/* $NetBSD: testLoops.c,v 1.4 2002/02/21 07:38:16 itojun Exp $ */ /* This is a derivative work. */ /*- * Copyright (c) 2001 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Ross Harvey. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the NetBSD * Foundation, Inc. and its contributors. * 4. Neither the name of The NetBSD Foundation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* =============================================================================== This C source file is part of TestFloat, Release 2a, a package of programs for testing the correctness of floating-point arithmetic complying to the IEC/IEEE Standard for Floating-Point. Written by John R. Hauser. More information is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/arithmetic/TestFloat.html'. THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE. Derivative works are acceptable, even for commercial purposes, so long as (1) they include prominent notice that the work is derivative, and (2) they include prominent notice akin to these four paragraphs for those parts of this code that are retained. =============================================================================== */ #include #include #include "milieu.h" #include "softfloat.h" #include "testCases.h" #include "writeHex.h" #include "testLoops.h" volatile flag stop = FALSE; const char *trueName, *testName; flag forever, errorStop; uint32 maxErrorCount = 0; flag checkNaNs = FALSE; int8 *trueFlagsPtr; int8 ( *testFlagsFunctionPtr )( void ); const char *functionName; const char *roundingPrecisionName, *roundingModeName, *tininessModeName; flag anyErrors = FALSE; void writeFunctionName( FILE *stream ) { fputs( functionName, stream ); if ( roundingModeName ) { if ( roundingPrecisionName ) { fputs( ", precision ", stream ); fputs( roundingPrecisionName, stream ); } fputs( ", rounding ", stream ); fputs( roundingModeName, stream ); if ( tininessModeName ) { fputs( ", tininess ", stream ); fputs( tininessModeName, stream ); fputs( " rounding", stream ); } } } void exitWithStatus( void ) { exit( anyErrors ? EXIT_FAILURE : EXIT_SUCCESS ); } static uint32 tenthousandsCount, errorCount = 0; static void writeTestsTotal( void ) { if ( forever ) { fputs( "Unbounded tests.\n", stderr ); } else { fprintf( stderr, "%d tests total.\n", testCases_total ); } } static void writeTestsPerformed( int16 count ) { if ( tenthousandsCount ) { fprintf( stderr, "%d%04d tests performed", tenthousandsCount, count ); } else { fprintf( stderr, "%d tests performed", count ); } if ( errorCount ) { fprintf( stderr, "; %d error%s found.\n", errorCount, ( errorCount == 1 ) ? "" : "s" ); } else { fputs( ".\n", stderr ); fputs( "No errors found in ", stdout ); writeFunctionName( stdout ); fputs( ".\n", stdout ); fflush( stdout ); } } static void checkEarlyExit( void ) { ++tenthousandsCount; if ( stop ) { writeTestsPerformed( 0 ); exitWithStatus(); } fprintf( stderr, "%3d0000", tenthousandsCount ); } static void writeErrorFound( int16 count ) { if ( errorCount == 1 ) { fputs( "Errors found in ", stdout ); writeFunctionName( stdout ); fputs( ":\n", stdout ); } if ( stop ) { writeTestsPerformed( count ); exitWithStatus(); } anyErrors = TRUE; } INLINE void writeInput_a_int32( void ) { writeHex_bits32( testCases_a_int32, stdout ); } #ifdef BITS64 INLINE void writeInput_a_int64( void ) { writeHex_bits64( testCases_a_int64, stdout ); } #endif INLINE void writeInput_a_float32( void ) { writeHex_float32( testCases_a_float32, stdout ); } static void writeInputs_ab_float32( void ) { writeHex_float32( testCases_a_float32, stdout ); fputs( " ", stdout ); writeHex_float32( testCases_b_float32, stdout ); } INLINE void writeInput_a_float64( void ) { writeHex_float64( testCases_a_float64, stdout ); } static void writeInputs_ab_float64( void ) { writeHex_float64( testCases_a_float64, stdout ); fputs( " ", stdout ); writeHex_float64( testCases_b_float64, stdout ); } #ifdef FLOATX80 INLINE void writeInput_a_floatx80( void ) { writeHex_floatx80( testCases_a_floatx80, stdout ); } static void writeInputs_ab_floatx80( void ) { writeHex_floatx80( testCases_a_floatx80, stdout ); fputs( " ", stdout ); writeHex_floatx80( testCases_b_floatx80, stdout ); } #endif #ifdef FLOAT128 INLINE void writeInput_a_float128( void ) { writeHex_float128( testCases_a_float128, stdout ); } static void writeInputs_ab_float128( void ) { writeHex_float128( testCases_a_float128, stdout ); fputs( " ", stdout ); writeHex_float128( testCases_b_float128, stdout ); } #endif static void writeOutputs_z_flag( flag trueZ, uint8 trueFlags, flag testZ, uint8 testFlags ) { fputs( trueName, stdout ); fputs( ": ", stdout ); writeHex_flag( trueZ, stdout ); fputc( ' ', stdout ); writeHex_float_flags( trueFlags, stdout ); fputs( " ", stdout ); fputs( testName, stdout ); fputs( ": ", stdout ); writeHex_flag( testZ, stdout ); fputc( ' ', stdout ); writeHex_float_flags( testFlags, stdout ); fputc( '\n', stdout ); } static void writeOutputs_z_int32( int32 trueZ, uint8 trueFlags, int32 testZ, uint8 testFlags ) { fputs( trueName, stdout ); fputs( ": ", stdout ); writeHex_bits32( trueZ, stdout ); fputc( ' ', stdout ); writeHex_float_flags( trueFlags, stdout ); fputs( " ", stdout ); fputs( testName, stdout ); fputs( ": ", stdout ); writeHex_bits32( testZ, stdout ); fputc( ' ', stdout ); writeHex_float_flags( testFlags, stdout ); fputc( '\n', stdout ); } #ifdef BITS64 static void writeOutputs_z_int64( int64 trueZ, uint8 trueFlags, int64 testZ, uint8 testFlags ) { fputs( trueName, stdout ); fputs( ": ", stdout ); writeHex_bits64( trueZ, stdout ); fputc( ' ', stdout ); writeHex_float_flags( trueFlags, stdout ); fputs( " ", stdout ); fputs( testName, stdout ); fputs( ": ", stdout ); writeHex_bits64( testZ, stdout ); fputc( ' ', stdout ); writeHex_float_flags( testFlags, stdout ); fputc( '\n', stdout ); } #endif static void writeOutputs_z_float32( float32 trueZ, uint8 trueFlags, float32 testZ, uint8 testFlags ) { fputs( trueName, stdout ); fputs( ": ", stdout ); writeHex_float32( trueZ, stdout ); fputc( ' ', stdout ); writeHex_float_flags( trueFlags, stdout ); fputs( " ", stdout ); fputs( testName, stdout ); fputs( ": ", stdout ); writeHex_float32( testZ, stdout ); fputc( ' ', stdout ); writeHex_float_flags( testFlags, stdout ); fputc( '\n', stdout ); } static void writeOutputs_z_float64( float64 trueZ, uint8 trueFlags, float64 testZ, uint8 testFlags ) { fputs( trueName, stdout ); fputs( ": ", stdout ); writeHex_float64( trueZ, stdout ); fputc( ' ', stdout ); writeHex_float_flags( trueFlags, stdout ); fputs( " ", stdout ); fputs( testName, stdout ); fputs( ": ", stdout ); writeHex_float64( testZ, stdout ); fputc( ' ', stdout ); writeHex_float_flags( testFlags, stdout ); fputc( '\n', stdout ); } #ifdef FLOATX80 static void writeOutputs_z_floatx80( floatx80 trueZ, uint8 trueFlags, floatx80 testZ, uint8 testFlags ) { fputs( trueName, stdout ); fputs( ": ", stdout ); writeHex_floatx80( trueZ, stdout ); fputc( ' ', stdout ); writeHex_float_flags( trueFlags, stdout ); fputs( " ", stdout ); fputs( testName, stdout ); fputs( ": ", stdout ); writeHex_floatx80( testZ, stdout ); fputc( ' ', stdout ); writeHex_float_flags( testFlags, stdout ); fputc( '\n', stdout ); } #endif #ifdef FLOAT128 static void writeOutputs_z_float128( float128 trueZ, uint8 trueFlags, float128 testZ, uint8 testFlags ) { fputs( trueName, stdout ); fputs( ": ", stdout ); writeHex_float128( trueZ, stdout ); fputc( ' ', stdout ); writeHex_float_flags( trueFlags, stdout ); fputs( "\n\t", stdout ); fputs( testName, stdout ); fputs( ": ", stdout ); writeHex_float128( testZ, stdout ); fputc( ' ', stdout ); writeHex_float_flags( testFlags, stdout ); fputc( '\n', stdout ); } #endif INLINE flag float32_isNaN( float32 a ) { return 0x7F800000 < ( a & 0x7FFFFFFF ); } #ifdef BITS64 INLINE flag float64_same( float64 a, float64 b ) { return a == b; } INLINE flag float64_isNaN( float64 a ) { return LIT64( 0x7FF0000000000000 ) < ( a & LIT64( 0x7FFFFFFFFFFFFFFF ) ); } #else INLINE flag float64_same( float64 a, float64 b ) { return ( a.high == b.high ) && ( a.low == b.low ); } INLINE flag float64_isNaN( float64 a ) { bits32 absAHigh; absAHigh = a.high & 0x7FFFFFFF; return ( 0x7FF00000 < absAHigh ) || ( ( absAHigh == 0x7FF00000 ) && a.low ); } #endif #ifdef FLOATX80 INLINE flag floatx80_same( floatx80 a, floatx80 b ) { return ( a.high == b.high ) && ( a.low == b.low ); } INLINE flag floatx80_isNaN( floatx80 a ) { return ( ( a.high & 0x7FFF ) == 0x7FFF ) && a.low; } #endif #ifdef FLOAT128 INLINE flag float128_same( float128 a, float128 b ) { return ( a.high == b.high ) && ( a.low == b.low ); } INLINE flag float128_isNaN( float128 a ) { bits64 absAHigh; absAHigh = a.high & LIT64( 0x7FFFFFFFFFFFFFFF ); return ( LIT64( 0x7FFF000000000000 ) < absAHigh ) || ( ( absAHigh == LIT64( 0x7FFF000000000000 ) ) && a.low ); } #endif void test_a_int32_z_float32( float32 trueFunction( int32 ), float32 testFunction( int32 ) ) { int16 count; float32 trueZ, testZ; uint8 trueFlags, testFlags; errorCount = 0; tenthousandsCount = 0; count = 10000; testCases_initSequence( testCases_sequence_a_int32 ); writeTestsTotal(); while ( ! testCases_done || forever ) { testCases_next(); *trueFlagsPtr = 0; trueZ = trueFunction( testCases_a_int32 ); trueFlags = *trueFlagsPtr; (void) testFlagsFunctionPtr(); testZ = testFunction( testCases_a_int32 ); testFlags = testFlagsFunctionPtr(); --count; if ( count == 0 ) { checkEarlyExit(); count = 10000; } if ( ( trueZ != testZ ) || ( trueFlags != testFlags ) ) { if ( ! checkNaNs && float32_isNaN( trueZ ) && float32_isNaN( testZ ) && ! float32_is_signaling_nan( testZ ) && ( trueFlags == testFlags ) ) { /* no problem */ } else { ++errorCount; writeErrorFound( 10000 - count ); writeInput_a_int32(); fputs( " ", stdout ); writeOutputs_z_float32( trueZ, trueFlags, testZ, testFlags ); fflush( stdout ); if ( errorCount == maxErrorCount ) goto exit; } } } exit: writeTestsPerformed( 10000 - count ); } void test_a_int32_z_float64( float64 trueFunction( int32 ), float64 testFunction( int32 ) ) { int16 count; float64 trueZ, testZ; uint8 trueFlags, testFlags; errorCount = 0; tenthousandsCount = 0; count = 10000; testCases_initSequence( testCases_sequence_a_int32 ); writeTestsTotal(); while ( ! testCases_done || forever ) { testCases_next(); *trueFlagsPtr = 0; trueZ = trueFunction( testCases_a_int32 ); trueFlags = *trueFlagsPtr; (void) testFlagsFunctionPtr(); testZ = testFunction( testCases_a_int32 ); testFlags = testFlagsFunctionPtr(); --count; if ( count == 0 ) { checkEarlyExit(); count = 10000; } if ( ! float64_same( trueZ, testZ ) || ( trueFlags != testFlags ) ) { if ( ! checkNaNs && float64_isNaN( trueZ ) && float64_isNaN( testZ ) && ! float64_is_signaling_nan( testZ ) && ( trueFlags == testFlags ) ) { /* no problem */ } else { ++errorCount; writeErrorFound( 10000 - count ); writeInput_a_int32(); fputs( " ", stdout ); writeOutputs_z_float64( trueZ, trueFlags, testZ, testFlags ); fflush( stdout ); if ( errorCount == maxErrorCount ) goto exit; } } } exit: writeTestsPerformed( 10000 - count ); } #ifdef FLOATX80 void test_a_int32_z_floatx80( floatx80 trueFunction( int32 ), floatx80 testFunction( int32 ) ) { int16 count; floatx80 trueZ, testZ; uint8 trueFlags, testFlags; errorCount = 0; tenthousandsCount = 0; count = 10000; testCases_initSequence( testCases_sequence_a_int32 ); writeTestsTotal(); while ( ! testCases_done || forever ) { testCases_next(); *trueFlagsPtr = 0; trueZ = trueFunction( testCases_a_int32 ); trueFlags = *trueFlagsPtr; (void) testFlagsFunctionPtr(); testZ = testFunction( testCases_a_int32 ); testFlags = testFlagsFunctionPtr(); --count; if ( count == 0 ) { checkEarlyExit(); count = 10000; } if ( ! floatx80_same( trueZ, testZ ) || ( trueFlags != testFlags ) ) { if ( ! checkNaNs && floatx80_isNaN( trueZ ) && floatx80_isNaN( testZ ) && ! floatx80_is_signaling_nan( testZ ) && ( trueFlags == testFlags ) ) { /* no problem */ } else { ++errorCount; writeErrorFound( 10000 - count ); writeInput_a_int32(); fputs( " ", stdout ); writeOutputs_z_floatx80( trueZ, trueFlags, testZ, testFlags ); fflush( stdout ); if ( errorCount == maxErrorCount ) goto exit; } } } exit: writeTestsPerformed( 10000 - count ); } #endif #ifdef FLOAT128 void test_a_int32_z_float128( float128 trueFunction( int32 ), float128 testFunction( int32 ) ) { int16 count; float128 trueZ, testZ; uint8 trueFlags, testFlags; errorCount = 0; tenthousandsCount = 0; count = 10000; testCases_initSequence( testCases_sequence_a_int32 ); writeTestsTotal(); while ( ! testCases_done || forever ) { testCases_next(); *trueFlagsPtr = 0; trueZ = trueFunction( testCases_a_int32 ); trueFlags = *trueFlagsPtr; (void) testFlagsFunctionPtr(); testZ = testFunction( testCases_a_int32 ); testFlags = testFlagsFunctionPtr(); --count; if ( count == 0 ) { checkEarlyExit(); count = 10000; } if ( ! float128_same( trueZ, testZ ) || ( trueFlags != testFlags ) ) { if ( ! checkNaNs && float128_isNaN( trueZ ) && float128_isNaN( testZ ) && ! float128_is_signaling_nan( testZ ) && ( trueFlags == testFlags ) ) { /* no problem */ } else { ++errorCount; writeErrorFound( 10000 - count ); writeInput_a_int32(); fputs( "\n\t", stdout ); writeOutputs_z_float128( trueZ, trueFlags, testZ, testFlags ); fflush( stdout ); if ( errorCount == maxErrorCount ) goto exit; } } } exit: writeTestsPerformed( 10000 - count ); } #endif #ifdef BITS64 void test_a_int64_z_float32( float32 trueFunction( int64 ), float32 testFunction( int64 ) ) { int16 count; float32 trueZ, testZ; uint8 trueFlags, testFlags; errorCount = 0; tenthousandsCount = 0; count = 10000; testCases_initSequence( testCases_sequence_a_int64 ); writeTestsTotal(); while ( ! testCases_done || forever ) { testCases_next(); *trueFlagsPtr = 0; trueZ = trueFunction( testCases_a_int64 ); trueFlags = *trueFlagsPtr; (void) testFlagsFunctionPtr(); testZ = testFunction( testCases_a_int64 ); testFlags = testFlagsFunctionPtr(); --count; if ( count == 0 ) { checkEarlyExit(); count = 10000; } if ( ( trueZ != testZ ) || ( trueFlags != testFlags ) ) { if ( ! checkNaNs && float32_isNaN( trueZ ) && float32_isNaN( testZ ) && ! float32_is_signaling_nan( testZ ) && ( trueFlags == testFlags ) ) { /* no problem */ } else { ++errorCount; writeErrorFound( 10000 - count ); writeInput_a_int64(); fputs( " ", stdout ); writeOutputs_z_float32( trueZ, trueFlags, testZ, testFlags ); fflush( stdout ); if ( errorCount == maxErrorCount ) goto exit; } } } exit: writeTestsPerformed( 10000 - count ); } void test_a_int64_z_float64( float64 trueFunction( int64 ), float64 testFunction( int64 ) ) { int16 count; float64 trueZ, testZ; uint8 trueFlags, testFlags; errorCount = 0; tenthousandsCount = 0; count = 10000; testCases_initSequence( testCases_sequence_a_int64 ); writeTestsTotal(); while ( ! testCases_done || forever ) { testCases_next(); *trueFlagsPtr = 0; trueZ = trueFunction( testCases_a_int64 ); trueFlags = *trueFlagsPtr; (void) testFlagsFunctionPtr(); testZ = testFunction( testCases_a_int64 ); testFlags = testFlagsFunctionPtr(); --count; if ( count == 0 ) { checkEarlyExit(); count = 10000; } if ( ! float64_same( trueZ, testZ ) || ( trueFlags != testFlags ) ) { if ( ! checkNaNs && float64_isNaN( trueZ ) && float64_isNaN( testZ ) && ! float64_is_signaling_nan( testZ ) && ( trueFlags == testFlags ) ) { /* no problem */ } else { ++errorCount; writeErrorFound( 10000 - count ); writeInput_a_int64(); fputs( " ", stdout ); writeOutputs_z_float64( trueZ, trueFlags, testZ, testFlags ); fflush( stdout ); if ( errorCount == maxErrorCount ) goto exit; } } } exit: writeTestsPerformed( 10000 - count ); } #ifdef FLOATX80 void test_a_int64_z_floatx80( floatx80 trueFunction( int64 ), floatx80 testFunction( int64 ) ) { int16 count; floatx80 trueZ, testZ; uint8 trueFlags, testFlags; errorCount = 0; tenthousandsCount = 0; count = 10000; testCases_initSequence( testCases_sequence_a_int64 ); writeTestsTotal(); while ( ! testCases_done || forever ) { testCases_next(); *trueFlagsPtr = 0; trueZ = trueFunction( testCases_a_int64 ); trueFlags = *trueFlagsPtr; (void) testFlagsFunctionPtr(); testZ = testFunction( testCases_a_int64 ); testFlags = testFlagsFunctionPtr(); --count; if ( count == 0 ) { checkEarlyExit(); count = 10000; } if ( ! floatx80_same( trueZ, testZ ) || ( trueFlags != testFlags ) ) { if ( ! checkNaNs && floatx80_isNaN( trueZ ) && floatx80_isNaN( testZ ) && ! floatx80_is_signaling_nan( testZ ) && ( trueFlags == testFlags ) ) { /* no problem */ } else { ++errorCount; writeErrorFound( 10000 - count ); writeInput_a_int64(); fputs( " ", stdout ); writeOutputs_z_floatx80( trueZ, trueFlags, testZ, testFlags ); fflush( stdout ); if ( errorCount == maxErrorCount ) goto exit; } } } exit: writeTestsPerformed( 10000 - count ); } #endif #ifdef FLOAT128 void test_a_int64_z_float128( float128 trueFunction( int64 ), float128 testFunction( int64 ) ) { int16 count; float128 trueZ, testZ; uint8 trueFlags, testFlags; errorCount = 0; tenthousandsCount = 0; count = 10000; testCases_initSequence( testCases_sequence_a_int64 ); writeTestsTotal(); while ( ! testCases_done || forever ) { testCases_next(); *trueFlagsPtr = 0; trueZ = trueFunction( testCases_a_int64 ); trueFlags = *trueFlagsPtr; (void) testFlagsFunctionPtr(); testZ = testFunction( testCases_a_int64 ); testFlags = testFlagsFunctionPtr(); --count; if ( count == 0 ) { checkEarlyExit(); count = 10000; } if ( ! float128_same( trueZ, testZ ) || ( trueFlags != testFlags ) ) { if ( ! checkNaNs && float128_isNaN( trueZ ) && float128_isNaN( testZ ) && ! float128_is_signaling_nan( testZ ) && ( trueFlags == testFlags ) ) { /* no problem */ } else { ++errorCount; writeErrorFound( 10000 - count ); writeInput_a_int64(); fputs( "\n\t", stdout ); writeOutputs_z_float128( trueZ, trueFlags, testZ, testFlags ); fflush( stdout ); if ( errorCount == maxErrorCount ) goto exit; } } } exit: writeTestsPerformed( 10000 - count ); } #endif #endif void test_a_float32_z_int32( int32 trueFunction( float32 ), int32 testFunction( float32 ) ) { int16 count; int32 trueZ, testZ; uint8 trueFlags, testFlags; errorCount = 0; tenthousandsCount = 0; count = 10000; testCases_initSequence( testCases_sequence_a_float32 ); writeTestsTotal(); while ( ! testCases_done || forever ) { testCases_next(); *trueFlagsPtr = 0; trueZ = trueFunction( testCases_a_float32 ); trueFlags = *trueFlagsPtr; (void) testFlagsFunctionPtr(); testZ = testFunction( testCases_a_float32 ); testFlags = testFlagsFunctionPtr(); --count; if ( count == 0 ) { checkEarlyExit(); count = 10000; } if ( ( trueZ != testZ ) || ( trueFlags != testFlags ) ) { if ( ! checkNaNs && float32_is_signaling_nan( testCases_a_float32 ) ) { trueFlags |= float_flag_invalid; } if ( ( trueZ == 0x7FFFFFFF ) && ( ( testZ == 0x7FFFFFFF ) || ( testZ == (sbits32) 0x80000000 ) ) && ( trueFlags == float_flag_invalid ) && ( testFlags == float_flag_invalid ) ) { /* no problem */ } else { ++errorCount; writeErrorFound( 10000 - count ); writeInput_a_float32(); fputs( " ", stdout ); writeOutputs_z_int32( trueZ, trueFlags, testZ, testFlags ); fflush( stdout ); if ( errorCount == maxErrorCount ) goto exit; } } } exit: writeTestsPerformed( 10000 - count ); } #ifdef BITS64 void test_a_float32_z_int64( int64 trueFunction( float32 ), int64 testFunction( float32 ) ) { int16 count; int64 trueZ, testZ; uint8 trueFlags, testFlags; errorCount = 0; tenthousandsCount = 0; count = 10000; testCases_initSequence( testCases_sequence_a_float32 ); writeTestsTotal(); while ( ! testCases_done || forever ) { testCases_next(); *trueFlagsPtr = 0; trueZ = trueFunction( testCases_a_float32 ); trueFlags = *trueFlagsPtr; (void) testFlagsFunctionPtr(); testZ = testFunction( testCases_a_float32 ); testFlags = testFlagsFunctionPtr(); --count; if ( count == 0 ) { checkEarlyExit(); count = 10000; } if ( ( trueZ != testZ ) || ( trueFlags != testFlags ) ) { if ( ! checkNaNs && float32_is_signaling_nan( testCases_a_float32 ) ) { trueFlags |= float_flag_invalid; } if ( ( trueZ == LIT64( 0x7FFFFFFFFFFFFFFF ) ) && ( ( testZ == LIT64( 0x7FFFFFFFFFFFFFFF ) ) || ( testZ == (sbits64) LIT64( 0x8000000000000000 ) ) ) && ( trueFlags == float_flag_invalid ) && ( testFlags == float_flag_invalid ) ) { /* no problem */ } else { ++errorCount; writeErrorFound( 10000 - count ); writeInput_a_float32(); fputs( " ", stdout ); writeOutputs_z_int64( trueZ, trueFlags, testZ, testFlags ); fflush( stdout ); if ( errorCount == maxErrorCount ) goto exit; } } } exit: writeTestsPerformed( 10000 - count ); } #endif void test_a_float32_z_float64( float64 trueFunction( float32 ), float64 testFunction( float32 ) ) { int16 count; float64 trueZ, testZ; uint8 trueFlags, testFlags; errorCount = 0; tenthousandsCount = 0; count = 10000; testCases_initSequence( testCases_sequence_a_float32 ); writeTestsTotal(); while ( ! testCases_done || forever ) { testCases_next(); *trueFlagsPtr = 0; trueZ = trueFunction( testCases_a_float32 ); trueFlags = *trueFlagsPtr; (void) testFlagsFunctionPtr(); testZ = testFunction( testCases_a_float32 ); testFlags = testFlagsFunctionPtr(); --count; if ( count == 0 ) { checkEarlyExit(); count = 10000; } if ( ! float64_same( trueZ, testZ ) || ( trueFlags != testFlags ) ) { if ( ! checkNaNs && float32_is_signaling_nan( testCases_a_float32 ) ) { trueFlags |= float_flag_invalid; } if ( ! checkNaNs && float64_isNaN( trueZ ) && float64_isNaN( testZ ) && ! float64_is_signaling_nan( testZ ) && ( trueFlags == testFlags ) ) { /* no problem */ } else { ++errorCount; writeErrorFound( 10000 - count ); writeInput_a_float32(); fputs( " ", stdout ); writeOutputs_z_float64( trueZ, trueFlags, testZ, testFlags ); fflush( stdout ); if ( errorCount == maxErrorCount ) goto exit; } } } exit: writeTestsPerformed( 10000 - count ); } #ifdef FLOATX80 void test_a_float32_z_floatx80( floatx80 trueFunction( float32 ), floatx80 testFunction( float32 ) ) { int16 count; floatx80 trueZ, testZ; uint8 trueFlags, testFlags; errorCount = 0; tenthousandsCount = 0; count = 10000; testCases_initSequence( testCases_sequence_a_float32 ); writeTestsTotal(); while ( ! testCases_done || forever ) { testCases_next(); *trueFlagsPtr = 0; trueZ = trueFunction( testCases_a_float32 ); trueFlags = *trueFlagsPtr; (void) testFlagsFunctionPtr(); testZ = testFunction( testCases_a_float32 ); testFlags = testFlagsFunctionPtr(); --count; if ( count == 0 ) { checkEarlyExit(); count = 10000; } if ( ! floatx80_same( trueZ, testZ ) || ( trueFlags != testFlags ) ) { if ( ! checkNaNs && float32_is_signaling_nan( testCases_a_float32 ) ) { trueFlags |= float_flag_invalid; } if ( ! checkNaNs && floatx80_isNaN( trueZ ) && floatx80_isNaN( testZ ) && ! floatx80_is_signaling_nan( testZ ) && ( trueFlags == testFlags ) ) { /* no problem */ } else { ++errorCount; writeErrorFound( 10000 - count ); writeInput_a_float32(); fputs( "\n\t", stdout ); writeOutputs_z_floatx80( trueZ, trueFlags, testZ, testFlags ); fflush( stdout ); if ( errorCount == maxErrorCount ) goto exit; } } } exit: writeTestsPerformed( 10000 - count ); } #endif #ifdef FLOAT128 void test_a_float32_z_float128( float128 trueFunction( float32 ), float128 testFunction( float32 ) ) { int16 count; float128 trueZ, testZ; uint8 trueFlags, testFlags; errorCount = 0; tenthousandsCount = 0; count = 10000; testCases_initSequence( testCases_sequence_a_float32 ); writeTestsTotal(); while ( ! testCases_done || forever ) { testCases_next(); *trueFlagsPtr = 0; trueZ = trueFunction( testCases_a_float32 ); trueFlags = *trueFlagsPtr; (void) testFlagsFunctionPtr(); testZ = testFunction( testCases_a_float32 ); testFlags = testFlagsFunctionPtr(); --count; if ( count == 0 ) { checkEarlyExit(); count = 10000; } if ( ! float128_same( trueZ, testZ ) || ( trueFlags != testFlags ) ) { if ( ! checkNaNs && float32_is_signaling_nan( testCases_a_float32 ) ) { trueFlags |= float_flag_invalid; } if ( ! checkNaNs && float128_isNaN( trueZ ) && float128_isNaN( testZ ) && ! float128_is_signaling_nan( testZ ) && ( trueFlags == testFlags ) ) { /* no problem */ } else { ++errorCount; writeErrorFound( 10000 - count ); writeInput_a_float32(); fputs( "\n\t", stdout ); writeOutputs_z_float128( trueZ, trueFlags, testZ, testFlags ); fflush( stdout ); if ( errorCount == maxErrorCount ) goto exit; } } } exit: writeTestsPerformed( 10000 - count ); } #endif void test_az_float32( float32 trueFunction( float32 ), float32 testFunction( float32 ) ) { int16 count; float32 trueZ, testZ; uint8 trueFlags, testFlags; errorCount = 0; tenthousandsCount = 0; count = 10000; testCases_initSequence( testCases_sequence_a_float32 ); writeTestsTotal(); while ( ! testCases_done || forever ) { testCases_next(); *trueFlagsPtr = 0; trueZ = trueFunction( testCases_a_float32 ); trueFlags = *trueFlagsPtr; (void) testFlagsFunctionPtr(); testZ = testFunction( testCases_a_float32 ); testFlags = testFlagsFunctionPtr(); --count; if ( count == 0 ) { checkEarlyExit(); count = 10000; } if ( ( trueZ != testZ ) || ( trueFlags != testFlags ) ) { if ( ! checkNaNs && float32_is_signaling_nan( testCases_a_float32 ) ) { trueFlags |= float_flag_invalid; } if ( ! checkNaNs && float32_isNaN( trueZ ) && float32_isNaN( testZ ) && ! float32_is_signaling_nan( testZ ) && ( trueFlags == testFlags ) ) { /* no problem */ } else { ++errorCount; writeErrorFound( 10000 - count ); writeInput_a_float32(); fputs( " ", stdout ); writeOutputs_z_float32( trueZ, trueFlags, testZ, testFlags ); fflush( stdout ); if ( errorCount == maxErrorCount ) goto exit; } } } exit: writeTestsPerformed( 10000 - count ); } void test_ab_float32_z_flag( flag trueFunction( float32, float32 ), flag testFunction( float32, float32 ) ) { int16 count; flag trueZ, testZ; uint8 trueFlags, testFlags; errorCount = 0; tenthousandsCount = 0; count = 10000; testCases_initSequence( testCases_sequence_ab_float32 ); writeTestsTotal(); while ( ! testCases_done || forever ) { testCases_next(); *trueFlagsPtr = 0; trueZ = trueFunction( testCases_a_float32, testCases_b_float32 ); trueFlags = *trueFlagsPtr; (void) testFlagsFunctionPtr(); testZ = testFunction( testCases_a_float32, testCases_b_float32 ); testFlags = testFlagsFunctionPtr(); --count; if ( count == 0 ) { checkEarlyExit(); count = 10000; } if ( ( trueZ != testZ ) || ( trueFlags != testFlags ) ) { if ( ! checkNaNs && ( float32_is_signaling_nan( testCases_a_float32 ) || float32_is_signaling_nan( testCases_b_float32 ) ) ) { trueFlags |= float_flag_invalid; } if ( ( trueZ != testZ ) || ( trueFlags != testFlags ) ) { ++errorCount; writeErrorFound( 10000 - count ); writeInputs_ab_float32(); fputs( " ", stdout ); writeOutputs_z_flag( trueZ, trueFlags, testZ, testFlags ); fflush( stdout ); if ( errorCount == maxErrorCount ) goto exit; } } } exit: writeTestsPerformed( 10000 - count ); return; } void test_abz_float32( float32 trueFunction( float32, float32 ), float32 testFunction( float32, float32 ) ) { int16 count; float32 trueZ, testZ; uint8 trueFlags, testFlags; errorCount = 0; tenthousandsCount = 0; count = 10000; testCases_initSequence( testCases_sequence_ab_float32 ); writeTestsTotal(); while ( ! testCases_done || forever ) { testCases_next(); *trueFlagsPtr = 0; trueZ = trueFunction( testCases_a_float32, testCases_b_float32 ); trueFlags = *trueFlagsPtr; (void) testFlagsFunctionPtr(); testZ = testFunction( testCases_a_float32, testCases_b_float32 ); testFlags = testFlagsFunctionPtr(); --count; if ( count == 0 ) { checkEarlyExit(); count = 10000; } if ( ( trueZ != testZ ) || ( trueFlags != testFlags ) ) { if ( ! checkNaNs && ( float32_is_signaling_nan( testCases_a_float32 ) || float32_is_signaling_nan( testCases_b_float32 ) ) ) { trueFlags |= float_flag_invalid; } if ( ! checkNaNs && float32_isNaN( trueZ ) && float32_isNaN( testZ ) && ! float32_is_signaling_nan( testZ ) && ( trueFlags == testFlags ) ) { /* no problem */ } else { ++errorCount; writeErrorFound( 10000 - count ); writeInputs_ab_float32(); fputs( " ", stdout ); writeOutputs_z_float32( trueZ, trueFlags, testZ, testFlags ); fflush( stdout ); if ( errorCount == maxErrorCount ) goto exit; } } } exit: writeTestsPerformed( 10000 - count ); return; } void test_a_float64_z_int32( int32 trueFunction( float64 ), int32 testFunction( float64 ) ) { int16 count; int32 trueZ, testZ; uint8 trueFlags, testFlags; errorCount = 0; tenthousandsCount = 0; count = 10000; testCases_initSequence( testCases_sequence_a_float64 ); writeTestsTotal(); while ( ! testCases_done || forever ) { testCases_next(); *trueFlagsPtr = 0; trueZ = trueFunction( testCases_a_float64 ); trueFlags = *trueFlagsPtr; (void) testFlagsFunctionPtr(); testZ = testFunction( testCases_a_float64 ); testFlags = testFlagsFunctionPtr(); --count; if ( count == 0 ) { checkEarlyExit(); count = 10000; } if ( ( trueZ != testZ ) || ( trueFlags != testFlags ) ) { if ( ! checkNaNs && float64_is_signaling_nan( testCases_a_float64 ) ) { trueFlags |= float_flag_invalid; } if ( ( trueZ == 0x7FFFFFFF ) && ( ( testZ == 0x7FFFFFFF ) || ( testZ == (sbits32) 0x80000000 ) ) && ( trueFlags == float_flag_invalid ) && ( testFlags == float_flag_invalid ) ) { /* no problem */ } else { ++errorCount; writeErrorFound( 10000 - count ); writeInput_a_float64(); fputs( " ", stdout ); writeOutputs_z_int32( trueZ, trueFlags, testZ, testFlags ); fflush( stdout ); if ( errorCount == maxErrorCount ) goto exit; } } } exit: writeTestsPerformed( 10000 - count ); } #ifdef BITS64 void test_a_float64_z_int64( int64 trueFunction( float64 ), int64 testFunction( float64 ) ) { int16 count; int64 trueZ, testZ; uint8 trueFlags, testFlags; errorCount = 0; tenthousandsCount = 0; count = 10000; testCases_initSequence( testCases_sequence_a_float64 ); writeTestsTotal(); while ( ! testCases_done || forever ) { testCases_next(); *trueFlagsPtr = 0; trueZ = trueFunction( testCases_a_float64 ); trueFlags = *trueFlagsPtr; (void) testFlagsFunctionPtr(); testZ = testFunction( testCases_a_float64 ); testFlags = testFlagsFunctionPtr(); --count; if ( count == 0 ) { checkEarlyExit(); count = 10000; } if ( ( trueZ != testZ ) || ( trueFlags != testFlags ) ) { if ( ! checkNaNs && float64_is_signaling_nan( testCases_a_float64 ) ) { trueFlags |= float_flag_invalid; } if ( ( trueZ == LIT64( 0x7FFFFFFFFFFFFFFF ) ) && ( ( testZ == LIT64( 0x7FFFFFFFFFFFFFFF ) ) || ( testZ == (sbits64) LIT64( 0x8000000000000000 ) ) ) && ( trueFlags == float_flag_invalid ) && ( testFlags == float_flag_invalid ) ) { /* no problem */ } else { ++errorCount; writeErrorFound( 10000 - count ); writeInput_a_float64(); fputs( " ", stdout ); writeOutputs_z_int64( trueZ, trueFlags, testZ, testFlags ); fflush( stdout ); if ( errorCount == maxErrorCount ) goto exit; } } } exit: writeTestsPerformed( 10000 - count ); } #endif void test_a_float64_z_float32( float32 trueFunction( float64 ), float32 testFunction( float64 ) ) { int16 count; float32 trueZ, testZ; uint8 trueFlags, testFlags; errorCount = 0; tenthousandsCount = 0; count = 10000; testCases_initSequence( testCases_sequence_a_float64 ); writeTestsTotal(); while ( ! testCases_done || forever ) { testCases_next(); *trueFlagsPtr = 0; trueZ = trueFunction( testCases_a_float64 ); trueFlags = *trueFlagsPtr; (void) testFlagsFunctionPtr(); testZ = testFunction( testCases_a_float64 ); testFlags = testFlagsFunctionPtr(); --count; if ( count == 0 ) { checkEarlyExit(); count = 10000; } if ( ( trueZ != testZ ) || ( trueFlags != testFlags ) ) { if ( ! checkNaNs && float64_is_signaling_nan( testCases_a_float64 ) ) { trueFlags |= float_flag_invalid; } if ( ! checkNaNs && float32_isNaN( trueZ ) && float32_isNaN( testZ ) && ! float32_is_signaling_nan( testZ ) && ( trueFlags == testFlags ) ) { /* no problem */ } else { ++errorCount; writeErrorFound( 10000 - count ); writeInput_a_float64(); fputs( " ", stdout ); writeOutputs_z_float32( trueZ, trueFlags, testZ, testFlags ); fflush( stdout ); if ( errorCount == maxErrorCount ) goto exit; } } } exit: writeTestsPerformed( 10000 - count ); } #ifdef FLOATX80 void test_a_float64_z_floatx80( floatx80 trueFunction( float64 ), floatx80 testFunction( float64 ) ) { int16 count; floatx80 trueZ, testZ; uint8 trueFlags, testFlags; errorCount = 0; tenthousandsCount = 0; count = 10000; testCases_initSequence( testCases_sequence_a_float64 ); writeTestsTotal(); while ( ! testCases_done || forever ) { testCases_next(); *trueFlagsPtr = 0; trueZ = trueFunction( testCases_a_float64 ); trueFlags = *trueFlagsPtr; (void) testFlagsFunctionPtr(); testZ = testFunction( testCases_a_float64 ); testFlags = testFlagsFunctionPtr(); --count; if ( count == 0 ) { checkEarlyExit(); count = 10000; } if ( ! floatx80_same( trueZ, testZ ) || ( trueFlags != testFlags ) ) { if ( ! checkNaNs && float64_is_signaling_nan( testCases_a_float64 ) ) { trueFlags |= float_flag_invalid; } if ( ! checkNaNs && floatx80_isNaN( trueZ ) && floatx80_isNaN( testZ ) && ! floatx80_is_signaling_nan( testZ ) && ( trueFlags == testFlags ) ) { /* no problem */ } else { ++errorCount; writeErrorFound( 10000 - count ); writeInput_a_float64(); fputs( "\n\t", stdout ); writeOutputs_z_floatx80( trueZ, trueFlags, testZ, testFlags ); fflush( stdout ); if ( errorCount == maxErrorCount ) goto exit; } } } exit: writeTestsPerformed( 10000 - count ); } #endif #ifdef FLOAT128 void test_a_float64_z_float128( float128 trueFunction( float64 ), float128 testFunction( float64 ) ) { int16 count; float128 trueZ, testZ; uint8 trueFlags, testFlags; errorCount = 0; tenthousandsCount = 0; count = 10000; testCases_initSequence( testCases_sequence_a_float64 ); writeTestsTotal(); while ( ! testCases_done || forever ) { testCases_next(); *trueFlagsPtr = 0; trueZ = trueFunction( testCases_a_float64 ); trueFlags = *trueFlagsPtr; (void) testFlagsFunctionPtr(); testZ = testFunction( testCases_a_float64 ); testFlags = testFlagsFunctionPtr(); --count; if ( count == 0 ) { checkEarlyExit(); count = 10000; } if ( ! float128_same( trueZ, testZ ) || ( trueFlags != testFlags ) ) { if ( ! checkNaNs && float64_is_signaling_nan( testCases_a_float64 ) ) { trueFlags |= float_flag_invalid; } if ( ! checkNaNs && float128_isNaN( trueZ ) && float128_isNaN( testZ ) && ! float128_is_signaling_nan( testZ ) && ( trueFlags == testFlags ) ) { /* no problem */ } else { ++errorCount; writeErrorFound( 10000 - count ); writeInput_a_float64(); fputs( "\n\t", stdout ); writeOutputs_z_float128( trueZ, trueFlags, testZ, testFlags ); fflush( stdout ); if ( errorCount == maxErrorCount ) goto exit; } } } exit: writeTestsPerformed( 10000 - count ); } #endif void test_az_float64( float64 trueFunction( float64 ), float64 testFunction( float64 ) ) { int16 count; float64 trueZ, testZ; uint8 trueFlags, testFlags; errorCount = 0; tenthousandsCount = 0; count = 10000; testCases_initSequence( testCases_sequence_a_float64 ); writeTestsTotal(); while ( ! testCases_done || forever ) { testCases_next(); *trueFlagsPtr = 0; trueZ = trueFunction( testCases_a_float64 ); trueFlags = *trueFlagsPtr; (void) testFlagsFunctionPtr(); testZ = testFunction( testCases_a_float64 ); testFlags = testFlagsFunctionPtr(); --count; if ( count == 0 ) { checkEarlyExit(); count = 10000; } if ( ! float64_same( trueZ, testZ ) || ( trueFlags != testFlags ) ) { if ( ! checkNaNs && float64_is_signaling_nan( testCases_a_float64 ) ) { trueFlags |= float_flag_invalid; } if ( ! checkNaNs && float64_isNaN( trueZ ) && float64_isNaN( testZ ) && ! float64_is_signaling_nan( testZ ) && ( trueFlags == testFlags ) ) { /* no problem */ } else { ++errorCount; writeErrorFound( 10000 - count ); writeInput_a_float64(); fputs( " ", stdout ); writeOutputs_z_float64( trueZ, trueFlags, testZ, testFlags ); fflush( stdout ); if ( errorCount == maxErrorCount ) goto exit; } } } exit: writeTestsPerformed( 10000 - count ); } void test_ab_float64_z_flag( flag trueFunction( float64, float64 ), flag testFunction( float64, float64 ) ) { int16 count; flag trueZ, testZ; uint8 trueFlags, testFlags; errorCount = 0; tenthousandsCount = 0; count = 10000; testCases_initSequence( testCases_sequence_ab_float64 ); writeTestsTotal(); while ( ! testCases_done || forever ) { testCases_next(); *trueFlagsPtr = 0; trueZ = trueFunction( testCases_a_float64, testCases_b_float64 ); trueFlags = *trueFlagsPtr; (void) testFlagsFunctionPtr(); testZ = testFunction( testCases_a_float64, testCases_b_float64 ); testFlags = testFlagsFunctionPtr(); --count; if ( count == 0 ) { checkEarlyExit(); count = 10000; } if ( ( trueZ != testZ ) || ( trueFlags != testFlags ) ) { if ( ! checkNaNs && ( float64_is_signaling_nan( testCases_a_float64 ) || float64_is_signaling_nan( testCases_b_float64 ) ) ) { trueFlags |= float_flag_invalid; } if ( ( trueZ != testZ ) || ( trueFlags != testFlags ) ) { ++errorCount; writeErrorFound( 10000 - count ); writeInputs_ab_float64(); fputs( " ", stdout ); writeOutputs_z_flag( trueZ, trueFlags, testZ, testFlags ); fflush( stdout ); if ( errorCount == maxErrorCount ) goto exit; } } } exit: writeTestsPerformed( 10000 - count ); return; } void test_abz_float64( float64 trueFunction( float64, float64 ), float64 testFunction( float64, float64 ) ) { int16 count; float64 trueZ, testZ; uint8 trueFlags, testFlags; errorCount = 0; tenthousandsCount = 0; count = 10000; testCases_initSequence( testCases_sequence_ab_float64 ); writeTestsTotal(); while ( ! testCases_done || forever ) { testCases_next(); *trueFlagsPtr = 0; trueZ = trueFunction( testCases_a_float64, testCases_b_float64 ); trueFlags = *trueFlagsPtr; (void) testFlagsFunctionPtr(); testZ = testFunction( testCases_a_float64, testCases_b_float64 ); testFlags = testFlagsFunctionPtr(); --count; if ( count == 0 ) { checkEarlyExit(); count = 10000; } if ( ! float64_same( trueZ, testZ ) || ( trueFlags != testFlags ) ) { if ( ! checkNaNs && ( float64_is_signaling_nan( testCases_a_float64 ) || float64_is_signaling_nan( testCases_b_float64 ) ) ) { trueFlags |= float_flag_invalid; } if ( ! checkNaNs && float64_isNaN( trueZ ) && float64_isNaN( testZ ) && ! float64_is_signaling_nan( testZ ) && ( trueFlags == testFlags ) ) { /* no problem */ } else { ++errorCount; writeErrorFound( 10000 - count ); writeInputs_ab_float64(); fputs( "\n\t", stdout ); writeOutputs_z_float64( trueZ, trueFlags, testZ, testFlags ); fflush( stdout ); if ( errorCount == maxErrorCount ) goto exit; } } } exit: writeTestsPerformed( 10000 - count ); return; } #ifdef FLOATX80 void test_a_floatx80_z_int32( int32 trueFunction( floatx80 ), int32 testFunction( floatx80 ) ) { int16 count; int32 trueZ, testZ; uint8 trueFlags, testFlags; errorCount = 0; tenthousandsCount = 0; count = 10000; testCases_initSequence( testCases_sequence_a_floatx80 ); writeTestsTotal(); while ( ! testCases_done || forever ) { testCases_next(); *trueFlagsPtr = 0; trueZ = trueFunction( testCases_a_floatx80 ); trueFlags = *trueFlagsPtr; (void) testFlagsFunctionPtr(); testZ = testFunction( testCases_a_floatx80 ); testFlags = testFlagsFunctionPtr(); --count; if ( count == 0 ) { checkEarlyExit(); count = 10000; } if ( ( trueZ != testZ ) || ( trueFlags != testFlags ) ) { if ( ! checkNaNs && floatx80_is_signaling_nan( testCases_a_floatx80 ) ) { trueFlags |= float_flag_invalid; } if ( ( trueZ == 0x7FFFFFFF ) && ( ( testZ == 0x7FFFFFFF ) || ( testZ == (sbits32) 0x80000000 ) ) && ( trueFlags == float_flag_invalid ) && ( testFlags == float_flag_invalid ) ) { /* no problem */ } else { ++errorCount; writeErrorFound( 10000 - count ); writeInput_a_floatx80(); fputs( " ", stdout ); writeOutputs_z_int32( trueZ, trueFlags, testZ, testFlags ); fflush( stdout ); if ( errorCount == maxErrorCount ) goto exit; } } } exit: writeTestsPerformed( 10000 - count ); } #ifdef BITS64 void test_a_floatx80_z_int64( int64 trueFunction( floatx80 ), int64 testFunction( floatx80 ) ) { int16 count; int64 trueZ, testZ; uint8 trueFlags, testFlags; errorCount = 0; tenthousandsCount = 0; count = 10000; testCases_initSequence( testCases_sequence_a_floatx80 ); writeTestsTotal(); while ( ! testCases_done || forever ) { testCases_next(); *trueFlagsPtr = 0; trueZ = trueFunction( testCases_a_floatx80 ); trueFlags = *trueFlagsPtr; (void) testFlagsFunctionPtr(); testZ = testFunction( testCases_a_floatx80 ); testFlags = testFlagsFunctionPtr(); --count; if ( count == 0 ) { checkEarlyExit(); count = 10000; } if ( ( trueZ != testZ ) || ( trueFlags != testFlags ) ) { if ( ! checkNaNs && floatx80_is_signaling_nan( testCases_a_floatx80 ) ) { trueFlags |= float_flag_invalid; } if ( ( trueZ == LIT64( 0x7FFFFFFFFFFFFFFF ) ) && ( ( testZ == LIT64( 0x7FFFFFFFFFFFFFFF ) ) || ( testZ == (sbits64) LIT64( 0x8000000000000000 ) ) ) && ( trueFlags == float_flag_invalid ) && ( testFlags == float_flag_invalid ) ) { /* no problem */ } else { ++errorCount; writeErrorFound( 10000 - count ); writeInput_a_floatx80(); fputs( " ", stdout ); writeOutputs_z_int64( trueZ, trueFlags, testZ, testFlags ); fflush( stdout ); if ( errorCount == maxErrorCount ) goto exit; } } } exit: writeTestsPerformed( 10000 - count ); } #endif void test_a_floatx80_z_float32( float32 trueFunction( floatx80 ), float32 testFunction( floatx80 ) ) { int16 count; float32 trueZ, testZ; uint8 trueFlags, testFlags; errorCount = 0; tenthousandsCount = 0; count = 10000; testCases_initSequence( testCases_sequence_a_floatx80 ); writeTestsTotal(); while ( ! testCases_done || forever ) { testCases_next(); *trueFlagsPtr = 0; trueZ = trueFunction( testCases_a_floatx80 ); trueFlags = *trueFlagsPtr; (void) testFlagsFunctionPtr(); testZ = testFunction( testCases_a_floatx80 ); testFlags = testFlagsFunctionPtr(); --count; if ( count == 0 ) { checkEarlyExit(); count = 10000; } if ( ( trueZ != testZ ) || ( trueFlags != testFlags ) ) { if ( ! checkNaNs && floatx80_is_signaling_nan( testCases_a_floatx80 ) ) { trueFlags |= float_flag_invalid; } if ( ! checkNaNs && float32_isNaN( trueZ ) && float32_isNaN( testZ ) && ! float32_is_signaling_nan( testZ ) && ( trueFlags == testFlags ) ) { /* no problem */ } else { ++errorCount; writeErrorFound( 10000 - count ); writeInput_a_floatx80(); fputs( " ", stdout ); writeOutputs_z_float32( trueZ, trueFlags, testZ, testFlags ); fflush( stdout ); if ( errorCount == maxErrorCount ) goto exit; } } } exit: writeTestsPerformed( 10000 - count ); } void test_a_floatx80_z_float64( float64 trueFunction( floatx80 ), float64 testFunction( floatx80 ) ) { int16 count; float64 trueZ, testZ; uint8 trueFlags, testFlags; errorCount = 0; tenthousandsCount = 0; count = 10000; testCases_initSequence( testCases_sequence_a_floatx80 ); writeTestsTotal(); while ( ! testCases_done || forever ) { testCases_next(); *trueFlagsPtr = 0; trueZ = trueFunction( testCases_a_floatx80 ); trueFlags = *trueFlagsPtr; (void) testFlagsFunctionPtr(); testZ = testFunction( testCases_a_floatx80 ); testFlags = testFlagsFunctionPtr(); --count; if ( count == 0 ) { checkEarlyExit(); count = 10000; } if ( ! float64_same( trueZ, testZ ) || ( trueFlags != testFlags ) ) { if ( ! checkNaNs && floatx80_is_signaling_nan( testCases_a_floatx80 ) ) { trueFlags |= float_flag_invalid; } if ( ! checkNaNs && float64_isNaN( trueZ ) && float64_isNaN( testZ ) && ! float64_is_signaling_nan( testZ ) && ( trueFlags == testFlags ) ) { /* no problem */ } else { ++errorCount; writeErrorFound( 10000 - count ); writeInput_a_floatx80(); fputs( "\n\t", stdout ); writeOutputs_z_float64( trueZ, trueFlags, testZ, testFlags ); fflush( stdout ); if ( errorCount == maxErrorCount ) goto exit; } } } exit: writeTestsPerformed( 10000 - count ); } #ifdef FLOAT128 void test_a_floatx80_z_float128( float128 trueFunction( floatx80 ), float128 testFunction( floatx80 ) ) { int16 count; float128 trueZ, testZ; uint8 trueFlags, testFlags; errorCount = 0; tenthousandsCount = 0; count = 10000; testCases_initSequence( testCases_sequence_a_floatx80 ); writeTestsTotal(); while ( ! testCases_done || forever ) { testCases_next(); *trueFlagsPtr = 0; trueZ = trueFunction( testCases_a_floatx80 ); trueFlags = *trueFlagsPtr; (void) testFlagsFunctionPtr(); testZ = testFunction( testCases_a_floatx80 ); testFlags = testFlagsFunctionPtr(); --count; if ( count == 0 ) { checkEarlyExit(); count = 10000; } if ( ! float128_same( trueZ, testZ ) || ( trueFlags != testFlags ) ) { if ( ! checkNaNs && floatx80_is_signaling_nan( testCases_a_floatx80 ) ) { trueFlags |= float_flag_invalid; } if ( ! checkNaNs && float128_isNaN( trueZ ) && float128_isNaN( testZ ) && ! float128_is_signaling_nan( testZ ) && ( trueFlags == testFlags ) ) { /* no problem */ } else { ++errorCount; writeErrorFound( 10000 - count ); writeInput_a_floatx80(); fputs( "\n\t", stdout ); writeOutputs_z_float128( trueZ, trueFlags, testZ, testFlags ); fflush( stdout ); if ( errorCount == maxErrorCount ) goto exit; } } } exit: writeTestsPerformed( 10000 - count ); } #endif void test_az_floatx80( floatx80 trueFunction( floatx80 ), floatx80 testFunction( floatx80 ) ) { int16 count; floatx80 trueZ, testZ; uint8 trueFlags, testFlags; errorCount = 0; tenthousandsCount = 0; count = 10000; testCases_initSequence( testCases_sequence_a_floatx80 ); writeTestsTotal(); while ( ! testCases_done || forever ) { testCases_next(); *trueFlagsPtr = 0; trueZ = trueFunction( testCases_a_floatx80 ); trueFlags = *trueFlagsPtr; (void) testFlagsFunctionPtr(); testZ = testFunction( testCases_a_floatx80 ); testFlags = testFlagsFunctionPtr(); --count; if ( count == 0 ) { checkEarlyExit(); count = 10000; } if ( ! floatx80_same( trueZ, testZ ) || ( trueFlags != testFlags ) ) { if ( ! checkNaNs && floatx80_is_signaling_nan( testCases_a_floatx80 ) ) { trueFlags |= float_flag_invalid; } if ( ! checkNaNs && floatx80_isNaN( trueZ ) && floatx80_isNaN( testZ ) && ! floatx80_is_signaling_nan( testZ ) && ( trueFlags == testFlags ) ) { /* no problem */ } else { ++errorCount; writeErrorFound( 10000 - count ); writeInput_a_floatx80(); fputs( "\n\t", stdout ); writeOutputs_z_floatx80( trueZ, trueFlags, testZ, testFlags ); fflush( stdout ); if ( errorCount == maxErrorCount ) goto exit; } } } exit: writeTestsPerformed( 10000 - count ); } void test_ab_floatx80_z_flag( flag trueFunction( floatx80, floatx80 ), flag testFunction( floatx80, floatx80 ) ) { int16 count; flag trueZ, testZ; uint8 trueFlags, testFlags; errorCount = 0; tenthousandsCount = 0; count = 10000; testCases_initSequence( testCases_sequence_ab_floatx80 ); writeTestsTotal(); while ( ! testCases_done || forever ) { testCases_next(); *trueFlagsPtr = 0; trueZ = trueFunction( testCases_a_floatx80, testCases_b_floatx80 ); trueFlags = *trueFlagsPtr; (void) testFlagsFunctionPtr(); testZ = testFunction( testCases_a_floatx80, testCases_b_floatx80 ); testFlags = testFlagsFunctionPtr(); --count; if ( count == 0 ) { checkEarlyExit(); count = 10000; } if ( ( trueZ != testZ ) || ( trueFlags != testFlags ) ) { if ( ! checkNaNs && ( floatx80_is_signaling_nan( testCases_a_floatx80 ) || floatx80_is_signaling_nan( testCases_b_floatx80 ) ) ) { trueFlags |= float_flag_invalid; } if ( ( trueZ != testZ ) || ( trueFlags != testFlags ) ) { ++errorCount; writeErrorFound( 10000 - count ); writeInputs_ab_floatx80(); fputs( " ", stdout ); writeOutputs_z_flag( trueZ, trueFlags, testZ, testFlags ); fflush( stdout ); if ( errorCount == maxErrorCount ) goto exit; } } } exit: writeTestsPerformed( 10000 - count ); return; } void test_abz_floatx80( floatx80 trueFunction( floatx80, floatx80 ), floatx80 testFunction( floatx80, floatx80 ) ) { int16 count; floatx80 trueZ, testZ; uint8 trueFlags, testFlags; errorCount = 0; tenthousandsCount = 0; count = 10000; testCases_initSequence( testCases_sequence_ab_floatx80 ); writeTestsTotal(); while ( ! testCases_done || forever ) { testCases_next(); *trueFlagsPtr = 0; trueZ = trueFunction( testCases_a_floatx80, testCases_b_floatx80 ); trueFlags = *trueFlagsPtr; (void) testFlagsFunctionPtr(); testZ = testFunction( testCases_a_floatx80, testCases_b_floatx80 ); testFlags = testFlagsFunctionPtr(); --count; if ( count == 0 ) { checkEarlyExit(); count = 10000; } if ( ! floatx80_same( trueZ, testZ ) || ( trueFlags != testFlags ) ) { if ( ! checkNaNs && ( floatx80_is_signaling_nan( testCases_a_floatx80 ) || floatx80_is_signaling_nan( testCases_b_floatx80 ) ) ) { trueFlags |= float_flag_invalid; } if ( ! checkNaNs && floatx80_isNaN( trueZ ) && floatx80_isNaN( testZ ) && ! floatx80_is_signaling_nan( testZ ) && ( trueFlags == testFlags ) ) { /* no problem */ } else { ++errorCount; writeErrorFound( 10000 - count ); writeInputs_ab_floatx80(); fputs( "\n\t", stdout ); writeOutputs_z_floatx80( trueZ, trueFlags, testZ, testFlags ); fflush( stdout ); if ( errorCount == maxErrorCount ) goto exit; } } } exit: writeTestsPerformed( 10000 - count ); return; } #endif #ifdef FLOAT128 void test_a_float128_z_int32( int32 trueFunction( float128 ), int32 testFunction( float128 ) ) { int16 count; int32 trueZ, testZ; uint8 trueFlags, testFlags; errorCount = 0; tenthousandsCount = 0; count = 10000; testCases_initSequence( testCases_sequence_a_float128 ); writeTestsTotal(); while ( ! testCases_done || forever ) { testCases_next(); *trueFlagsPtr = 0; trueZ = trueFunction( testCases_a_float128 ); trueFlags = *trueFlagsPtr; (void) testFlagsFunctionPtr(); testZ = testFunction( testCases_a_float128 ); testFlags = testFlagsFunctionPtr(); --count; if ( count == 0 ) { checkEarlyExit(); count = 10000; } if ( ( trueZ != testZ ) || ( trueFlags != testFlags ) ) { if ( ! checkNaNs && float128_is_signaling_nan( testCases_a_float128 ) ) { trueFlags |= float_flag_invalid; } if ( ( trueZ == 0x7FFFFFFF ) && ( ( testZ == 0x7FFFFFFF ) || ( testZ == (sbits32) 0x80000000 ) ) && ( trueFlags == float_flag_invalid ) && ( testFlags == float_flag_invalid ) ) { /* no problem */ } else { ++errorCount; writeErrorFound( 10000 - count ); writeInput_a_float128(); fputs( " ", stdout ); writeOutputs_z_int32( trueZ, trueFlags, testZ, testFlags ); fflush( stdout ); if ( errorCount == maxErrorCount ) goto exit; } } } exit: writeTestsPerformed( 10000 - count ); } #ifdef BITS64 void test_a_float128_z_int64( int64 trueFunction( float128 ), int64 testFunction( float128 ) ) { int16 count; int64 trueZ, testZ; uint8 trueFlags, testFlags; errorCount = 0; tenthousandsCount = 0; count = 10000; testCases_initSequence( testCases_sequence_a_float128 ); writeTestsTotal(); while ( ! testCases_done || forever ) { testCases_next(); *trueFlagsPtr = 0; trueZ = trueFunction( testCases_a_float128 ); trueFlags = *trueFlagsPtr; (void) testFlagsFunctionPtr(); testZ = testFunction( testCases_a_float128 ); testFlags = testFlagsFunctionPtr(); --count; if ( count == 0 ) { checkEarlyExit(); count = 10000; } if ( ( trueZ != testZ ) || ( trueFlags != testFlags ) ) { if ( ! checkNaNs && float128_is_signaling_nan( testCases_a_float128 ) ) { trueFlags |= float_flag_invalid; } if ( ( trueZ == LIT64( 0x7FFFFFFFFFFFFFFF ) ) && ( ( testZ == LIT64( 0x7FFFFFFFFFFFFFFF ) ) || ( testZ == (sbits64) LIT64( 0x8000000000000000 ) ) ) && ( trueFlags == float_flag_invalid ) && ( testFlags == float_flag_invalid ) ) { /* no problem */ } else { ++errorCount; writeErrorFound( 10000 - count ); writeInput_a_float128(); fputs( "\n\t", stdout ); writeOutputs_z_int64( trueZ, trueFlags, testZ, testFlags ); fflush( stdout ); if ( errorCount == maxErrorCount ) goto exit; } } } exit: writeTestsPerformed( 10000 - count ); } #endif void test_a_float128_z_float32( float32 trueFunction( float128 ), float32 testFunction( float128 ) ) { int16 count; float32 trueZ, testZ; uint8 trueFlags, testFlags; errorCount = 0; tenthousandsCount = 0; count = 10000; testCases_initSequence( testCases_sequence_a_float128 ); writeTestsTotal(); while ( ! testCases_done || forever ) { testCases_next(); *trueFlagsPtr = 0; trueZ = trueFunction( testCases_a_float128 ); trueFlags = *trueFlagsPtr; (void) testFlagsFunctionPtr(); testZ = testFunction( testCases_a_float128 ); testFlags = testFlagsFunctionPtr(); --count; if ( count == 0 ) { checkEarlyExit(); count = 10000; } if ( ( trueZ != testZ ) || ( trueFlags != testFlags ) ) { if ( ! checkNaNs && float128_is_signaling_nan( testCases_a_float128 ) ) { trueFlags |= float_flag_invalid; } if ( ! checkNaNs && float32_isNaN( trueZ ) && float32_isNaN( testZ ) && ! float32_is_signaling_nan( testZ ) && ( trueFlags == testFlags ) ) { /* no problem */ } else { ++errorCount; writeErrorFound( 10000 - count ); writeInput_a_float128(); fputs( " ", stdout ); writeOutputs_z_float32( trueZ, trueFlags, testZ, testFlags ); fflush( stdout ); if ( errorCount == maxErrorCount ) goto exit; } } } exit: writeTestsPerformed( 10000 - count ); } void test_a_float128_z_float64( float64 trueFunction( float128 ), float64 testFunction( float128 ) ) { int16 count; float64 trueZ, testZ; uint8 trueFlags, testFlags; errorCount = 0; tenthousandsCount = 0; count = 10000; testCases_initSequence( testCases_sequence_a_float128 ); writeTestsTotal(); while ( ! testCases_done || forever ) { testCases_next(); *trueFlagsPtr = 0; trueZ = trueFunction( testCases_a_float128 ); trueFlags = *trueFlagsPtr; (void) testFlagsFunctionPtr(); testZ = testFunction( testCases_a_float128 ); testFlags = testFlagsFunctionPtr(); --count; if ( count == 0 ) { checkEarlyExit(); count = 10000; } if ( ! float64_same( trueZ, testZ ) || ( trueFlags != testFlags ) ) { if ( ! checkNaNs && float128_is_signaling_nan( testCases_a_float128 ) ) { trueFlags |= float_flag_invalid; } if ( ! checkNaNs && float64_isNaN( trueZ ) && float64_isNaN( testZ ) && ! float64_is_signaling_nan( testZ ) && ( trueFlags == testFlags ) ) { /* no problem */ } else { ++errorCount; writeErrorFound( 10000 - count ); writeInput_a_float128(); fputs( "\n\t", stdout ); writeOutputs_z_float64( trueZ, trueFlags, testZ, testFlags ); fflush( stdout ); if ( errorCount == maxErrorCount ) goto exit; } } } exit: writeTestsPerformed( 10000 - count ); } #ifdef FLOATX80 void test_a_float128_z_floatx80( floatx80 trueFunction( float128 ), floatx80 testFunction( float128 ) ) { int16 count; floatx80 trueZ, testZ; uint8 trueFlags, testFlags; errorCount = 0; tenthousandsCount = 0; count = 10000; testCases_initSequence( testCases_sequence_a_float128 ); writeTestsTotal(); while ( ! testCases_done || forever ) { testCases_next(); *trueFlagsPtr = 0; trueZ = trueFunction( testCases_a_float128 ); trueFlags = *trueFlagsPtr; (void) testFlagsFunctionPtr(); testZ = testFunction( testCases_a_float128 ); testFlags = testFlagsFunctionPtr(); --count; if ( count == 0 ) { checkEarlyExit(); count = 10000; } if ( ! floatx80_same( trueZ, testZ ) || ( trueFlags != testFlags ) ) { if ( ! checkNaNs && float128_is_signaling_nan( testCases_a_float128 ) ) { trueFlags |= float_flag_invalid; } if ( ! checkNaNs && floatx80_isNaN( trueZ ) && floatx80_isNaN( testZ ) && ! floatx80_is_signaling_nan( testZ ) && ( trueFlags == testFlags ) ) { /* no problem */ } else { ++errorCount; writeErrorFound( 10000 - count ); writeInput_a_float128(); fputs( "\n\t", stdout ); writeOutputs_z_floatx80( trueZ, trueFlags, testZ, testFlags ); fflush( stdout ); if ( errorCount == maxErrorCount ) goto exit; } } } exit: writeTestsPerformed( 10000 - count ); } #endif void test_az_float128( float128 trueFunction( float128 ), float128 testFunction( float128 ) ) { int16 count; float128 trueZ, testZ; uint8 trueFlags, testFlags; errorCount = 0; tenthousandsCount = 0; count = 10000; testCases_initSequence( testCases_sequence_a_float128 ); writeTestsTotal(); while ( ! testCases_done || forever ) { testCases_next(); *trueFlagsPtr = 0; trueZ = trueFunction( testCases_a_float128 ); trueFlags = *trueFlagsPtr; (void) testFlagsFunctionPtr(); testZ = testFunction( testCases_a_float128 ); testFlags = testFlagsFunctionPtr(); --count; if ( count == 0 ) { checkEarlyExit(); count = 10000; } if ( ! float128_same( trueZ, testZ ) || ( trueFlags != testFlags ) ) { if ( ! checkNaNs && float128_is_signaling_nan( testCases_a_float128 ) ) { trueFlags |= float_flag_invalid; } if ( ! checkNaNs && float128_isNaN( trueZ ) && float128_isNaN( testZ ) && ! float128_is_signaling_nan( testZ ) && ( trueFlags == testFlags ) ) { /* no problem */ } else { ++errorCount; writeErrorFound( 10000 - count ); writeInput_a_float128(); fputs( "\n\t", stdout ); writeOutputs_z_float128( trueZ, trueFlags, testZ, testFlags ); fflush( stdout ); if ( errorCount == maxErrorCount ) goto exit; } } } exit: writeTestsPerformed( 10000 - count ); } void test_ab_float128_z_flag( flag trueFunction( float128, float128 ), flag testFunction( float128, float128 ) ) { int16 count; flag trueZ, testZ; uint8 trueFlags, testFlags; errorCount = 0; tenthousandsCount = 0; count = 10000; testCases_initSequence( testCases_sequence_ab_float128 ); writeTestsTotal(); while ( ! testCases_done || forever ) { testCases_next(); *trueFlagsPtr = 0; trueZ = trueFunction( testCases_a_float128, testCases_b_float128 ); trueFlags = *trueFlagsPtr; (void) testFlagsFunctionPtr(); testZ = testFunction( testCases_a_float128, testCases_b_float128 ); testFlags = testFlagsFunctionPtr(); --count; if ( count == 0 ) { checkEarlyExit(); count = 10000; } if ( ( trueZ != testZ ) || ( trueFlags != testFlags ) ) { if ( ! checkNaNs && ( float128_is_signaling_nan( testCases_a_float128 ) || float128_is_signaling_nan( testCases_b_float128 ) ) ) { trueFlags |= float_flag_invalid; } if ( ( trueZ != testZ ) || ( trueFlags != testFlags ) ) { ++errorCount; writeErrorFound( 10000 - count ); writeInputs_ab_float128(); fputs( "\n\t", stdout ); writeOutputs_z_flag( trueZ, trueFlags, testZ, testFlags ); fflush( stdout ); if ( errorCount == maxErrorCount ) goto exit; } } } exit: writeTestsPerformed( 10000 - count ); return; } void test_abz_float128( float128 trueFunction( float128, float128 ), float128 testFunction( float128, float128 ) ) { int16 count; float128 trueZ, testZ; uint8 trueFlags, testFlags; errorCount = 0; tenthousandsCount = 0; count = 10000; testCases_initSequence( testCases_sequence_ab_float128 ); writeTestsTotal(); while ( ! testCases_done || forever ) { testCases_next(); *trueFlagsPtr = 0; trueZ = trueFunction( testCases_a_float128, testCases_b_float128 ); trueFlags = *trueFlagsPtr; (void) testFlagsFunctionPtr(); testZ = testFunction( testCases_a_float128, testCases_b_float128 ); testFlags = testFlagsFunctionPtr(); --count; if ( count == 0 ) { checkEarlyExit(); count = 10000; } if ( ! float128_same( trueZ, testZ ) || ( trueFlags != testFlags ) ) { if ( ! checkNaNs && ( float128_is_signaling_nan( testCases_a_float128 ) || float128_is_signaling_nan( testCases_b_float128 ) ) ) { trueFlags |= float_flag_invalid; } if ( ! checkNaNs && float128_isNaN( trueZ ) && float128_isNaN( testZ ) && ! float128_is_signaling_nan( testZ ) && ( trueFlags == testFlags ) ) { /* no problem */ } else { ++errorCount; writeErrorFound( 10000 - count ); writeInputs_ab_float128(); fputs( "\n\t", stdout ); writeOutputs_z_float128( trueZ, trueFlags, testZ, testFlags ); fflush( stdout ); if ( errorCount == maxErrorCount ) goto exit; } } } exit: writeTestsPerformed( 10000 - count ); return; } #endif