/* * Copyright (c) 1992, 1993 * The Regents of the University of California. All rights reserved. * * This software was developed by the Computer Systems Engineering group * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and * contributed to Berkeley. * * All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Lawrence Berkeley Laboratory. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)zs.c 8.1 (Berkeley) 7/19/93 * * from: Header: zs.c,v 1.30 93/07/19 23:44:42 torek Exp * from: Id: sparc/dev/zs.c,v 1.3 1993/10/13 02:36:44 deraadt Exp * gwr: merged some of Adam's changes and fixed some bugs. */ /* * Zilog Z8530 (ZSCC) driver. * * Runs two tty ports (ttya and ttyb) on zs0, * and runs a keyboard and mouse on zs1. * * This driver knows far too much about chip to usage mappings. */ #define NZS 2 /* XXX */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "cons.h" #include "kbd.h" #include "zsreg.h" #include "zsvar.h" #ifdef KGDB #include #endif /* #define DEBUG 1 */ #define ZSMAJOR 12 /* XXX */ #define ZS_KBD 2 /* XXX */ #define ZS_MOUSE 3 /* XXX */ /* The Sun3 provides a 4.9152 MHz clock to the ZS chips. */ #define PCLK (9600 * 512) /* PCLK pin input clock rate */ /* * Select software interrupt levels. */ #define ZSSOFT_PRI 2 /* XXX - Want TTY_PRI */ #define ZSHARD_PRI 6 /* Wired on the CPU board... */ /* * Software state per found chip. This would be called `zs_softc', * but the previous driver had a rather different zs_softc.... */ struct zsinfo { struct device zi_dev; /* base device */ volatile struct zsdevice *zi_zs;/* chip registers */ struct zs_chanstate zi_cs[2]; /* channel A and B software state */ }; struct tty *zs_tty[NZS * 2]; /* XXX should be dynamic */ /* Definition of the driver for autoconfig. */ static int zsmatch(struct device *, struct cfdata *, void *); static void zsattach(struct device *, struct device *, void *); struct cfdriver zscd = { NULL, "zs", zsmatch, zsattach, DV_TTY, sizeof(struct zsinfo) }; /* Interrupt handlers. */ static int zshard(int); static int zssoft(int); struct zs_chanstate *zslist; /* Routines called from other code. */ int zsopen(dev_t, int, int, struct proc *); int zsclose(dev_t, int, int, struct proc *); static void zsiopen(struct tty *); static void zsiclose(struct tty *); static void zsstart(struct tty *); void zsstop(struct tty *, int); static int zsparam(struct tty *, struct termios *); /* Routines purely local to this driver. */ static int zs_getspeed(volatile struct zschan *); static void zs_reset(volatile struct zschan *, int, int); static void zs_modem(struct zs_chanstate *, int); static void zs_loadchannelregs(volatile struct zschan *, u_char *); static void zs_delay(void); static u_char zs_read(volatile struct zschan *, u_char); static u_char zs_write(volatile struct zschan *, u_char, u_char); /* Console stuff. */ static struct tty *zs_ctty; /* console `struct tty *' */ static int zs_consin = -1, zs_consout = -1; static int zscnputc(int); /* console putc function */ static volatile struct zschan *zs_conschan; static struct tty *zs_checkcons(struct zsinfo *, int, struct zs_chanstate *); #ifdef KGDB /* KGDB stuff. Must reboot to change zs_kgdbunit. */ extern int kgdb_dev, kgdb_rate; static int zs_kgdb_savedspeed; static void zs_checkkgdb(int, struct zs_chanstate *, struct tty *); #endif static volatile struct zsdevice *zsaddr[NZS]; /* * Console keyboard L1-A processing is done in the hardware interrupt code, * so we need to duplicate some of the console keyboard decode state. (We * must not use the regular state as the hardware code keeps ahead of the * software state: the software state tracks the most recent ring input but * the hardware state tracks the most recent ZSCC input.) See also kbd.h. */ static struct conk_state { /* console keyboard state */ char conk_id; /* true => ID coming up (console only) */ char conk_l1; /* true => L1 pressed (console only) */ } zsconk_state; int zshardscope; int zsshortcuts; /* number of "shortcut" software interrupts */ /* * Match slave number to zs unit number, so that misconfiguration will * not set up the keyboard as ttya, etc. */ static int zsmatch(struct device *parent, struct cfdata *cf, void *aux) { struct obio_cf_loc *obio_loc; caddr_t zs_addr; obio_loc = (struct obio_cf_loc *) CFDATA_LOC(cf); zs_addr = (caddr_t) obio_loc->obio_addr; return !obio_probe_byte(zs_addr); } /* * Attach a found zs. * * USE ROM PROPERTIES port-a-ignore-cd AND port-b-ignore-cd FOR * SOFT CARRIER, AND keyboard PROPERTY FOR KEYBOARD/MOUSE? */ static void zsattach(struct device *parent, struct device *dev, void *aux) { struct obio_cf_loc *obio_loc = OBIO_LOC(dev); register int zs = dev->dv_unit, unit; register struct zsinfo *zi; register struct zs_chanstate *cs; register volatile struct zsdevice *addr; register struct tty *tp, *ctp; int softcar; static int didintr; caddr_t obio_addr; obio_addr = (caddr_t)obio_loc->obio_addr; obio_print(obio_addr, ZSSOFT_PRI); printf(" hwpri %d\n", ZSHARD_PRI); addr = (struct zsdevice *) obio_alloc(obio_addr, OBIO_ZS_SIZE, OBIO_WRITE); if (!didintr) { didintr = 1; isr_add(ZSSOFT_PRI, zssoft, 0); isr_add(ZSHARD_PRI, zshard, 0); } zi = (struct zsinfo *)dev; zi->zi_zs = addr; unit = zs * 2; cs = zi->zi_cs; if(!zs_tty[unit]) zs_tty[unit] = ttymalloc(); tp = zs_tty[unit]; if(!zs_tty[unit+1]) zs_tty[unit+1] = ttymalloc(); if (unit == 0) { softcar = 0; } else softcar = dev->dv_cfdata->cf_flags; /* link into interrupt list with order (A,B) (B=A+1) */ cs[0].cs_next = &cs[1]; cs[1].cs_next = zslist; zslist = cs; cs->cs_unit = unit; cs->cs_zc = &addr->zs_chan[CHAN_A]; cs->cs_speed = zs_getspeed(cs->cs_zc); #ifdef DEBUG printf("zs%d speed %d ", cs->cs_unit, cs->cs_speed); #endif cs->cs_softcar = softcar & 1; #if 0 /* XXX - Drop carrier here? -gwr */ zs_modem(cs, cs->cs_softcar ? 1 : 0); #endif tp->t_dev = makedev(ZSMAJOR, unit); tp->t_oproc = zsstart; tp->t_param = zsparam; /*tp->t_stop = zsstop;*/ if ((ctp = zs_checkcons(zi, unit, cs)) != NULL) tp = ctp; cs->cs_ttyp = tp; #ifdef KGDB if (ctp == NULL) zs_checkkgdb(unit, cs, tp); #endif if (unit == ZS_KBD) { /* * Keyboard: tell /dev/kbd driver how to talk to us. */ tp->t_ispeed = tp->t_ospeed = cs->cs_speed; tp->t_cflag = CS8; kbd_serial(tp, zsiopen, zsiclose); cs->cs_conk = 1; /* do L1-A processing */ } unit++; cs++; tp = zs_tty[unit]; cs->cs_unit = unit; cs->cs_zc = &addr->zs_chan[CHAN_B]; cs->cs_speed = zs_getspeed(cs->cs_zc); #ifdef DEBUG printf("zs%d speed %d\n", cs->cs_unit, cs->cs_speed); #endif cs->cs_softcar = softcar & 2; #if 0 /* XXX - Drop carrier here? -gwr */ zs_modem(cs, cs->cs_softcar ? 1 : 0); #endif tp->t_dev = makedev(ZSMAJOR, unit); tp->t_oproc = zsstart; tp->t_param = zsparam; /*tp->t_stop = zsstop;*/ if ((ctp = zs_checkcons(zi, unit, cs)) != NULL) tp = ctp; cs->cs_ttyp = tp; #ifdef KGDB if (ctp == NULL) zs_checkkgdb(unit, cs, tp); #endif if (unit == ZS_MOUSE) { /* * Mouse: tell /dev/mouse driver how to talk to us. */ tp->t_ispeed = tp->t_ospeed = cs->cs_speed; tp->t_cflag = CS8; ms_serial(tp, zsiopen, zsiclose); } } /* * Put a channel in a known state. Interrupts may be left disabled * or enabled, as desired. */ static void zs_reset(zc, inten, speed) volatile struct zschan *zc; int inten, speed; { int tconst; static u_char reg[16] = { 0, 0, 0, ZSWR3_RX_8 | ZSWR3_RX_ENABLE, ZSWR4_CLK_X16 | ZSWR4_ONESB | ZSWR4_EVENP, ZSWR5_TX_8 | ZSWR5_TX_ENABLE, 0, 0, 0, 0, ZSWR10_NRZ, ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD, 0, 0, ZSWR14_BAUD_FROM_PCLK | ZSWR14_BAUD_ENA, ZSWR15_BREAK_IE | ZSWR15_DCD_IE, }; reg[9] = inten ? ZSWR9_MASTER_IE | ZSWR9_NO_VECTOR : ZSWR9_NO_VECTOR; tconst = BPS_TO_TCONST(PCLK / 16, speed); reg[12] = tconst; reg[13] = tconst >> 8; zs_loadchannelregs(zc, reg); } /* This is only called when the EEPROM says the console is ttyA or ttyB */ int zscnprobe(struct consdev *cn) { int maj, unit = minor(cn->cn_dev); /* locate the major number */ for (maj = 0; maj < nchrdev; maj++) if (cdevsw[maj].d_open == zsopen) break; if (maj >= nchrdev) { cn->cn_pri = CN_DEAD; return 0; } /* initialize required fields */ #if 0 /* XXX - Not yet. */ cn->cn_dev = makedev(maj, unit); cn->cn_pri = CN_REMOTE; #else cn->cn_pri = CN_DEAD; /* XXX - See below... */ #endif return (0); } /* Attach as console. Also set zs_conschan */ int zscninit(struct consdev *cn) { int unit = minor(cn->cn_dev); /* XXX - We need a way to find a VA for the device. */ /* zs_conschan = zsaddr[unit]; */ } #if 0 /* * Declare the given tty (which is in fact &cons) as a console input * or output. This happens before the zs chip is attached; the hookup * is finished later, in zs_setcons() below. * * This is used only for ports a and b. The console keyboard is decoded * independently (we always send unit-2 input to /dev/kbd, which will * direct it to /dev/console if appropriate). */ void zsconsole(tp, unit, out, fnstop) register struct tty *tp; register int unit; int out; void (**fnstop) __P((struct tty *, int)); { extern int (*v_putc)(); int zs; volatile struct zsdevice *addr; if (unit >= ZS_KBD) panic("zsconsole"); if (out) { zs_consout = unit; zs = unit >> 1; if ((addr = zsaddr[zs]) == NULL) addr = zsaddr[zs] = findzs(zs); zs_conschan = (unit & 1) == 0 ? &addr->zs_chan[CHAN_A] : &addr->zs_chan[CHAN_B]; v_putc = zscnputc; } else zs_consin = unit; if(fnstop) *fnstop = &zsstop; zs_ctty = tp; } #endif /* * Polled console input putchar. */ int zscngetc() { register volatile struct zschan *zc = zs_conschan; register int s, c; if (zc == NULL) return (0); s = splhigh(); while ((zc->zc_csr & ZSRR0_RX_READY) == 0) zs_delay(); c = zc->zc_data; splx(s); return (c); } /* * Polled console output putchar. */ int zscnputc(c) int c; { register volatile struct zschan *zc = zs_conschan; register int s; if (zc == NULL) return (0); if (c == '\n') zscnputc('\r'); s = splhigh(); while ((zc->zc_csr & ZSRR0_TX_READY) == 0) zs_delay(); zc->zc_data = c; splx(s); } /* * Set up the given unit as console input, output, both, or neither, as * needed. Return console tty if it is to receive console input. */ static struct tty * zs_checkcons(struct zsinfo *zi, int unit, struct zs_chanstate *cs) { register struct tty *tp; char *i, *o; if ((tp = zs_ctty) == NULL) return (0); i = zs_consin == unit ? "input" : NULL; o = zs_consout == unit ? "output" : NULL; if (i == NULL && o == NULL) return (0); /* rewire the minor device (gack) */ tp->t_dev = makedev(major(tp->t_dev), unit); /* * Rewire input and/or output. Note that baud rate reflects * input settings, not output settings, but we can do no better * if the console is split across two ports. * * XXX split consoles don't work anyway -- this needs to be * thrown away and redone */ if (i) { tp->t_param = zsparam; tp->t_ispeed = tp->t_ospeed = cs->cs_speed; tp->t_cflag = CS8; ttsetwater(tp); } if (o) { tp->t_oproc = zsstart; /*tp->t_stop = zsstop;*/ } printf("%s%c: console %s\n", zi->zi_dev.dv_xname, (unit & 1) + 'a', i ? (o ? "i/o" : i) : o); cs->cs_consio = 1; cs->cs_brkabort = 1; return (tp); } #ifdef KGDB /* * The kgdb zs port, if any, was altered at boot time (see zs_kgdb_init). * Pick up the current speed and character size and restore the original * speed. */ static void zs_checkkgdb(int unit, struct zs_chanstate *cs, struct tty *tp) { if (kgdb_dev == makedev(ZSMAJOR, unit)) { tp->t_ispeed = tp->t_ospeed = kgdb_rate; tp->t_cflag = CS8; cs->cs_kgdb = 1; cs->cs_speed = zs_kgdb_savedspeed; (void) zsparam(tp, &tp->t_termios); } } #endif /* * Compute the current baud rate given a ZSCC channel. */ static int zs_getspeed(zc) register volatile struct zschan *zc; { register int tconst; tconst = ZS_READ(zc, 12); tconst |= ZS_READ(zc, 13) << 8; return (TCONST_TO_BPS(PCLK / 16, tconst)); } /* * Do an internal open. */ static void zsiopen(struct tty *tp) { (void) zsparam(tp, &tp->t_termios); ttsetwater(tp); tp->t_state = TS_ISOPEN | TS_CARR_ON; } /* * Do an internal close. Eventually we should shut off the chip when both * ports on it are closed. */ static void zsiclose(struct tty *tp) { ttylclose(tp, 0); /* ??? */ ttyclose(tp); /* ??? */ tp->t_state = 0; } /* * Open a zs serial port. This interface may not be used to open * the keyboard and mouse ports. (XXX) */ int zsopen(dev_t dev, int flags, int mode, struct proc *p) { register struct tty *tp; register struct zs_chanstate *cs; struct zsinfo *zi; int unit = minor(dev), zs = unit >> 1, error, s; #ifdef DEBUG printf("zs_open\n"); #endif if (zs >= zscd.cd_ndevs || (zi = zscd.cd_devs[zs]) == NULL || unit == ZS_KBD || unit == ZS_MOUSE) return (ENXIO); cs = &zi->zi_cs[unit & 1]; /* Prevent simultaneous use by console? */ if (cs->cs_consio) return (ENXIO); /* ??? */ tp = cs->cs_ttyp; s = spltty(); if ((tp->t_state & TS_ISOPEN) == 0) { ttychars(tp); if (tp->t_ispeed == 0) { tp->t_iflag = TTYDEF_IFLAG; tp->t_oflag = TTYDEF_OFLAG; tp->t_cflag = TTYDEF_CFLAG; tp->t_lflag = TTYDEF_LFLAG; tp->t_ispeed = tp->t_ospeed = cs->cs_speed; } (void) zsparam(tp, &tp->t_termios); ttsetwater(tp); } else if (tp->t_state & TS_XCLUDE && p->p_ucred->cr_uid != 0) { splx(s); return (EBUSY); } error = 0; for (;;) { /* loop, turning on the device, until carrier present */ zs_modem(cs, 1); /* May never get status intr if carrier already on. -gwr */ if (cs->cs_zc->zc_csr & ZSRR0_DCD) tp->t_state |= TS_CARR_ON; if (cs->cs_softcar) tp->t_state |= TS_CARR_ON; if (flags & O_NONBLOCK || tp->t_cflag & CLOCAL || tp->t_state & TS_CARR_ON) break; tp->t_state |= TS_WOPEN; if (error = ttysleep(tp, (caddr_t)&tp->t_rawq, TTIPRI | PCATCH, ttopen, 0)) break; } splx(s); if (error == 0) error = linesw[tp->t_line].l_open(dev, tp); if (error) zs_modem(cs, 0); return (error); } /* * Close a zs serial port. */ int zsclose(dev_t dev, int flags, int mode, struct proc *p) { register struct zs_chanstate *cs; register struct tty *tp; struct zsinfo *zi; int unit = minor(dev), s; zi = zscd.cd_devs[unit >> 1]; cs = &zi->zi_cs[unit & 1]; tp = cs->cs_ttyp; linesw[tp->t_line].l_close(tp, flags); if (tp->t_cflag & HUPCL || tp->t_state & TS_WOPEN || (tp->t_state & TS_ISOPEN) == 0) { zs_modem(cs, 0); /* hold low for 1 second */ (void) tsleep((caddr_t)cs, TTIPRI, ttclos, hz); } ttyclose(tp); #ifdef KGDB /* Reset the speed if we're doing kgdb on this port */ if (cs->cs_kgdb) { tp->t_ispeed = tp->t_ospeed = kgdb_rate; (void) zsparam(tp, &tp->t_termios); } #endif return (0); } /* * Read/write zs serial port. */ int zsread(dev_t dev, struct uio *uio, int flags) { register struct tty *tp = zs_tty[minor(dev)]; return (linesw[tp->t_line].l_read(tp, uio, flags)); } int zswrite(dev_t dev, struct uio *uio, int flags) { register struct tty *tp = zs_tty[minor(dev)]; return (linesw[tp->t_line].l_write(tp, uio, flags)); } /* * ZS hardware interrupt. Scan all ZS channels. NB: we know here that * channels are kept in (A,B) pairs. * * Do just a little, then get out; set a software interrupt if more * work is needed. * * We deliberately ignore the vectoring Zilog gives us, and match up * only the number of `reset interrupt under service' operations, not * the order. */ /* ARGSUSED */ int zshard(int intrarg) { register struct zs_chanstate *a; #define b (a + 1) register volatile struct zschan *zc; register int rr3, intflags = 0, v, i; static int zsrint(struct zs_chanstate *, volatile struct zschan *); static int zsxint(struct zs_chanstate *, volatile struct zschan *); static int zssint(struct zs_chanstate *, volatile struct zschan *); #ifdef DEBUG printf("zshard\n"); #endif for (a = zslist; a != NULL; a = b->cs_next) { rr3 = ZS_READ(a->cs_zc, 3); if (rr3 & (ZSRR3_IP_A_RX|ZSRR3_IP_A_TX|ZSRR3_IP_A_STAT)) { intflags |= 2; zc = a->cs_zc; i = a->cs_rbput; if (rr3 & ZSRR3_IP_A_RX && (v = zsrint(a, zc)) != 0) { a->cs_rbuf[i++ & ZLRB_RING_MASK] = v; intflags |= 1; } if (rr3 & ZSRR3_IP_A_TX && (v = zsxint(a, zc)) != 0) { a->cs_rbuf[i++ & ZLRB_RING_MASK] = v; intflags |= 1; } if (rr3 & ZSRR3_IP_A_STAT && (v = zssint(a, zc)) != 0) { a->cs_rbuf[i++ & ZLRB_RING_MASK] = v; intflags |= 1; } a->cs_rbput = i; } if (rr3 & (ZSRR3_IP_B_RX|ZSRR3_IP_B_TX|ZSRR3_IP_B_STAT)) { intflags |= 2; zc = b->cs_zc; i = b->cs_rbput; if (rr3 & ZSRR3_IP_B_RX && (v = zsrint(b, zc)) != 0) { b->cs_rbuf[i++ & ZLRB_RING_MASK] = v; intflags |= 1; } if (rr3 & ZSRR3_IP_B_TX && (v = zsxint(b, zc)) != 0) { b->cs_rbuf[i++ & ZLRB_RING_MASK] = v; intflags |= 1; } if (rr3 & ZSRR3_IP_B_STAT && (v = zssint(b, zc)) != 0) { b->cs_rbuf[i++ & ZLRB_RING_MASK] = v; intflags |= 1; } b->cs_rbput = i; } } #undef b if (intflags & 1) { isr_soft_request(ZSSOFT_PRI); } return (intflags & 2); } static int zsrint(register struct zs_chanstate *cs, register volatile struct zschan *zc) { register int c = zc->zc_data; if (cs->cs_conk) { register struct conk_state *conk = &zsconk_state; /* * Check here for console abort function, so that we * can abort even when interrupts are locking up the * machine. */ if (c == KBD_RESET) { conk->conk_id = 1; /* ignore next byte */ conk->conk_l1 = 0; } else if (conk->conk_id) conk->conk_id = 0; /* stop ignoring bytes */ else if (c == KBD_L1) conk->conk_l1 = 1; /* L1 went down */ else if (c == (KBD_L1|KBD_UP)) conk->conk_l1 = 0; /* L1 went up */ else if (c == KBD_A && conk->conk_l1) { zsabort(); conk->conk_l1 = 0; /* we never see the up */ goto clearit; /* eat the A after L1-A */ } } #ifdef KGDB if (c == FRAME_START && cs->cs_kgdb && (cs->cs_ttyp->t_state & TS_ISOPEN) == 0) { zskgdb(cs->cs_unit); goto clearit; } #endif /* compose receive character and status */ c <<= 8; c |= ZS_READ(zc, 1); /* clear receive error & interrupt condition */ zc->zc_csr = ZSWR0_RESET_ERRORS; zc->zc_csr = ZSWR0_CLR_INTR; return (ZRING_MAKE(ZRING_RINT, c)); clearit: zc->zc_csr = ZSWR0_RESET_ERRORS; zc->zc_csr = ZSWR0_CLR_INTR; return (0); } static int zsxint(register struct zs_chanstate *cs, register volatile struct zschan *zc) { register int i = cs->cs_tbc; if (i == 0) { zc->zc_csr = ZSWR0_RESET_TXINT; zc->zc_csr = ZSWR0_CLR_INTR; return (ZRING_MAKE(ZRING_XINT, 0)); } cs->cs_tbc = i - 1; zc->zc_data = *cs->cs_tba++; zc->zc_csr = ZSWR0_CLR_INTR; return (0); } static int zssint(register struct zs_chanstate *cs, register volatile struct zschan *zc) { register int rr0; rr0 = zc->zc_csr; zc->zc_csr = ZSWR0_RESET_STATUS; zc->zc_csr = ZSWR0_CLR_INTR; /* * The chip's hardware flow control is, as noted in zsreg.h, * busted---if the DCD line goes low the chip shuts off the * receiver (!). If we want hardware CTS flow control but do * not have it, and carrier is now on, turn HFC on; if we have * HFC now but carrier has gone low, turn it off. */ if (rr0 & ZSRR0_DCD) { if (cs->cs_ttyp->t_cflag & CCTS_OFLOW && (cs->cs_creg[3] & ZSWR3_HFC) == 0) { cs->cs_creg[3] |= ZSWR3_HFC; ZS_WRITE(zc, 3, cs->cs_creg[3]); } } else { if (cs->cs_creg[3] & ZSWR3_HFC) { cs->cs_creg[3] &= ~ZSWR3_HFC; ZS_WRITE(zc, 3, cs->cs_creg[3]); } } if ((rr0 & ZSRR0_BREAK) && cs->cs_brkabort) { zsabort(); return (0); } return (ZRING_MAKE(ZRING_SINT, rr0)); } zsabort() { printf("stopping on keyboard abort\n"); sun3_stop(); } #ifdef KGDB /* * KGDB framing character received: enter kernel debugger. This probably * should time out after a few seconds to avoid hanging on spurious input. */ zskgdb(int unit) { printf("zs%d%c: kgdb interrupt\n", unit >> 1, (unit & 1) + 'a'); kgdb_connect(1); } #endif /* * Print out a ring or fifo overrun error message. */ static void zsoverrun(int unit, long *ptime, char *what) { if (*ptime != time.tv_sec) { *ptime = time.tv_sec; log(LOG_WARNING, "zs%d%c: %s overrun\n", unit >> 1, (unit & 1) + 'a', what); } } /* * ZS software interrupt. Scan all channels for deferred interrupts. */ int zssoft(int arg) { register struct zs_chanstate *cs; register volatile struct zschan *zc; register struct linesw *line; register struct tty *tp; register int get, n, c, cc, unit, s; #ifdef DEBUG printf("zssoft\n"); #endif isr_soft_clear(ZSSOFT_PRI); for (cs = zslist; cs != NULL; cs = cs->cs_next) { get = cs->cs_rbget; again: n = cs->cs_rbput; /* atomic */ if (get == n) /* nothing more on this line */ continue; unit = cs->cs_unit; /* set up to handle interrupts */ zc = cs->cs_zc; tp = cs->cs_ttyp; line = &linesw[tp->t_line]; /* * Compute the number of interrupts in the receive ring. * If the count is overlarge, we lost some events, and * must advance to the first valid one. It may get * overwritten if more data are arriving, but this is * too expensive to check and gains nothing (we already * lost out; all we can do at this point is trade one * kind of loss for another). */ n -= get; if (n > ZLRB_RING_SIZE) { zsoverrun(unit, &cs->cs_rotime, "ring"); get += n - ZLRB_RING_SIZE; n = ZLRB_RING_SIZE; } while (--n >= 0) { /* race to keep ahead of incoming interrupts */ c = cs->cs_rbuf[get++ & ZLRB_RING_MASK]; switch (ZRING_TYPE(c)) { case ZRING_RINT: c = ZRING_VALUE(c); if (c & ZSRR1_DO) zsoverrun(unit, &cs->cs_fotime, "fifo"); cc = c >> 8; if (c & ZSRR1_FE) cc |= TTY_FE; if (c & ZSRR1_PE) cc |= TTY_PE; /* * this should be done through * bstreams XXX gag choke */ if (unit == ZS_KBD) kbd_rint(cc); else if (unit == ZS_MOUSE) ms_rint(cc); else line->l_rint(cc, tp); break; case ZRING_XINT: /* * Transmit done: change registers and resume, * or clear BUSY. */ if (cs->cs_heldchange) { s = splzs(); c = zc->zc_csr; if ((c & ZSRR0_DCD) == 0) cs->cs_preg[3] &= ~ZSWR3_HFC; bcopy((caddr_t)cs->cs_preg, (caddr_t)cs->cs_creg, 16); zs_loadchannelregs(zc, cs->cs_creg); splx(s); cs->cs_heldchange = 0; if (cs->cs_heldtbc && (tp->t_state & TS_TTSTOP) == 0) { cs->cs_tbc = cs->cs_heldtbc - 1; zc->zc_data = *cs->cs_tba++; goto again; } } tp->t_state &= ~TS_BUSY; if (tp->t_state & TS_FLUSH) tp->t_state &= ~TS_FLUSH; else ndflush(&tp->t_outq, (u_char *)cs->cs_tba - tp->t_outq.c_cf); line->l_start(tp); break; case ZRING_SINT: /* * Status line change. HFC bit is run in * hardware interrupt, to avoid locking * at splzs here. */ c = ZRING_VALUE(c); if ((c ^ cs->cs_rr0) & ZSRR0_DCD) { cc = (c & ZSRR0_DCD) != 0; if (line->l_modem(tp, cc) == 0) zs_modem(cs, cc); } cs->cs_rr0 = c; break; default: log(LOG_ERR, "zs%d%c: bad ZRING_TYPE (%x)\n", unit >> 1, (unit & 1) + 'a', c); break; } } cs->cs_rbget = get; goto again; } return (1); } int zsioctl(dev_t dev, int cmd, caddr_t data, int flag, struct proc *p) { int unit = minor(dev); struct zsinfo *zi = zscd.cd_devs[unit >> 1]; register struct tty *tp = zi->zi_cs[unit & 1].cs_ttyp; register int error; error = linesw[tp->t_line].l_ioctl(tp, cmd, data, flag, p); if (error >= 0) return (error); error = ttioctl(tp, cmd, data, flag, p); if (error >= 0) return (error); switch (cmd) { case TIOCSBRK: /* FINISH ME ... need implicit TIOCCBRK in zsclose as well */ case TIOCCBRK: case TIOCSDTR: case TIOCCDTR: case TIOCMSET: case TIOCMBIS: case TIOCMBIC: case TIOCMGET: default: return (ENOTTY); } return (0); } /* * Start or restart transmission. */ static void zsstart(register struct tty *tp) { register struct zs_chanstate *cs; register int s, nch; int unit = minor(tp->t_dev); struct zsinfo *zi = zscd.cd_devs[unit >> 1]; cs = &zi->zi_cs[unit & 1]; s = spltty(); #ifdef DEBUG printf("zsstart\n"); #endif /* * If currently active or delaying, no need to do anything. */ if (tp->t_state & (TS_TIMEOUT | TS_BUSY | TS_TTSTOP)) goto out; /* * If there are sleepers, and output has drained below low * water mark, awaken. */ if (tp->t_outq.c_cc <= tp->t_lowat) { if (tp->t_state & TS_ASLEEP) { tp->t_state &= ~TS_ASLEEP; wakeup((caddr_t)&tp->t_outq); } selwakeup(&tp->t_wsel); } nch = ndqb(&tp->t_outq, 0); /* XXX */ if (nch) { register char *p = tp->t_outq.c_cf; /* mark busy, enable tx done interrupts, & send first byte */ tp->t_state |= TS_BUSY; (void) splzs(); cs->cs_preg[1] |= ZSWR1_TIE; cs->cs_creg[1] |= ZSWR1_TIE; ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]); cs->cs_zc->zc_data = *p; cs->cs_tba = p + 1; cs->cs_tbc = nch - 1; } else { /* * Nothing to send, turn off transmit done interrupts. * This is useful if something is doing polled output. */ (void) splzs(); cs->cs_preg[1] &= ~ZSWR1_TIE; cs->cs_creg[1] &= ~ZSWR1_TIE; ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]); } out: splx(s); } /* * Stop output, e.g., for ^S or output flush. */ void zsstop(register struct tty *tp, int flag) { register struct zs_chanstate *cs; register int s, unit = minor(tp->t_dev); struct zsinfo *zi = zscd.cd_devs[unit >> 1]; cs = &zi->zi_cs[unit & 1]; s = splzs(); if (tp->t_state & TS_BUSY) { /* * Device is transmitting; must stop it. */ cs->cs_tbc = 0; if ((tp->t_state & TS_TTSTOP) == 0) tp->t_state |= TS_FLUSH; } splx(s); } /* * Set ZS tty parameters from termios. * * This routine makes use of the fact that only registers * 1, 3, 4, 5, 9, 10, 11, 12, 13, 14, and 15 are written. */ static int zsparam(register struct tty *tp, register struct termios *t) { int unit = minor(tp->t_dev); struct zsinfo *zi = zscd.cd_devs[unit >> 1]; register struct zs_chanstate *cs = &zi->zi_cs[unit & 1]; register int tmp, tmp5, cflag, s; /* * Because PCLK is only run at 4.9 MHz, the fastest we * can go is 51200 baud (this corresponds to TC=1). * This is somewhat unfortunate as there is no real * reason we should not be able to handle higher rates. */ tmp = t->c_ospeed; if (tmp < 0 || (t->c_ispeed && t->c_ispeed != tmp)) return (EINVAL); if (tmp == 0) { /* stty 0 => drop DTR and RTS */ zs_modem(cs, 0); return (0); } tmp = BPS_TO_TCONST(PCLK / 16, tmp); if (tmp < 2) return (EINVAL); cflag = t->c_cflag; tp->t_ispeed = tp->t_ospeed = TCONST_TO_BPS(PCLK / 16, tmp); tp->t_cflag = cflag; /* * Block interrupts so that state will not * be altered until we are done setting it up. */ s = splzs(); cs->cs_preg[12] = tmp; cs->cs_preg[13] = tmp >> 8; cs->cs_preg[1] = ZSWR1_RIE | ZSWR1_TIE | ZSWR1_SIE; switch (cflag & CSIZE) { case CS5: tmp = ZSWR3_RX_5; tmp5 = ZSWR5_TX_5; break; case CS6: tmp = ZSWR3_RX_6; tmp5 = ZSWR5_TX_6; break; case CS7: tmp = ZSWR3_RX_7; tmp5 = ZSWR5_TX_7; break; case CS8: default: tmp = ZSWR3_RX_8; tmp5 = ZSWR5_TX_8; break; } /* * Output hardware flow control on the chip is horrendous: if * carrier detect drops, the receiver is disabled. Hence we * can only do this when the carrier is on. */ if (cflag & CCTS_OFLOW && cs->cs_zc->zc_csr & ZSRR0_DCD) tmp |= ZSWR3_HFC | ZSWR3_RX_ENABLE; else tmp |= ZSWR3_RX_ENABLE; cs->cs_preg[3] = tmp; cs->cs_preg[5] = tmp5 | ZSWR5_TX_ENABLE | ZSWR5_DTR | ZSWR5_RTS; tmp = ZSWR4_CLK_X16 | (cflag & CSTOPB ? ZSWR4_TWOSB : ZSWR4_ONESB); if ((cflag & PARODD) == 0) tmp |= ZSWR4_EVENP; if (cflag & PARENB) tmp |= ZSWR4_PARENB; cs->cs_preg[4] = tmp; cs->cs_preg[9] = ZSWR9_MASTER_IE | ZSWR9_NO_VECTOR; cs->cs_preg[10] = ZSWR10_NRZ; cs->cs_preg[11] = ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD; cs->cs_preg[14] = ZSWR14_BAUD_FROM_PCLK | ZSWR14_BAUD_ENA; cs->cs_preg[15] = ZSWR15_BREAK_IE | ZSWR15_DCD_IE; /* * If nothing is being transmitted, set up new current values, * else mark them as pending. */ if (cs->cs_heldchange == 0) { if (cs->cs_ttyp->t_state & TS_BUSY) { cs->cs_heldtbc = cs->cs_tbc; cs->cs_tbc = 0; cs->cs_heldchange = 1; } else { bcopy((caddr_t)cs->cs_preg, (caddr_t)cs->cs_creg, 16); zs_loadchannelregs(cs->cs_zc, cs->cs_creg); } } splx(s); return (0); } /* * Raise or lower modem control (DTR/RTS) signals. If a character is * in transmission, the change is deferred. */ static void zs_modem(struct zs_chanstate *cs, int onoff) { int s, bis, and; if (onoff) { bis = ZSWR5_DTR | ZSWR5_RTS; and = ~0; } else { bis = 0; and = ~(ZSWR5_DTR | ZSWR5_RTS); } s = splzs(); cs->cs_preg[5] = (cs->cs_preg[5] | bis) & and; if (cs->cs_heldchange == 0) { if (cs->cs_ttyp->t_state & TS_BUSY) { cs->cs_heldtbc = cs->cs_tbc; cs->cs_tbc = 0; cs->cs_heldchange = 1; } else { cs->cs_creg[5] = (cs->cs_creg[5] | bis) & and; ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]); } } splx(s); } /* * Write the given register set to the given zs channel in the proper order. * The channel must not be transmitting at the time. The receiver will * be disabled for the time it takes to write all the registers. */ static void zs_loadchannelregs(volatile struct zschan *zc, u_char *reg) { int i; zc->zc_csr = ZSM_RESET_ERR; /* reset error condition */ i = zc->zc_data; /* drain fifo */ i = zc->zc_data; i = zc->zc_data; ZS_WRITE(zc, 4, reg[4]); ZS_WRITE(zc, 10, reg[10]); ZS_WRITE(zc, 3, reg[3] & ~ZSWR3_RX_ENABLE); ZS_WRITE(zc, 5, reg[5] & ~ZSWR5_TX_ENABLE); ZS_WRITE(zc, 1, reg[1]); ZS_WRITE(zc, 9, reg[9]); ZS_WRITE(zc, 11, reg[11]); ZS_WRITE(zc, 12, reg[12]); ZS_WRITE(zc, 13, reg[13]); ZS_WRITE(zc, 14, reg[14]); ZS_WRITE(zc, 15, reg[15]); ZS_WRITE(zc, 3, reg[3]); ZS_WRITE(zc, 5, reg[5]); } /* XXX - Tune this... -gwr */ int cpuspeed = 50; static void zs_delay() { int n = cpuspeed; while (n--) { nullop(); /* foil optimizer */ } } static u_char zs_read(zc, reg) volatile struct zschan *zc; u_char reg; { u_char val; zc->zc_csr = reg; zs_delay(); val = zc->zc_csr; zs_delay(); return val; } static u_char zs_write(zc, reg, val) volatile struct zschan *zc; u_char reg, val; { zc->zc_csr = reg; zs_delay(); zc->zc_csr = val; zs_delay(); return val; } #ifdef KGDB /* * Get a character from the given kgdb channel. Called at splhigh(). */ static int zs_kgdb_getc(void *arg) { register volatile struct zschan *zc = (volatile struct zschan *)arg; while ((zc->zc_csr & ZSRR0_RX_READY) == 0) continue; return (zc->zc_data); } /* * Put a character to the given kgdb channel. Called at splhigh(). */ static void zs_kgdb_putc(void *arg, int c) { register volatile struct zschan *zc = (volatile struct zschan *)arg; while ((zc->zc_csr & ZSRR0_TX_READY) == 0) continue; zc->zc_data = c; } /* * Set up for kgdb; called at boot time before configuration. * KGDB interrupts will be enabled later when zs0 is configured. */ void zs_kgdb_init() { volatile struct zsdevice *addr; volatile struct zschan *zc; int unit, zs; if (major(kgdb_dev) != ZSMAJOR) return; unit = minor(kgdb_dev); /* * Unit must be 0 or 1 (zs0). */ if ((unsigned)unit >= ZS_KBD) { printf("zs_kgdb_init: bad minor dev %d\n", unit); return; } zs = unit >> 1; if ((addr = zsaddr[zs]) == NULL) addr = zsaddr[zs] = findzs(zs); unit &= 1; zc = unit == 0 ? &addr->zs_chan[CHAN_A] : &addr->zs_chan[CHAN_B]; zs_kgdb_savedspeed = zs_getspeed(zc); printf("zs_kgdb_init: attaching zs%d%c at %d baud\n", zs, unit + 'a', kgdb_rate); zs_reset(zc, 1, kgdb_rate); kgdb_attach(zs_kgdb_getc, zs_kgdb_putc, (void *)zc); } #endif /* KGDB */