS900_REV(sc, SIS_REV_960) || SIP_SIS900_REV(sc, SIS_REV_900B)) { /* Just want the 8 most significant bits. */ crc >>= 24; } else { /* Just want the 7 most significant bits. */ crc >>= 25; } /* Set the corresponding bit in the hash table. */ mchash[crc >> 4] |= 1 << (crc & 0xf); ETHER_NEXT_MULTI(step, enm); } ifp->if_flags &= ~IFF_ALLMULTI; goto setit; allmulti: ifp->if_flags |= IFF_ALLMULTI; sc->sc_rfcr |= RFCR_AAM; setit: #define FILTER_EMIT(addr, data) \ bus_space_write_4(st, sh, SIP_RFCR, (addr)); \ delay(1); \ bus_space_write_4(st, sh, SIP_RFDR, (data)); \ delay(1) /* * Disable receive filter, and program the node address. */ cp = CLLADDR(ifp->if_sadl); FILTER_EMIT(RFCR_RFADDR_NODE0, (cp[1] << 8) | cp[0]); FILTER_EMIT(RFCR_RFADDR_NODE2, (cp[3] << 8) | cp[2]); FILTER_EMIT(RFCR_RFADDR_NODE4, (cp[5] << 8) | cp[4]); if ((ifp->if_flags & IFF_ALLMULTI) == 0) { /* * Program the multicast hash table. */ FILTER_EMIT(RFCR_RFADDR_MC0, mchash[0]); FILTER_EMIT(RFCR_RFADDR_MC1, mchash[1]); FILTER_EMIT(RFCR_RFADDR_MC2, mchash[2]); FILTER_EMIT(RFCR_RFADDR_MC3, mchash[3]); FILTER_EMIT(RFCR_RFADDR_MC4, mchash[4]); FILTER_EMIT(RFCR_RFADDR_MC5, mchash[5]); FILTER_EMIT(RFCR_RFADDR_MC6, mchash[6]); FILTER_EMIT(RFCR_RFADDR_MC7, mchash[7]); if (SIP_SIS900_REV(sc, SIS_REV_635) || SIP_SIS900_REV(sc, SIS_REV_960) || SIP_SIS900_REV(sc, SIS_REV_900B)) { FILTER_EMIT(RFCR_RFADDR_MC8, mchash[8]); FILTER_EMIT(RFCR_RFADDR_MC9, mchash[9]); FILTER_EMIT(RFCR_RFADDR_MC10, mchash[10]); FILTER_EMIT(RFCR_RFADDR_MC11, mchash[11]); FILTER_EMIT(RFCR_RFADDR_MC12, mchash[12]); FILTER_EMIT(RFCR_RFADDR_MC13, mchash[13]); FILTER_EMIT(RFCR_RFADDR_MC14, mchash[14]); FILTER_EMIT(RFCR_RFADDR_MC15, mchash[15]); } } #undef FILTER_EMIT /* * Re-enable the receiver filter. */ bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr); } /* * sip_dp83815_set_filter: * * Set up the receive filter. */ static void sipcom_dp83815_set_filter(struct sip_softc *sc) { bus_space_tag_t st = sc->sc_st; bus_space_handle_t sh = sc->sc_sh; struct ethercom *ec = &sc->sc_ethercom; struct ifnet *ifp = &sc->sc_ethercom.ec_if; struct ether_multi *enm; const u_int8_t *cp; struct ether_multistep step; u_int32_t crc, hash, slot, bit; #define MCHASH_NWORDS_83820 128 #define MCHASH_NWORDS_83815 32 #define MCHASH_NWORDS MAX(MCHASH_NWORDS_83820, MCHASH_NWORDS_83815) u_int16_t mchash[MCHASH_NWORDS]; int i; /* * Initialize the prototype RFCR. * Enable the receive filter, and accept on * Perfect (destination address) Match * If IFF_BROADCAST, also accept all broadcast packets. * If IFF_PROMISC, accept all unicast packets (and later, set * IFF_ALLMULTI and accept all multicast, too). */ sc->sc_rfcr = RFCR_RFEN | RFCR_APM; if (ifp->if_flags & IFF_BROADCAST) sc->sc_rfcr |= RFCR_AAB; if (ifp->if_flags & IFF_PROMISC) { sc->sc_rfcr |= RFCR_AAP; goto allmulti; } /* * Set up the DP83820/DP83815 multicast address filter by * passing all multicast addresses through a CRC generator, * and then using the high-order 11/9 bits as an index into * the 2048/512 bit multicast hash table. The high-order * 7/5 bits select the slot, while the low-order 4 bits * select the bit within the slot. Note that only the low * 16-bits of each filter word are used, and there are * 128/32 filter words. */ memset(mchash, 0, sizeof(mchash)); ifp->if_flags &= ~IFF_ALLMULTI; ETHER_FIRST_MULTI(step, ec, enm); if (enm == NULL) goto setit; while (enm != NULL) { if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) { /* * We must listen to a range of multicast addresses. * For now, just accept all multicasts, rather than * trying to set only those filter bits needed to match * the range. (At this time, the only use of address * ranges is for IP multicast routing, for which the * range is big enough to require all bits set.) */ goto allmulti; } crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN); if (sc->sc_gigabit) { /* Just want the 11 most significant bits. */ hash = crc >> 21; } else { /* Just want the 9 most significant bits. */ hash = crc >> 23; } slot = hash >> 4; bit = hash & 0xf; /* Set the corresponding bit in the hash table. */ mchash[slot] |= 1 << bit; ETHER_NEXT_MULTI(step, enm); } sc->sc_rfcr |= RFCR_MHEN; goto setit; allmulti: ifp->if_flags |= IFF_ALLMULTI; sc->sc_rfcr |= RFCR_AAM; setit: #define FILTER_EMIT(addr, data) \ bus_space_write_4(st, sh, SIP_RFCR, (addr)); \ delay(1); \ bus_space_write_4(st, sh, SIP_RFDR, (data)); \ delay(1) /* * Disable receive filter, and program the node address. */ cp = CLLADDR(ifp->if_sadl); FILTER_EMIT(RFCR_NS_RFADDR_PMATCH0, (cp[1] << 8) | cp[0]); FILTER_EMIT(RFCR_NS_RFADDR_PMATCH2, (cp[3] << 8) | cp[2]); FILTER_EMIT(RFCR_NS_RFADDR_PMATCH4, (cp[5] << 8) | cp[4]); if ((ifp->if_flags & IFF_ALLMULTI) == 0) { int nwords = sc->sc_gigabit ? MCHASH_NWORDS_83820 : MCHASH_NWORDS_83815; /* * Program the multicast hash table. */ for (i = 0; i < nwords; i++) { FILTER_EMIT(sc->sc_parm->p_filtmem + (i * 2), mchash[i]); } } #undef FILTER_EMIT #undef MCHASH_NWORDS #undef MCHASH_NWORDS_83815 #undef MCHASH_NWORDS_83820 /* * Re-enable the receiver filter. */ bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr); } /* * sip_dp83820_mii_readreg: [mii interface function] * * Read a PHY register on the MII of the DP83820. */ static int sipcom_dp83820_mii_readreg(device_t self, int phy, int reg) { struct sip_softc *sc = device_private(self); if (sc->sc_cfg & CFG_TBI_EN) { bus_addr_t tbireg; int rv; if (phy != 0) return (0); switch (reg) { case MII_BMCR: tbireg = SIP_TBICR; break; case MII_BMSR: tbireg = SIP_TBISR; break; case MII_ANAR: tbireg = SIP_TANAR; break; case MII_ANLPAR: tbireg = SIP_TANLPAR; break; case MII_ANER: tbireg = SIP_TANER; break; case MII_EXTSR: /* * Don't even bother reading the TESR register. * The manual documents that the device has * 1000baseX full/half capability, but the * register itself seems read back 0 on some * boards. Just hard-code the result. */ return (EXTSR_1000XFDX|EXTSR_1000XHDX); default: return (0); } rv = bus_space_read_4(sc->sc_st, sc->sc_sh, tbireg) & 0xffff; if (tbireg == SIP_TBISR) { /* LINK and ACOMP are switched! */ int val = rv; rv = 0; if (val & TBISR_MR_LINK_STATUS) rv |= BMSR_LINK; if (val & TBISR_MR_AN_COMPLETE) rv |= BMSR_ACOMP; /* * The manual claims this register reads back 0 * on hard and soft reset. But we want to let * the gentbi driver know that we support auto- * negotiation, so hard-code this bit in the * result. */ rv |= BMSR_ANEG | BMSR_EXTSTAT; } return (rv); } return mii_bitbang_readreg(self, &sipcom_mii_bitbang_ops, phy, reg); } /* * sip_dp83820_mii_writereg: [mii interface function] * * Write a PHY register on the MII of the DP83820. */ static void sipcom_dp83820_mii_writereg(device_t self, int phy, int reg, int val) { struct sip_softc *sc = device_private(self); if (sc->sc_cfg & CFG_TBI_EN) { bus_addr_t tbireg; if (phy != 0) return; switch (reg) { case MII_BMCR: tbireg = SIP_TBICR; break; case MII_ANAR: tbireg = SIP_TANAR; break; case MII_ANLPAR: tbireg = SIP_TANLPAR; break; default: return; } bus_space_write_4(sc->sc_st, sc->sc_sh, tbireg, val); return; } mii_bitbang_writereg(self, &sipcom_mii_bitbang_ops, phy, reg, val); } /* * sip_dp83820_mii_statchg: [mii interface function] * * Callback from MII layer when media changes. */ static void sipcom_dp83820_mii_statchg(device_t self) { struct sip_softc *sc = device_private(self); struct mii_data *mii = &sc->sc_mii; u_int32_t cfg, pcr; /* * Get flow control negotiation result. */ if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO && (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) { sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK; mii->mii_media_active &= ~IFM_ETH_FMASK; } /* * Update TXCFG for full-duplex operation. */ if ((mii->mii_media_active & IFM_FDX) != 0) sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI); else sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI); /* * Update RXCFG for full-duplex or loopback. */ if ((mii->mii_media_active & IFM_FDX) != 0 || IFM_SUBTYPE(mii->mii_media_active) == IFM_LOOP) sc->sc_rxcfg |= RXCFG_ATX; else sc->sc_rxcfg &= ~RXCFG_ATX; /* * Update CFG for MII/GMII. */ if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000)) cfg = sc->sc_cfg | CFG_MODE_1000; else cfg = sc->sc_cfg; /* * 802.3x flow control. */ pcr = 0; if (sc->sc_flowflags & IFM_FLOW) { if (sc->sc_flowflags & IFM_ETH_TXPAUSE) pcr |= sc->sc_rx_flow_thresh; if (sc->sc_flowflags & IFM_ETH_RXPAUSE) pcr |= PCR_PSEN | PCR_PS_MCAST; } bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CFG, cfg); bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg, sc->sc_txcfg); bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg, sc->sc_rxcfg); bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PCR, pcr); } /* * sip_mii_bitbang_read: [mii bit-bang interface function] * * Read the MII serial port for the MII bit-bang module. */ static u_int32_t sipcom_mii_bitbang_read(device_t self) { struct sip_softc *sc = device_private(self); return (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR)); } /* * sip_mii_bitbang_write: [mii big-bang interface function] * * Write the MII serial port for the MII bit-bang module. */ static void sipcom_mii_bitbang_write(device_t self, u_int32_t val) { struct sip_softc *sc = device_private(self); bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, val); } /* * sip_sis900_mii_readreg: [mii interface function] * * Read a PHY register on the MII. */ static int sipcom_sis900_mii_readreg(device_t self, int phy, int reg) { struct sip_softc *sc = device_private(self); u_int32_t enphy; /* * The PHY of recent SiS chipsets is accessed through bitbang * operations. */ if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900) return mii_bitbang_readreg(self, &sipcom_mii_bitbang_ops, phy, reg); #ifndef SIS900_MII_RESTRICT /* * The SiS 900 has only an internal PHY on the MII. Only allow * MII address 0. */ if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0) return (0); #endif bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY, (phy << ENPHY_PHYADDR_SHIFT) | (reg << ENPHY_REGADDR_SHIFT) | ENPHY_RWCMD | ENPHY_ACCESS); do { enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY); } while (enphy & ENPHY_ACCESS); return ((enphy & ENPHY_PHYDATA) >> ENPHY_DATA_SHIFT); } /* * sip_sis900_mii_writereg: [mii interface function] * * Write a PHY register on the MII. */ static void sipcom_sis900_mii_writereg(device_t self, int phy, int reg, int val) { struct sip_softc *sc = device_private(self); u_int32_t enphy; if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900) { mii_bitbang_writereg(self, &sipcom_mii_bitbang_ops, phy, reg, val); return; } #ifndef SIS900_MII_RESTRICT /* * The SiS 900 has only an internal PHY on the MII. Only allow * MII address 0. */ if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0) return; #endif bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY, (val << ENPHY_DATA_SHIFT) | (phy << ENPHY_PHYADDR_SHIFT) | (reg << ENPHY_REGADDR_SHIFT) | ENPHY_ACCESS); do { enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY); } while (enphy & ENPHY_ACCESS); } /* * sip_sis900_mii_statchg: [mii interface function] * * Callback from MII layer when media changes. */ static void sipcom_sis900_mii_statchg(device_t self) { struct sip_softc *sc = device_private(self); struct mii_data *mii = &sc->sc_mii; u_int32_t flowctl; /* * Get flow control negotiation result. */ if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO && (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) { sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK; mii->mii_media_active &= ~IFM_ETH_FMASK; } /* * Update TXCFG for full-duplex operation. */ if ((mii->mii_media_active & IFM_FDX) != 0) sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI); else sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI); /* * Update RXCFG for full-duplex or loopback. */ if ((mii->mii_media_active & IFM_FDX) != 0 || IFM_SUBTYPE(mii->mii_media_active) == IFM_LOOP) sc->sc_rxcfg |= RXCFG_ATX; else sc->sc_rxcfg &= ~RXCFG_ATX; /* * Update IMR for use of 802.3x flow control. */ if (sc->sc_flowflags & IFM_FLOW) { sc->sc_imr |= (ISR_PAUSE_END|ISR_PAUSE_ST); flowctl = FLOWCTL_FLOWEN; } else { sc->sc_imr &= ~(ISR_PAUSE_END|ISR_PAUSE_ST); flowctl = 0; } bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg, sc->sc_txcfg); bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg, sc->sc_rxcfg); bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IMR, sc->sc_imr); bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_FLOWCTL, flowctl); } /* * sip_dp83815_mii_readreg: [mii interface function] * * Read a PHY register on the MII. */ static int sipcom_dp83815_mii_readreg(device_t self, int phy, int reg) { struct sip_softc *sc = device_private(self); u_int32_t val; /* * The DP83815 only has an internal PHY. Only allow * MII address 0. */ if (phy != 0) return (0); /* * Apparently, after a reset, the DP83815 can take a while * to respond. During this recovery period, the BMSR returns * a value of 0. Catch this -- it's not supposed to happen * (the BMSR has some hardcoded-to-1 bits), and wait for the * PHY to come back to life. * * This works out because the BMSR is the first register * read during the PHY probe process. */ do { val = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg)); } while (reg == MII_BMSR && val == 0); return (val & 0xffff); } /* * sip_dp83815_mii_writereg: [mii interface function] * * Write a PHY register to the MII. */ static void sipcom_dp83815_mii_writereg(device_t self, int phy, int reg, int val) { struct sip_softc *sc = device_private(self); /* * The DP83815 only has an internal PHY. Only allow * MII address 0. */ if (phy != 0) return; bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg), val); } /* * sip_dp83815_mii_statchg: [mii interface function] * * Callback from MII layer when media changes. */ static void sipcom_dp83815_mii_statchg(device_t self) { struct sip_softc *sc = device_private(self); /* * Update TXCFG for full-duplex operation. */ if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0) sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI); else sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI); /* * Update RXCFG for full-duplex or loopback. */ if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 || IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP) sc->sc_rxcfg |= RXCFG_ATX; else sc->sc_rxcfg &= ~RXCFG_ATX; /* * XXX 802.3x flow control. */ bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg, sc->sc_txcfg); bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg, sc->sc_rxcfg); /* * Some DP83815s experience problems when used with short * (< 30m/100ft) Ethernet cables in 100BaseTX mode. This * sequence adjusts the DSP's signal attenuation to fix the * problem. */ if (IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_100_TX) { uint32_t reg; bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0x0001); reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4); reg &= 0x0fff; bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4, reg | 0x1000); delay(100); reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00fc); reg &= 0x00ff; if ((reg & 0x0080) == 0 || (reg >= 0x00d8)) { bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00fc, 0x00e8); reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4); bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4, reg | 0x20); } bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0); } } static void sipcom_dp83820_read_macaddr(struct sip_softc *sc, const struct pci_attach_args *pa, u_int8_t *enaddr) { u_int16_t eeprom_data[SIP_DP83820_EEPROM_LENGTH / 2]; u_int8_t cksum, *e, match; int i; /* * EEPROM data format for the DP83820 can be found in * the DP83820 manual, section 4.2.4. */ sipcom_read_eeprom(sc, 0, __arraycount(eeprom_data), eeprom_data); match = eeprom_data[SIP_DP83820_EEPROM_CHECKSUM / 2] >> 8; match = ~(match - 1); cksum = 0x55; e = (u_int8_t *) eeprom_data; for (i = 0; i < SIP_DP83820_EEPROM_CHECKSUM; i++) cksum += *e++; if (cksum != match) printf("%s: Checksum (%x) mismatch (%x)", device_xname(sc->sc_dev), cksum, match); enaddr[0] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] & 0xff; enaddr[1] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] >> 8; enaddr[2] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] & 0xff; enaddr[3] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] >> 8; enaddr[4] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] & 0xff; enaddr[5] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] >> 8; } static void sipcom_sis900_eeprom_delay(struct sip_softc *sc) { int i; /* * FreeBSD goes from (300/33)+1 [10] to 0. There must be * a reason, but I don't know it. */ for (i = 0; i < 10; i++) bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR); } static void sipcom_sis900_read_macaddr(struct sip_softc *sc, const struct pci_attach_args *pa, u_int8_t *enaddr) { u_int16_t myea[ETHER_ADDR_LEN / 2]; switch (sc->sc_rev) { case SIS_REV_630S: case SIS_REV_630E: case SIS_REV_630EA1: case SIS_REV_630ET: case SIS_REV_635: /* * The MAC address for the on-board Ethernet of * the SiS 630 chipset is in the NVRAM. Kick * the chip into re-loading it from NVRAM, and * read the MAC address out of the filter registers. */ bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_RLD); bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR, RFCR_RFADDR_NODE0); myea[0] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) & 0xffff; bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR, RFCR_RFADDR_NODE2); myea[1] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) & 0xffff; bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR, RFCR_RFADDR_NODE4); myea[2] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) & 0xffff; break; case SIS_REV_960: { #define SIS_SET_EROMAR(x,y) bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR, \ bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) | (y)) #define SIS_CLR_EROMAR(x,y) bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR, \ bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) & ~(y)) int waittime, i; /* Allow to read EEPROM from LAN. It is shared * between a 1394 controller and the NIC and each * time we access it, we need to set SIS_EECMD_REQ. */ SIS_SET_EROMAR(sc, EROMAR_REQ); for (waittime = 0; waittime < 1000; waittime++) { /* 1 ms max */ /* Force EEPROM to idle state. */ /* * XXX-cube This is ugly. I'll look for docs about it. */ SIS_SET_EROMAR(sc, EROMAR_EECS); sipcom_sis900_eeprom_delay(sc); for (i = 0; i <= 25; i++) { /* Yes, 26 times. */ SIS_SET_EROMAR(sc, EROMAR_EESK); sipcom_sis900_eeprom_delay(sc); SIS_CLR_EROMAR(sc, EROMAR_EESK); sipcom_sis900_eeprom_delay(sc); } SIS_CLR_EROMAR(sc, EROMAR_EECS); sipcom_sis900_eeprom_delay(sc); bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, 0); if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR) & EROMAR_GNT) { sipcom_read_eeprom(sc, SIP_EEPROM_ETHERNET_ID0 >> 1, sizeof(myea) / sizeof(myea[0]), myea); break; } DELAY(1); } /* * Set SIS_EECTL_CLK to high, so a other master * can operate on the i2c bus. */ SIS_SET_EROMAR(sc, EROMAR_EESK); /* Refuse EEPROM access by LAN */ SIS_SET_EROMAR(sc, EROMAR_DONE); } break; default: sipcom_read_eeprom(sc, SIP_EEPROM_ETHERNET_ID0 >> 1, sizeof(myea) / sizeof(myea[0]), myea); } enaddr[0] = myea[0] & 0xff; enaddr[1] = myea[0] >> 8; enaddr[2] = myea[1] & 0xff; enaddr[3] = myea[1] >> 8; enaddr[4] = myea[2] & 0xff; enaddr[5] = myea[2] >> 8; } /* Table and macro to bit-reverse an octet. */ static const u_int8_t bbr4[] = {0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15}; #define bbr(v) ((bbr4[(v)&0xf] << 4) | bbr4[((v)>>4) & 0xf]) static void sipcom_dp83815_read_macaddr(struct sip_softc *sc, const struct pci_attach_args *pa, u_int8_t *enaddr) { u_int16_t eeprom_data[SIP_DP83815_EEPROM_LENGTH / 2], *ea; u_int8_t cksum, *e, match; int i; sipcom_read_eeprom(sc, 0, sizeof(eeprom_data) / sizeof(eeprom_data[0]), eeprom_data); match = eeprom_data[SIP_DP83815_EEPROM_CHECKSUM/2] >> 8; match = ~(match - 1); cksum = 0x55; e = (u_int8_t *) eeprom_data; for (i=0 ; isc_dev), cksum, match); } /* * Unrolled because it makes slightly more sense this way. * The DP83815 stores the MAC address in bit 0 of word 6 * through bit 15 of word 8. */ ea = &eeprom_data[6]; enaddr[0] = ((*ea & 0x1) << 7); ea++; enaddr[0] |= ((*ea & 0xFE00) >> 9); enaddr[1] = ((*ea & 0x1FE) >> 1); enaddr[2] = ((*ea & 0x1) << 7); ea++; enaddr[2] |= ((*ea & 0xFE00) >> 9); enaddr[3] = ((*ea & 0x1FE) >> 1); enaddr[4] = ((*ea & 0x1) << 7); ea++; enaddr[4] |= ((*ea & 0xFE00) >> 9); enaddr[5] = ((*ea & 0x1FE) >> 1); /* * In case that's not weird enough, we also need to reverse * the bits in each byte. This all actually makes more sense * if you think about the EEPROM storage as an array of bits * being shifted into bytes, but that's not how we're looking * at it here... */ for (i = 0; i < 6 ;i++) enaddr[i] = bbr(enaddr[i]); } /* * sip_mediastatus: [ifmedia interface function] * * Get the current interface media status. */ static void sipcom_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr) { struct sip_softc *sc = ifp->if_softc; if (!device_is_active(sc->sc_dev)) { ifmr->ifm_active = IFM_ETHER | IFM_NONE; ifmr->ifm_status = 0; return; } ether_mediastatus(ifp, ifmr); ifmr->ifm_active = (ifmr->ifm_active & ~IFM_ETH_FMASK) | sc->sc_flowflags; }