/* * Copyright (c) 1994 Peter Galbavy * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Peter Galbavy * 4. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * $Id: esp.c,v 1.10 1994/10/15 08:57:27 deraadt Exp $ * * Based on aic6360 by Jarle Greipsland * * Acknowledgements: Many of the algorithms used in this driver are * inspired by the work of Julian Elischer (julian@tfs.com) and * Charles Hannum (mycroft@duality.gnu.ai.mit.edu). Thanks a million! */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include int esp_debug = ESP_SHOWPHASE|ESP_SHOWMISC|ESP_SHOWTRAC|ESP_SHOWCMDS; /**/ void espattach __P((struct device *, struct device *, void *)); int espmatch __P((struct device *, struct cfdata *, void *)); void esp_minphys __P((struct buf *)); u_int esp_adapter_info __P((struct esp_softc *)); int espprint __P((void *, char *)); void espreadregs __P((struct esp_softc *)); u_char espgetbyte __P((struct esp_softc *)); void espselect __P((struct esp_softc *, u_char, u_char, caddr_t, u_char)); void esp_scsi_reset __P((struct esp_softc *)); void esp_reset __P((struct esp_softc *)); void esp_init __P((struct esp_softc *)); int esp_scsi_cmd __P((struct scsi_xfer *)); int esp_poll __P((struct esp_softc *, struct ecb *)); int espphase __P((struct esp_softc *)); void esp_sched __P((struct esp_softc *)); void esp_done __P((struct ecb *)); void esp_msgin __P((struct esp_softc *)); void esp_msgout __P((struct esp_softc *)); int espintr __P((struct esp_softc *)); void esp_timeout __P((void *arg)); /* Linkup to the rest of the kernel */ struct cfdriver espcd = { NULL, "esp", espmatch, espattach, DV_DULL, sizeof(struct esp_softc) }; struct scsi_adapter esp_switch = { esp_scsi_cmd, esp_minphys, 0, 0, esp_adapter_info, "esp" }; struct scsi_device esp_dev = { NULL, /* Use default error handler */ NULL, /* have a queue, served by this */ NULL, /* have no async handler */ NULL, /* Use default 'done' routine */ "esp", 0 }; /* * Does anyone actually use this, and what for ? */ int espprint(aux, name) void *aux; char *name; { return -1; } /* * Read the ESP registers, and save their contents for later use. * ESP_STAT, ESP_STEP & ESP_INTR are mostly zeroed out when reading * ESP_INTR - so make sure it is the last read. * * I think that (from reading the docs) most bits in these registers * only make sense when he DMA CSR has an interrupt showing. So I have * coded this to not do anything if there is no interrupt or error * pending. */ void espreadregs(sc) struct esp_softc *sc; { volatile caddr_t esp = sc->sc_reg; /* they mean nothing if the is no pending interrupt ??? */ if (!(DMA_ISINTR(sc->sc_dma))) return; /* Only the stepo bits are of interest */ sc->sc_espstep = esp[ESP_STEP] & ESPSTEP_MASK; sc->sc_espstat = esp[ESP_STAT]; sc->sc_espintr = esp[ESP_INTR]; ESP_MISC(("regs[intr=%02x,stat=%02x,step=%02x] ", sc->sc_espintr, sc->sc_espstat, sc->sc_espstep)); } /* * no error checking ouch */ u_char espgetbyte(sc) struct esp_softc *sc; { volatile caddr_t esp = sc->sc_reg; if (!(esp[ESP_FFLAG] & ESPFIFO_FF)) { ESPCMD(sc, ESPCMD_TRANS); while (!DMA_ISINTR(sc->sc_dma)) DELAY(1); /* * If we read something, then clear the outstanding * interrupts */ espreadregs(sc); } if (!(esp[ESP_FFLAG] & ESPFIFO_FF)) { printf("error... "); } return esp[ESP_FIFO]; } /* * Send a command to a target, set the driver state to ESP_SELECTING * and let the caller take care of the rest. * * Keeping this as a function allows me to say that this may be done * by DMA instead of programmed I/O soon. */ void espselect(sc, target, lun, cmd, clen) struct esp_softc *sc; u_char target, lun; caddr_t cmd; u_char clen; { volatile caddr_t esp = sc->sc_reg; int i; /* * The docs say the target register is never reset, and I * can't think of a better place to set it */ esp[ESP_ID] = target; esp[ESP_SYNCOFF] = sc->sc_tinfo[target].offset; esp[ESP_SYNCTP] = 250 / sc->sc_tinfo[target].period; /* * Who am I. This is where we tell the target that we are * happy for it to disconnect etc. */ esp[ESP_FIFO] = ESP_MSG_IDENTIFY(lun); /* Now the command into the FIFO */ for (i = 0; i < clen; i++) esp[ESP_FIFO] = *cmd++; /* And get the targets attention */ ESPCMD(sc, ESPCMD_SELATN); /* new state ESP_SELECTING */ sc->sc_state = ESP_SELECTING; } int espmatch(parent, cf, aux) struct device *parent; struct cfdata *cf; void *aux; { register struct confargs *ca = aux; register struct romaux *ra = &ca->ca_ra; if (strcmp(cf->cf_driver->cd_name, ra->ra_name)) return (0); if (ca->ca_bustype == BUS_SBUS) return (1); ra->ra_len = NBPG; return (probeget(ra->ra_vaddr, 1) != -1); } /* * Attach this instance, and then all the sub-devices */ void espattach(parent, self, aux) struct device *parent, *self; void *aux; { register struct confargs *ca = aux; struct esp_softc *sc = (void *)self; struct bootpath *bp; /* * Make sure things are sane. I don't know if this is ever * necessary, but it seem to be in all of Torek's code. */ if (ca->ca_ra.ra_nintr != 1) { printf(": expected 1 interrupt, got %d\n", ca->ca_ra.ra_nintr); return; } sc->sc_pri = ca->ca_ra.ra_intr[0].int_pri; printf(" pri %d", sc->sc_pri); /* * Map my registers in, if they aren't already in virtual * address space. */ if (ca->ca_ra.ra_vaddr) sc->sc_reg = (volatile caddr_t) ca->ca_ra.ra_vaddr; else { sc->sc_reg = (volatile caddr_t) mapiodev(ca->ca_ra.ra_paddr, ca->ca_ra.ra_len, ca->ca_bustype); } /* Other settings */ sc->sc_node = ca->ca_ra.ra_node; if (ca->ca_bustype == BUS_SBUS) { sc->sc_id = getpropint(sc->sc_node, "initiator-id", 7); sc->sc_freq = getpropint(sc->sc_node, "clock-frequency", -1); } else { sc->sc_id = 7; sc->sc_freq = 24000000; } if (sc->sc_freq < 0) sc->sc_freq = ((struct sbus_softc *) sc->sc_dev.dv_parent)->sc_clockfreq; /* gimme Mhz */ sc->sc_freq /= 1000000; /* * This is the value used to start sync negotiations * For a 25Mhz clock, this gives us 40, or 160nS, or * 6.25Mb/s. It is constant for each adapter. * * In turn, notice that the ESP register "SYNCTP" is * = (250 / the negotiated period). It works, try it * on paper. */ sc->sc_minsync = 1000 / sc->sc_freq; /* 0 is actually 8, even though the register only has 3 bits */ sc->sc_ccf = FREQTOCCF(sc->sc_freq) & 0x07; /* The value *must not* be == 1. Make it 2 */ if (sc->sc_ccf == 1) sc->sc_ccf = 2; /* * The recommended timeout is 250ms. This register is loaded * with a value calculated as follows, from the docs: * * (timout period) x (CLK frequency) * reg = ------------------------------------- * 8192 x (Clock Conversion Factor) * * We have the CCF from above, so the sum is simple, and generally * gives us a constant of 153. Try working out a few and see. */ sc->sc_timeout = ESP_DEF_TIMEOUT; /* * find the DMA by poking around the dma device structures * * What happens here is that if the dma driver has not been * configured, then this returns a NULL pointer. Then when the * dma actually gets configured, it does the opposing test, and * if the sc->sc_esp field in it's softc is NULL, then tries to * find the matching esp driver. * */ sc->sc_dma = ((struct dma_softc *)getdevunit("dma", sc->sc_dev.dv_unit)); /* * and a back pointer to us, for DMA */ if (sc->sc_dma) sc->sc_dma->sc_esp = sc; /* * It is necessary to try to load the 2nd config register here, * to find out what rev the esp chip is, else the esp_reset * will not set up the defaults correctly. */ sc->sc_cfg1 = sc->sc_id | ESPCFG1_PARENB; sc->sc_cfg2 = ESPCFG2_SCSI2 | ESPCFG2_RSVD; sc->sc_cfg3 = ESPCFG3_CDB; sc->sc_reg[ESP_CFG2] = sc->sc_cfg2; if ((sc->sc_reg[ESP_CFG2] & ~ESPCFG2_RSVD) != (ESPCFG2_SCSI2 | ESPCFG2_RPE)) { printf(": ESP100"); sc->sc_rev = ESP100; } else { sc->sc_cfg2 = 0; sc->sc_reg[ESP_CFG2] = sc->sc_cfg2; sc->sc_cfg3 = 0; sc->sc_reg[ESP_CFG3] = sc->sc_cfg3; sc->sc_cfg3 = 5; sc->sc_reg[ESP_CFG3] = sc->sc_cfg3; if (sc->sc_reg[ESP_CFG3] != 5) { printf(": ESP100A"); sc->sc_rev = ESP100A; } else { sc->sc_cfg3 = 0; sc->sc_reg[ESP_CFG3] = sc->sc_cfg3; printf(": ESP200"); sc->sc_rev = ESP200; } } sc->sc_state = 0; esp_init(sc); printf(" %dMhz, target %d\n", sc->sc_freq, sc->sc_id); /* add me to the sbus structures */ sc->sc_sd.sd_reset = (void *) esp_reset; #if defined(SUN4C) || defined(SUN4M) if (ca->ca_bustype == BUS_SBUS) sbus_establish(&sc->sc_sd, &sc->sc_dev); #endif /* SUN4C || SUN4M */ /* and the interuppts */ sc->sc_ih.ih_fun = (void *) espintr; sc->sc_ih.ih_arg = sc; intr_establish(sc->sc_pri, &sc->sc_ih); evcnt_attach(&sc->sc_dev, "intr", &sc->sc_intrcnt); /* * fill in the prototype scsi_link. */ sc->sc_link.adapter_softc = sc; sc->sc_link.adapter_targ = sc->sc_id; sc->sc_link.adapter = &esp_switch; sc->sc_link.device = &esp_dev; /* * If the boot path is "esp" at the moment and it's me, then * walk our pointer to the sub-device, ready for the config * below. */ bp = ca->ca_ra.ra_bp; switch (ca->ca_bustype) { case BUS_SBUS: if (bp != NULL && strcmp(bp->name, "esp") == 0 && SAME_ESP(sc, bp, ca)) sc->sc_bp = bp + 1; break; default: if (bp != NULL && strcmp(bp->name, "esp") == 0) sc->sc_bp = bp + 1; break; } /* * Now try to attach all the sub-devices */ config_found(self, &sc->sc_link, espprint); } /* * This is the generic esp reset function. It does not reset the SCSI bus, * only this controllers, but kills any on-going commands, and also stops * and resets the DMA. * * After reset, registers are loaded with the defaults from the attach * routine above. */ void esp_reset(sc) struct esp_softc *sc; { volatile caddr_t esp = sc->sc_reg; /* reset DMA first */ DMA_RESET(sc->sc_dma); ESPCMD(sc, ESPCMD_RSTCHIP); /* reset chip */ ESPCMD(sc, ESPCMD_NOP); DELAY(500); /* do these backwards, and fall through */ switch (sc->sc_rev) { case ESP200: esp[ESP_CFG3] = sc->sc_cfg3; case ESP100A: esp[ESP_CFG2] = sc->sc_cfg2; case ESP100: esp[ESP_CFG1] = sc->sc_cfg1; esp[ESP_CCF] = sc->sc_ccf; esp[ESP_SYNCOFF] = 0; esp[ESP_TIMEOUT] = sc->sc_timeout; break; default: printf("%s: unknown revision code, assuming ESP100\n", sc->sc_dev.dv_xname); esp[ESP_CFG1] = sc->sc_cfg1; esp[ESP_CCF] = sc->sc_ccf; esp[ESP_SYNCOFF] = 0; esp[ESP_TIMEOUT] = sc->sc_timeout; } } /* * Reset the SCSI bus, but not the chip */ void esp_scsi_reset(sc) struct esp_softc *sc; { printf("esp: resetting SCSI bus\n"); ESPCMD(sc, ESPCMD_RSTSCSI); DELAY(50); } /* * Initialize esp state machine */ void esp_init(sc) struct esp_softc *sc; { struct ecb *ecb; int r; /* * reset the chip to a known state */ esp_reset(sc); if (sc->sc_state == 0) { /* First time through */ TAILQ_INIT(&sc->ready_list); TAILQ_INIT(&sc->nexus_list); TAILQ_INIT(&sc->free_list); sc->sc_nexus = 0; ecb = sc->sc_ecb; bzero(ecb, sizeof(sc->sc_ecb)); for (r = 0; r < sizeof(sc->sc_ecb) / sizeof(*ecb); r++) { TAILQ_INSERT_TAIL(&sc->free_list, ecb, chain); ecb++; } bzero(&sc->sc_tinfo, sizeof(sc->sc_tinfo)); } else { sc->sc_state = ESP_IDLE; if (sc->sc_nexus != NULL) { sc->sc_nexus->xs->error = XS_DRIVER_STUFFUP; untimeout(esp_timeout, sc->sc_nexus); esp_done(sc->sc_nexus); } sc->sc_nexus = NULL; while (ecb = sc->nexus_list.tqh_first) { ecb->xs->error = XS_DRIVER_STUFFUP; untimeout(esp_timeout, ecb); esp_done(ecb); } } sc->sc_phase = sc->sc_prevphase = INVALID_PHASE; for (r = 0; r < 8; r++) { struct esp_tinfo *tp = &sc->sc_tinfo[r]; tp->flags = DO_NEGOTIATE | NEED_TO_RESET; tp->period = sc->sc_minsync; tp->offset = ESP_SYNC_REQ_ACK_OFS; } sc->sc_state = ESP_IDLE; return; } /* * DRIVER FUNCTIONS CALLABLE FROM HIGHER LEVEL DRIVERS */ /* * Start a SCSI-command * This function is called by the higher level SCSI-driver to queue/run * SCSI-commands. */ int esp_scsi_cmd(xs) struct scsi_xfer *xs; { struct scsi_link *sc_link = xs->sc_link; struct esp_softc *sc = sc_link->adapter_softc; struct ecb *ecb; int s, flags; ESP_TRACE(("esp_scsi_cmd\n")); ESP_CMDS(("[0x%x, %d]->%d ", (int)xs->cmd->opcode, xs->cmdlen, sc_link->target)); flags = xs->flags; /* Get a esp command block */ if (!(flags & SCSI_NOMASK)) { /* Critical region */ s = splbio(); ecb = sc->free_list.tqh_first; if (ecb) { TAILQ_REMOVE(&sc->free_list, ecb, chain); } splx(s); } else { ecb = sc->free_list.tqh_first; if (ecb) { TAILQ_REMOVE(&sc->free_list, ecb, chain); } } if (ecb == NULL) { xs->error = XS_DRIVER_STUFFUP; ESP_MISC(("TRY_AGAIN_LATER")); return TRY_AGAIN_LATER; } /* Initialize ecb */ ecb->flags = ECB_ACTIVE; ecb->xs = xs; bcopy(xs->cmd, &ecb->cmd, xs->cmdlen); ecb->clen = xs->cmdlen; ecb->daddr = xs->data; ecb->dleft = xs->datalen; ecb->stat = 0; if (!(flags & SCSI_NOMASK)) s = splbio(); TAILQ_INSERT_TAIL(&sc->ready_list, ecb, chain); timeout(esp_timeout, ecb, (xs->timeout*hz)/1000); if (sc->sc_state == ESP_IDLE) esp_sched(sc); if (!(flags & SCSI_NOMASK)) { /* Almost done. Wait outside */ splx(s); ESP_MISC(("SUCCESSFULLY_QUEUED")); return SUCCESSFULLY_QUEUED; } /* Not allowed to use interrupts, use polling instead */ return esp_poll(sc, ecb); } /* * Adjust transfer size in buffer structure * * We have no max transfer size, since the DMA driver will break it * down into watever is needed. */ void esp_minphys(bp) struct buf *bp; { } u_int esp_adapter_info(sc) struct esp_softc *sc; { ESP_TRACE(("esp_adapter_info\n")); /* One outstanding command per target */ return 2; } /* * Used when interrupt driven I/O isn't allowed, e.g. during boot. */ int esp_poll(sc, ecb) struct esp_softc *sc; struct ecb *ecb; { struct scsi_xfer *xs = ecb->xs; int count = xs->timeout * 10; ESP_TRACE(("esp_poll\n")); while (count) { if (DMA_ISINTR(sc->sc_dma)) { espintr(sc); } if (xs->flags & ITSDONE) break; DELAY(5); count--; } if (count == 0) { ESP_MISC(("esp_poll: timeout")); esp_timeout((caddr_t)ecb); } if (xs->error) return HAD_ERROR; return COMPLETE; } /* * LOW LEVEL SCSI UTILITIES */ /* * Determine the SCSI bus phase, return either a real SCSI bus phase * or some pseudo phase we use to detect certain exceptions. * * Notice that we do not read the live register on an ESP100. On the * ESP100A and above the FE (Feature Enable) bit in config 2 latches * the phase in the register so it is safe to read. */ int espphase(sc) struct esp_softc *sc; { if (sc->sc_espintr & ESPINTR_DIS) /* Disconnected */ return BUSFREE_PHASE; if (sc->sc_rev > ESP100) return (sc->sc_reg[ESP_STAT] & ESPSTAT_PHASE); return (sc->sc_espstat & ESPSTAT_PHASE); } /* * Schedule a scsi operation. This has now been pulled out of the interrupt * handler so that we may call it from esp_scsi_cmd and esp_done. This may * save us an unecessary interrupt just to get things going. Should only be * called when state == ESP_IDLE and at bio pl. */ void esp_sched(sc) struct esp_softc *sc; { struct scsi_link *sc_link; struct ecb *ecb; int t; ESP_TRACE(("esp_sched\n")); /* * Find first ecb in ready queue that is for a target/lunit * combinations that is not busy. */ for (ecb = sc->ready_list.tqh_first; ecb; ecb = ecb->chain.tqe_next) { caddr_t cmd = (caddr_t) &ecb->cmd; sc_link = ecb->xs->sc_link; t = sc_link->target; if (!(sc->sc_tinfo[t].lubusy & (1 << sc_link->lun))) { struct esp_tinfo *ti = &sc->sc_tinfo[ecb->xs->sc_link->target]; TAILQ_REMOVE(&sc->ready_list, ecb, chain); sc->sc_nexus = ecb; sc->sc_flags = 0; sc->sc_prevphase = INVALID_PHASE; sc_link = ecb->xs->sc_link; espselect(sc, t, sc_link->lun, cmd, ecb->clen); ti = &sc->sc_tinfo[sc_link->target]; sc->sc_dp = ecb->daddr; sc->sc_dleft = ecb->dleft; ti->lubusy |= (1<lun); break; } else ESP_MISC(("%d:%d busy\n", t, sc_link->lun)); } } /* * POST PROCESSING OF SCSI_CMD (usually current) */ void esp_done(ecb) struct ecb *ecb; { struct scsi_xfer *xs = ecb->xs; struct scsi_link *sc_link = xs->sc_link; struct esp_softc *sc = sc_link->adapter_softc; ESP_TRACE(("esp_done ")); /* * Now, if we've come here with no error code, i.e. we've kept the * initial XS_NOERROR, and the status code signals that we should * check sense, we'll need to set up a request sense cmd block and * push the command back into the ready queue *before* any other * commands for this target/lunit, else we lose the sense info. * We don't support chk sense conditions for the request sense cmd. */ if (xs->error == XS_NOERROR && !(ecb->flags & ECB_CHKSENSE)) { if ((ecb->stat & ST_MASK)==SCSI_CHECK) { struct scsi_sense *ss = (void *)&ecb->cmd; ESP_MISC(("requesting sense ")); /* First, save the return values */ xs->resid = ecb->dleft; xs->status = ecb->stat; /* Next, setup a request sense command block */ bzero(ss, sizeof(*ss)); ss->op_code = REQUEST_SENSE; ss->byte2 = sc_link->lun << 5; ss->length = sizeof(struct scsi_sense_data); ecb->clen = sizeof(*ss); ecb->daddr = (char *)&xs->sense; ecb->dleft = sizeof(struct scsi_sense_data); ecb->flags = ECB_ACTIVE|ECB_CHKSENSE; TAILQ_INSERT_HEAD(&sc->ready_list, ecb, chain); sc->sc_tinfo[sc_link->target].lubusy &= ~(1<lun); sc->sc_tinfo[sc_link->target].senses++; /* found it */ if (sc->sc_nexus == ecb) { sc->sc_nexus = NULL; sc->sc_state = ESP_IDLE; esp_sched(sc); } return; } } if (xs->flags & SCSI_ERR_OK) { xs->resid = 0; xs->error = XS_NOERROR; } else if (xs->error == XS_NOERROR && (ecb->flags & ECB_CHKSENSE)) { xs->error = XS_SENSE; } else { xs->resid = ecb->dleft; } xs->flags |= ITSDONE; #if ESP_DEBUG > 1 if (esp_debug & ESP_SHOWMISC) { printf("err=0x%02x ",xs->error); if (xs->error == XS_SENSE) printf("sense=%2x\n", xs->sense.error_code); } if ((xs->resid || xs->error > XS_SENSE) && esp_debug & ESP_SHOWMISC) { if (xs->resid) printf("esp_done: resid=%d\n", xs->resid); if (xs->error) printf("esp_done: error=%d\n", xs->error); } #endif /* * Remove the ECB from whatever queue it's on. We have to do a bit of * a hack to figure out which queue it's on. Note that it is *not* * necessary to cdr down the ready queue, but we must cdr down the * nexus queue and see if it's there, so we can mark the unit as no * longer busy. This code is sickening, but it works. */ if (ecb == sc->sc_nexus) { sc->sc_state = ESP_IDLE; sc->sc_tinfo[sc_link->target].lubusy &= ~(1<lun); esp_sched(sc); } else if (sc->ready_list.tqh_last == &ecb->chain.tqe_next) { TAILQ_REMOVE(&sc->ready_list, ecb, chain); } else { register struct ecb *ecb2; for (ecb2 = sc->nexus_list.tqh_first; ecb2; ecb2 = ecb2->chain.tqe_next) if (ecb2 == ecb) { TAILQ_REMOVE(&sc->nexus_list, ecb, chain); sc->sc_tinfo[sc_link->target].lubusy &= ~(1<lun); break; } if (ecb2) ; else if (ecb->chain.tqe_next) { TAILQ_REMOVE(&sc->ready_list, ecb, chain); } else { printf("%s: can't find matching ecb\n", sc->sc_dev.dv_xname); Debugger(); } } /* Put it on the free list. */ ecb->flags = ECB_FREE; TAILQ_INSERT_HEAD(&sc->free_list, ecb, chain); sc->sc_tinfo[sc_link->target].cmds++; scsi_done(xs); return; } /* * INTERRUPT/PROTOCOL ENGINE */ /* * Schedule an outgoing message by prioritizing it, and asserting * attention on the bus. We can only do this when we are the initiator * else there will be an illegal command interrupt. */ #define esp_sched_msgout(m) \ do { \ ESP_MISC(("esp_sched_msgout %d ", m)); \ ESPCMD(sc, ESPCMD_SETATN); \ sc->sc_msgpriq |= (m); \ } while (0) #define IS1BYTEMSG(m) (((m) != 1 && (m) < 0x20) || (m) & 0x80) #define IS2BYTEMSG(m) (((m) & 0xf0) == 0x20) #define ISEXTMSG(m) ((m) == 1) /* * Get an incoming message as initiator. * * The SCSI bus must already be in MESSAGE_IN_PHASE and there is a * byte in the FIFO */ void esp_msgin(sc) register struct esp_softc *sc; { volatile caddr_t esp = sc->sc_reg; int extlen; ESP_TRACE(("esp_msgin ")); /* is something wrong ? */ if (sc->sc_phase != MESSAGE_IN_PHASE) { printf("%s: not MESSAGE_IN_PHASE\n", sc->sc_dev.dv_xname); return; } /* * Prepare for a new message. A message should (according * to the SCSI standard) be transmitted in one single * MESSAGE_IN_PHASE. If we have been in some other phase, * then this is a new message. */ if (sc->sc_prevphase != MESSAGE_IN_PHASE) { sc->sc_flags &= ~ESP_DROP_MSGI; sc->sc_imlen = 0; } if (sc->sc_state == ESP_RESELECTED && sc->sc_imlen == 0) { /* * Which target is reselecting us? (The ID bit really) */ sc->sc_selid = espgetbyte(sc) & ~(1<sc_id); ESP_MISC(("selid=0x%2x ", sc->sc_selid)); } for (;;) { /* * If parity errors just dump everything on the floor */ if (sc->sc_espstat & ESPSTAT_PE) { esp_sched_msgout(SEND_PARITY_ERROR); sc->sc_flags |= ESP_DROP_MSGI; } /* * If we're going to reject the message, don't bother storing * the incoming bytes. But still, we need to ACK them. */ if (!(sc->sc_flags & ESP_DROP_MSGI)) { sc->sc_imess[sc->sc_imlen] = espgetbyte(sc); ESP_MISC(("0x%02x ", sc->sc_imess[sc->sc_imlen])); /* * This testing is suboptimal, but most messages will * be of the one byte variety, so it should not effect * performance significantly. */ if (IS1BYTEMSG(sc->sc_imess[0])) break; if (IS2BYTEMSG(sc->sc_imess[0]) && sc->sc_imlen == 1) break; if (ISEXTMSG(sc->sc_imess[0]) && sc->sc_imlen > 0) { if (sc->sc_imlen == ESP_MAX_MSG_LEN) { sc->sc_flags |= ESP_DROP_MSGI; ESPCMD(sc, ESPCMD_SETATN); ESPCMD(sc, ESPCMD_MSGOK); } extlen = sc->sc_imess[1] ? sc->sc_imess[1] : 256; if (sc->sc_imlen == extlen + 2) { break; /* Got it all */ } else { sc->sc_imlen++; /* ESPCMD(sc, ESPCMD_TRANS); */ /* return; */ } } } } ESP_MISC(("gotmsg ")); /* * Now we should have a complete message (1 byte, 2 byte * and moderately long extended messages). We only handle * extended messages which total length is shorter than * ESP_MAX_MSG_LEN. Longer messages will be amputated. */ if (sc->sc_state == ESP_HASNEXUS) { struct ecb *ecb = sc->sc_nexus; struct esp_tinfo *ti = &sc->sc_tinfo[ecb->xs->sc_link->target]; switch (sc->sc_imess[0]) { case MSG_CMDCOMPLETE: ESP_MISC(("cmdcomplete ")); if (!ecb) { esp_sched_msgout(SEND_ABORT); printf("%s: CMDCOMPLETE but no command?\n", sc->sc_dev.dv_xname); break; } if (sc->sc_dleft < 0) { struct scsi_link *sc_link = ecb->xs->sc_link; printf("esp: %d extra bytes from %d:%d\n", -sc->sc_dleft, sc_link->target, sc_link->lun); ecb->dleft = 0; } ESPCMD(sc, ESPCMD_MSGOK); ecb->xs->resid = ecb->dleft = sc->sc_dleft; sc->sc_flags |= ESP_BUSFREE_OK; return; case MSG_MESSAGE_REJECT: if (esp_debug & ESP_SHOWMISC) printf("%s: our msg rejected by target\n", sc->sc_dev.dv_xname); if (sc->sc_flags & ESP_SYNCHNEGO) { ti->period = ti->offset = 0; sc->sc_flags &= ~ESP_SYNCHNEGO; ti->flags &= ~DO_NEGOTIATE; } /* Not all targets understand INITIATOR_DETECTED_ERR */ if (sc->sc_msgout == SEND_INIT_DET_ERR) esp_sched_msgout(SEND_ABORT); ESPCMD(sc, ESPCMD_MSGOK); break; case MSG_NOOP: ESPCMD(sc, ESPCMD_MSGOK); break; case MSG_DISCONNECT: if (!ecb) { esp_sched_msgout(SEND_ABORT); printf("%s: nothing to DISCONNECT\n", sc->sc_dev.dv_xname); break; } ESPCMD(sc, ESPCMD_MSGOK); ti->dconns++; TAILQ_INSERT_HEAD(&sc->nexus_list, ecb, chain); ecb = sc->sc_nexus = NULL; sc->sc_state = ESP_IDLE; sc->sc_flags |= ESP_BUSFREE_OK; break; case MSG_SAVEDATAPOINTER: if (!ecb) { esp_sched_msgout(SEND_ABORT); printf("%s: no DATAPOINTERs to save\n", sc->sc_dev.dv_xname); break; } ESPCMD(sc, ESPCMD_MSGOK); ecb->dleft = sc->sc_dleft; ecb->daddr = sc->sc_dp; break; case MSG_RESTOREPOINTERS: if (!ecb) { esp_sched_msgout(SEND_ABORT); printf("%s: no DATAPOINTERs to restore\n", sc->sc_dev.dv_xname); break; } ESPCMD(sc, ESPCMD_MSGOK); sc->sc_dp = ecb->daddr; sc->sc_dleft = ecb->dleft; break; case MSG_EXTENDED: switch (sc->sc_imess[2]) { case MSG_EXT_SDTR: ti->period = sc->sc_imess[3]; ti->offset = sc->sc_imess[4]; if (ti->offset == 0) { printf("%s: async\n", TARGETNAME(ecb)); ti->offset = 0; } else if (ti->period > 124) { printf("%s: async\n", TARGETNAME(ecb)); ti->offset = 0; esp_sched_msgout(SEND_SDTR); } else { /* we are sync */ printf("%s: sync rate %2fMb/s\n", TARGETNAME(ecb), sc->sc_freq/ti->period); } break; default: /* Extended messages we don't handle */ ESPCMD(sc, ESPCMD_SETATN); break; } ESPCMD(sc, ESPCMD_MSGOK); break; default: /* thanks for that ident... */ if (!ESP_MSG_ISIDENT(sc->sc_imess[0])) { ESP_MISC(("unknown ")); ESPCMD(sc, ESPCMD_SETATN); } ESPCMD(sc, ESPCMD_MSGOK); break; } } else if (sc->sc_state == ESP_RESELECTED) { struct scsi_link *sc_link; struct ecb *ecb; u_char lunit; if (ESP_MSG_ISIDENT(sc->sc_imess[0])) { /* Identify? */ ESP_MISC(("searching ")); /* * Search wait queue for disconnected cmd * The list should be short, so I haven't bothered with * any more sophisticated structures than a simple * singly linked list. */ lunit = sc->sc_imess[0] & 0x07; for (ecb = sc->nexus_list.tqh_first; ecb; ecb = ecb->chain.tqe_next) { sc_link = ecb->xs->sc_link; if (sc_link->lun == lunit && sc->sc_selid == (1<target)) { TAILQ_REMOVE(&sc->nexus_list, ecb, chain); break; } } if (!ecb) { /* Invalid reselection! */ esp_sched_msgout(SEND_ABORT); printf("esp: invalid reselect (idbit=0x%2x)\n", sc->sc_selid); } else { /* Reestablish nexus */ /* * Setup driver data structures and * do an implicit RESTORE POINTERS */ sc->sc_nexus = ecb; sc->sc_dp = ecb->daddr; sc->sc_dleft = ecb->dleft; sc->sc_tinfo[sc_link->target].lubusy |= (1<lun); esp[ESP_SYNCOFF] = sc->sc_tinfo[sc_link->target].offset; esp[ESP_SYNCTP] = 250 / sc->sc_tinfo[sc_link->target].period; ESP_MISC(("... found ecb")); sc->sc_state = ESP_HASNEXUS; } } else { printf("%s: bogus reselect (no IDENTIFY) %0x2x\n", sc->sc_dev.dv_xname, sc->sc_selid); esp_sched_msgout(SEND_DEV_RESET); } } else { /* Neither ESP_HASNEXUS nor ESP_RESELECTED! */ printf("%s: unexpected message in; will send DEV_RESET\n", sc->sc_dev.dv_xname); esp_sched_msgout(SEND_DEV_RESET); } } /* * Send the highest priority, scheduled message */ void esp_msgout(sc) register struct esp_softc *sc; { volatile caddr_t esp = sc->sc_reg; struct esp_tinfo *ti; struct ecb *ecb; if (sc->sc_prevphase != MESSAGE_OUT_PHASE) { /* Pick up highest priority message */ sc->sc_msgout = sc->sc_msgpriq & -sc->sc_msgpriq; sc->sc_omlen = 1; /* "Default" message len */ switch (sc->sc_msgout) { case SEND_SDTR: /* Also implies an IDENTIFY message */ ecb = sc->sc_nexus; sc->sc_flags |= ESP_SYNCHNEGO; ti = &sc->sc_tinfo[ecb->xs->sc_link->target]; sc->sc_omess[1] = MSG_EXTENDED; sc->sc_omess[2] = 3; sc->sc_omess[3] = MSG_EXT_SDTR; sc->sc_omess[4] = ti->period; sc->sc_omess[5] = ti->offset; sc->sc_omlen = 6; /* Fallthrough! */ case SEND_IDENTIFY: if (sc->sc_state != ESP_HASNEXUS) { printf("esp at line %d: no nexus", __LINE__); Debugger(); } ecb = sc->sc_nexus; sc->sc_omess[0] = ESP_MSG_IDENTIFY(ecb->xs->sc_link->lun); break; case SEND_DEV_RESET: sc->sc_omess[0] = MSG_BUS_DEV_RESET; sc->sc_flags |= ESP_BUSFREE_OK; break; case SEND_PARITY_ERROR: sc->sc_omess[0] = MSG_PARITY_ERR; break; case SEND_ABORT: sc->sc_omess[0] = MSG_ABORT; sc->sc_flags |= ESP_BUSFREE_OK; break; case SEND_INIT_DET_ERR: sc->sc_omess[0] = MSG_INITIATOR_DET_ERR; break; case SEND_REJECT: sc->sc_omess[0] = MSG_MESSAGE_REJECT; break; default: sc->sc_omess[0] = MSG_NOOP; break; } sc->sc_omp = sc->sc_omess; } /* (re)send the message */ DMA_START(sc->sc_dma, &sc->sc_omp, &sc->sc_omlen, 0); } /* * This is the most critical part of the driver, and has to know * how to deal with *all* error conditions and phases from the SCSI * bus. If there are no errors and the DMA was active, then call the * DMA pseudo-interrupt handler. If this returns 1, then that was it * and we can return from here without further processing. * * Most of this needs verifying. */ int espintr(sc) register struct esp_softc *sc; { register struct ecb *ecb = sc->sc_nexus; register struct scsi_link *sc_link; volatile caddr_t esp = sc->sc_reg; struct esp_tinfo *ti; caddr_t cmd; int loop; ESP_TRACE(("espintr\n")); /* * I have made some (maybe seriously flawed) assumptions here, * but basic testing (uncomment the printf() below), show that * certainly something happens when this loop is here. * * The idea is that many of the SCSI operations take very little * time, and going away and getting interrupted is too high an * overhead to pay. For example, selecting, sending a message * and command and then doing some work can be done in one "pass". * * The DELAY is not variable because I do not understand that the * DELAY loop should be fixed-time regardless of CPU speed, but * I am *assuming* that the faster SCSI processors get things done * quicker (sending a command byte etc), and so there is no * need to be too slow. * * This is a heuristic. It is 2 when at 20Mhz, 2 at 25Mhz and 1 * at 40Mhz. This needs testing. */ #define FOREVER for (loop = 0; FOREVER;loop++, DELAY(50/sc->sc_freq)) { /* a feeling of deja-vu */ if (!DMA_ISINTR(sc->sc_dma) && loop) return 1; #if 0 if (loop) printf("*"); #endif /* and what do the registers say... */ espreadregs(sc); if (sc->sc_state == ESP_IDLE) { printf("%s: stray interrupt\n", sc->sc_dev.dv_xname); return 0; } sc->sc_intrcnt.ev_count++; /* * What phase are we in when we *entered* the * interrupt handler ? * * On laster ESP chips (ESP236 and up) the FE (features * enable) bit in config 2 latches the phase bits * at each "command completion". */ sc->sc_phase = espphase(sc); /* * At the moment, only a SCSI Bus Reset or Illegal * Command are classed as errors. A diconnect is a * valid condition, and we let the code check is the * "ESP_BUSFREE_OK" flag was set before declaring it * and error. * * Also, the status register tells us about "Gross * Errors" and "Parity errors". Only the Gross Error * is really bad, and the parity errors are dealt * with later * * TODO * If there are too many parity error, go to slow * cable mode ? */ #define ESPINTR_ERR (ESPINTR_SBR|ESPINTR_ILL) if (sc->sc_espintr & ESPINTR_ERR || sc->sc_espstat & ESPSTAT_GE) { /* SCSI Reset */ if (sc->sc_espintr & ESPINTR_SBR) { if (esp[ESP_FFLAG] & ESPFIFO_FF) { ESPCMD(sc, ESPCMD_FLUSH); DELAY(1); } printf("%s: SCSI bus reset\n", sc->sc_dev.dv_xname); esp_init(sc); /* Restart everything */ return 1; } if (sc->sc_espstat & ESPSTAT_GE) { /* no target ? */ if (esp[ESP_FFLAG] & ESPFIFO_FF) { ESPCMD(sc, ESPCMD_FLUSH); DELAY(1); } DELAY(1); if (sc->sc_state == ESP_HASNEXUS) { ecb->xs->error = XS_DRIVER_STUFFUP; untimeout(esp_timeout, ecb); espreadregs(sc); esp_done(ecb); } return 1; } if (sc->sc_espintr & ESPINTR_ILL) { /* illegal command, out of sync ? */ printf("%s: illegal command ", sc->sc_dev.dv_xname); if (esp[ESP_FFLAG] & ESPFIFO_FF) { ESPCMD(sc, ESPCMD_FLUSH); DELAY(1); } if (sc->sc_state == ESP_HASNEXUS) { ecb->xs->error = XS_DRIVER_STUFFUP; untimeout(esp_timeout, ecb); esp_done(ecb); } esp_reset(sc); /* so start again */ return 1; } } /* * Call if DMA is active. * * If DMA_INTR returns true, then maybe go 'round the loop * again in case there is no more DMA queued, but a phase * change is expected. */ if (sc->sc_dma->sc_active && DMA_INTR(sc->sc_dma)) { /* If DMA active here, then go back to work... */ if (sc->sc_dma->sc_active) return 1; DELAY(50/sc->sc_freq); continue; } /* * check for less serious errors */ if (sc->sc_espstat & ESPSTAT_PE) { printf("esp: SCSI bus parity error\n"); if (sc->sc_prevphase == MESSAGE_IN_PHASE) esp_sched_msgout(SEND_PARITY_ERROR); else esp_sched_msgout(SEND_INIT_DET_ERR); } if (sc->sc_espintr & ESPINTR_DIS) { ESP_MISC(("disc ")); if (esp[ESP_FFLAG] & ESPFIFO_FF) { ESPCMD(sc, ESPCMD_FLUSH); DELAY(1); } /* * This command must (apparently) be issued within * 250mS of a disconnect. So here you are... */ ESPCMD(sc, ESPCMD_ENSEL); if (sc->sc_state != ESP_IDLE) { /* it may be OK to disconnect */ if (!(sc->sc_flags & ESP_BUSFREE_OK)) ecb->xs->error = XS_TIMEOUT; untimeout(esp_timeout, ecb); esp_done(ecb); return 1; } } /* did a message go out OK ? This must be broken */ if (sc->sc_prevphase == MESSAGE_OUT_PHASE && sc->sc_phase != MESSAGE_OUT_PHASE) { /* we have sent it */ sc->sc_msgpriq &= ~sc->sc_msgout; sc->sc_msgout = 0; } switch (sc->sc_state) { case ESP_RESELECTED: /* * we must be continuing a message ? */ if (sc->sc_phase != MESSAGE_IN_PHASE) { printf("%s: target didn't identify\n", sc->sc_dev.dv_xname); esp_init(sc); return 1; } esp_msgin(sc); if (sc->sc_state != ESP_HASNEXUS) { /* IDENTIFY fail?! */ printf("%s: identify failed\n", sc->sc_dev.dv_xname); esp_init(sc); return 1; } break; case ESP_IDLE: case ESP_SELECTING: if (sc->sc_espintr & ESPINTR_RESEL) { /* * If we're trying to select a * target ourselves, push our command * back into the ready list. */ if (sc->sc_state == ESP_SELECTING) { ESP_MISC(("backoff selector ")); TAILQ_INSERT_HEAD(&sc->ready_list, sc->sc_nexus, chain); sc->sc_nexus = NULL; } sc->sc_state = ESP_RESELECTED; if (sc->sc_phase != MESSAGE_IN_PHASE) { /* * Things are seriously fucked up. * Pull the brakes, i.e. reset */ printf("%s: target didn't identify\n", sc->sc_dev.dv_xname); esp_init(sc); return 1; } esp_msgin(sc); /* Handle identify message */ if (sc->sc_state != ESP_HASNEXUS) { /* IDENTIFY fail?! */ printf("%s: identify failed\n", sc->sc_dev.dv_xname); esp_init(sc); return 1; } break; } #define ESPINTR_DONE (ESPINTR_FC|ESPINTR_BS) if ((sc->sc_espintr & ESPINTR_DONE) == ESPINTR_DONE) { ecb = sc->sc_nexus; if (!ecb) panic("esp: not nexus at sc->sc_nexus"); sc_link = ecb->xs->sc_link; ti = &sc->sc_tinfo[sc_link->target]; if (ecb->xs->flags & SCSI_RESET) sc->sc_msgpriq = SEND_DEV_RESET; else if (ti->flags & DO_NEGOTIATE) sc->sc_msgpriq = SEND_IDENTIFY | SEND_SDTR; else sc->sc_msgpriq = SEND_IDENTIFY; sc->sc_state = ESP_HASNEXUS; sc->sc_flags = 0; sc->sc_prevphase = INVALID_PHASE; sc->sc_dp = ecb->daddr; sc->sc_dleft = ecb->dleft; ti->lubusy |= (1<lun); break; } else if (sc->sc_espintr & ESPINTR_FC) { if (sc->sc_espstep != ESPSTEP_DONE) if (esp[ESP_FFLAG] & ESPFIFO_FF) { ESPCMD(sc, ESPCMD_FLUSH); DELAY(1); } } /* We aren't done yet, but expect to be soon */ DELAY(50/sc->sc_freq); continue; case ESP_HASNEXUS: break; default: panic("esp unknown state"); } /* * Driver is now in state ESP_HASNEXUS, i.e. we * have a current command working the SCSI bus. */ cmd = (caddr_t) &ecb->cmd; if (sc->sc_state != ESP_HASNEXUS || ecb == NULL) { panic("esp no nexus"); } switch (sc->sc_phase) { case MESSAGE_OUT_PHASE: ESP_PHASE(("MESSAGE_OUT_PHASE ")); esp_msgout(sc); sc->sc_prevphase = MESSAGE_OUT_PHASE; break; case MESSAGE_IN_PHASE: ESP_PHASE(("MESSAGE_IN_PHASE ")); esp_msgin(sc); sc->sc_prevphase = MESSAGE_IN_PHASE; break; case COMMAND_PHASE: /* well, this means send the command again */ ESP_PHASE(("COMMAND_PHASE 0x%02x (%d) ", ecb->cmd.opcode, ecb->clen)); if (esp[ESP_FFLAG] & ESPFIFO_FF) { ESPCMD(sc, ESPCMD_FLUSH); DELAY(1); } espselect(sc, ecb->xs->sc_link->target, ecb->xs->sc_link->lun, (caddr_t)&ecb->cmd, ecb->clen); sc->sc_prevphase = COMMAND_PHASE; break; case DATA_OUT_PHASE: ESP_PHASE(("DATA_OUT_PHASE [%d] ", sc->sc_dleft)); DMA_START(sc->sc_dma, &sc->sc_dp, &sc->sc_dleft, 0); sc->sc_prevphase = DATA_OUT_PHASE; break; case DATA_IN_PHASE: ESP_PHASE(("DATA_IN_PHASE ")); DMA_DRAIN(sc->sc_dma); DMA_START(sc->sc_dma, &sc->sc_dp, &sc->sc_dleft, D_WRITE); sc->sc_prevphase = DATA_IN_PHASE; break; case STATUS_PHASE: ESP_PHASE(("STATUS_PHASE ")); ESPCMD(sc, ESPCMD_ICCS); ecb->stat = espgetbyte(sc); ESP_PHASE(("0x%02x ", ecb->stat)); sc->sc_prevphase = STATUS_PHASE; break; case INVALID_PHASE: break; case BUSFREE_PHASE: if (sc->sc_flags & ESP_BUSFREE_OK) { /*It's fun the 1st time.. */ sc->sc_flags &= ~ESP_BUSFREE_OK; } break; default: panic("esp: bogus bus phase\n"); } } } void esp_timeout(arg) void *arg; { int s = splbio(); struct ecb *ecb = (struct ecb *)arg; struct esp_softc *sc; sc = ecb->xs->sc_link->adapter_softc; sc_print_addr(ecb->xs->sc_link); ecb->xs->error = XS_TIMEOUT; printf("timed out\n"); esp_done(ecb); esp_reset(sc); splx(s); }