/* $NetBSD: sequencer.c,v 1.57 2013/10/17 21:19:40 christos Exp $ */ /* * Copyright (c) 1998, 2008 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Lennart Augustsson (augustss@NetBSD.org) and by Andrew Doran. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * Locking: * * o sc_lock: provides atomic access to all data structures. Taken from * both process and soft interrupt context. * * o sc_dvlock: serializes operations on /dev/sequencer. Taken from * process context. Dropped while waiting for data in sequencerread() * to allow concurrent reads/writes while no data available. * * o sc_isopen: we allow only one concurrent open, only to prevent user * and/or application error. * * o MIDI softc locks. These can be spinlocks and there can be many of * them, because we can open many MIDI devices. We take these only in two * places: when enabling redirection from the MIDI device and when * disabling it (open/close). midiseq_in() is called by the MIDI driver * with its own lock held when passing data into this module. To avoid * lock order and context problems, we package the received message as a * sequencer_pcqitem_t and put onto a producer-consumer queue. A soft * interrupt is scheduled to dequeue and decode the message later where we * can safely acquire the sequencer device's sc_lock. PCQ is lockless for * multiple producer, single consumer settings like this one. */ #include __KERNEL_RCSID(0, "$NetBSD: sequencer.c,v 1.57 2013/10/17 21:19:40 christos Exp $"); #include "sequencer.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define ADDTIMEVAL(a, b) ( \ (a)->tv_sec += (b)->tv_sec, \ (a)->tv_usec += (b)->tv_usec, \ (a)->tv_usec > 1000000 ? ((a)->tv_sec++, (a)->tv_usec -= 1000000) : 0\ ) #define SUBTIMEVAL(a, b) ( \ (a)->tv_sec -= (b)->tv_sec, \ (a)->tv_usec -= (b)->tv_usec, \ (a)->tv_usec < 0 ? ((a)->tv_sec--, (a)->tv_usec += 1000000) : 0\ ) #ifdef AUDIO_DEBUG #define DPRINTF(x) if (sequencerdebug) printf x #define DPRINTFN(n,x) if (sequencerdebug >= (n)) printf x int sequencerdebug = 0; #else #define DPRINTF(x) #define DPRINTFN(n,x) #endif #define SEQ_NOTE_MAX 128 #define SEQ_NOTE_XXX 255 #define RECALC_USPERDIV(t) \ ((t)->usperdiv = 60*1000000L/((t)->tempo_beatpermin*(t)->timebase_divperbeat)) typedef union sequencer_pcqitem { void *qi_ptr; char qi_msg[4]; } sequencer_pcqitem_t; void sequencerattach(int); static void seq_reset(struct sequencer_softc *); static int seq_do_command(struct sequencer_softc *, seq_event_t *); static int seq_do_chnvoice(struct sequencer_softc *, seq_event_t *); static int seq_do_chncommon(struct sequencer_softc *, seq_event_t *); static void seq_timer_waitabs(struct sequencer_softc *, uint32_t); static int seq_do_timing(struct sequencer_softc *, seq_event_t *); static int seq_do_local(struct sequencer_softc *, seq_event_t *); static int seq_do_sysex(struct sequencer_softc *, seq_event_t *); static int seq_do_fullsize(struct sequencer_softc *, seq_event_t *, struct uio *); static int seq_input_event(struct sequencer_softc *, seq_event_t *); static int seq_drain(struct sequencer_softc *); static void seq_startoutput(struct sequencer_softc *); static void seq_timeout(void *); static int seq_to_new(seq_event_t *, struct uio *); static void seq_softintr(void *); static int midiseq_out(struct midi_dev *, u_char *, u_int, int); static struct midi_dev *midiseq_open(int, int); static void midiseq_close(struct midi_dev *); static void midiseq_reset(struct midi_dev *); static int midiseq_noteon(struct midi_dev *, int, int, seq_event_t *); static int midiseq_noteoff(struct midi_dev *, int, int, seq_event_t *); static int midiseq_keypressure(struct midi_dev *, int, int, seq_event_t *); static int midiseq_pgmchange(struct midi_dev *, int, seq_event_t *); static int midiseq_chnpressure(struct midi_dev *, int, seq_event_t *); static int midiseq_ctlchange(struct midi_dev *, int, seq_event_t *); static int midiseq_pitchbend(struct midi_dev *, int, seq_event_t *); static int midiseq_loadpatch(struct midi_dev *, struct sysex_info *, struct uio *); void midiseq_in(struct midi_dev *, u_char *, int); static dev_type_open(sequenceropen); static dev_type_close(sequencerclose); static dev_type_read(sequencerread); static dev_type_write(sequencerwrite); static dev_type_ioctl(sequencerioctl); static dev_type_poll(sequencerpoll); static dev_type_kqfilter(sequencerkqfilter); const struct cdevsw sequencer_cdevsw = { sequenceropen, sequencerclose, sequencerread, sequencerwrite, sequencerioctl, nostop, notty, sequencerpoll, nommap, sequencerkqfilter, D_OTHER | D_MPSAFE }; static LIST_HEAD(, sequencer_softc) sequencers = LIST_HEAD_INITIALIZER(sequencers); static kmutex_t sequencer_lock; static void sequencerdestroy(struct sequencer_softc *sc) { callout_destroy(&sc->sc_callout); softint_disestablish(sc->sih); cv_destroy(&sc->rchan); cv_destroy(&sc->wchan); cv_destroy(&sc->lchan); if (sc->pcq) pcq_destroy(sc->pcq); kmem_free(sc, sizeof(*sc)); } static struct sequencer_softc * sequencercreate(int unit) { struct sequencer_softc *sc = kmem_zalloc(sizeof(*sc), KM_SLEEP); if (sc == NULL) { #ifdef DIAGNOSTIC printf("%s: out of memory\n", __func__); #endif return NULL; } sc->sc_unit = unit; callout_init(&sc->sc_callout, CALLOUT_MPSAFE); sc->sih = softint_establish(SOFTINT_NET | SOFTINT_MPSAFE, seq_softintr, sc); mutex_init(&sc->lock, MUTEX_DEFAULT, IPL_NONE); cv_init(&sc->rchan, "midiseqr"); cv_init(&sc->wchan, "midiseqw"); cv_init(&sc->lchan, "midiseql"); sc->pcq = pcq_create(SEQ_MAXQ, KM_SLEEP); if (sc->pcq == NULL) { sequencerdestroy(sc); return NULL; } return sc; } static struct sequencer_softc * sequencerget(int unit) { struct sequencer_softc *sc; if (unit < 0) { #ifdef DIAGNOSTIC panic("%s: unit %d!", __func__, unit); #endif return NULL; } mutex_enter(&sequencer_lock); LIST_FOREACH(sc, &sequencers, sc_link) { if (sc->sc_unit == unit) { mutex_exit(&sequencer_lock); return sc; } } mutex_exit(&sequencer_lock); if ((sc = sequencercreate(unit)) == NULL) return NULL; mutex_enter(&sequencer_lock); LIST_INSERT_HEAD(&sequencers, sc, sc_link); mutex_exit(&sequencer_lock); return sc; } #ifdef notyet static void sequencerput(struct sequencer_softc *sc) { mutex_enter(&sequencer_lock); LIST_REMOVE(sc, sc_link); mutex_exit(&sequencer_lock); sequencerdestroy(sc); } #endif void sequencerattach(int n) { mutex_init(&sequencer_lock, MUTEX_DEFAULT, IPL_NONE); } /* * Release reference to device acquired with sequencer_enter(). */ static void sequencer_exit(struct sequencer_softc *sc) { sc->dvlock--; cv_broadcast(&sc->lchan); mutex_exit(&sc->lock); } /* * Look up sequencer device and acquire locks for device access. */ static int sequencer_enter(dev_t dev, struct sequencer_softc **scp) { struct sequencer_softc *sc; /* First, find the device and take sc_lock. */ if ((sc = sequencerget(SEQUENCERUNIT(dev))) == NULL) return ENXIO; mutex_enter(&sc->lock); while (sc->dvlock) { cv_wait(&sc->lchan, &sc->lock); } sc->dvlock++; if (sc->dying) { sequencer_exit(sc); return EIO; } *scp = sc; return 0; } static int sequenceropen(dev_t dev, int flags, int ifmt, struct lwp *l) { struct sequencer_softc *sc; struct midi_dev *md; struct midi_softc *msc; int error, unit; DPRINTF(("sequenceropen\n")); if ((error = sequencer_enter(dev, &sc)) != 0) return error; if (sc->isopen != 0) { sequencer_exit(sc); return EBUSY; } if (SEQ_IS_OLD(SEQUENCERUNIT(dev))) sc->mode = SEQ_OLD; else sc->mode = SEQ_NEW; sc->isopen++; sc->flags = flags & (FREAD|FWRITE); sc->pbus = 0; sc->async = 0; sc->input_stamp = ~0; sc->nmidi = 0; sc->ndevs = midi_unit_count(); sc->timer.timebase_divperbeat = 100; sc->timer.tempo_beatpermin = 60; RECALC_USPERDIV(&sc->timer); sc->timer.divs_lastevent = sc->timer.divs_lastchange = 0; microtime(&sc->timer.reftime); SEQ_QINIT(&sc->inq); SEQ_QINIT(&sc->outq); sc->lowat = SEQ_MAXQ / 2; if (sc->ndevs > 0) { mutex_exit(&sc->lock); sc->devs = kmem_alloc(sc->ndevs * sizeof(struct midi_dev *), KM_SLEEP); for (unit = 0; unit < sc->ndevs; unit++) { md = midiseq_open(unit, flags); if (md) { sc->devs[sc->nmidi++] = md; md->seq = sc; md->doingsysex = 0; } } mutex_enter(&sc->lock); } else { sc->devs = NULL; } /* Only now redirect input from MIDI devices. */ for (unit = 0; unit < sc->nmidi; unit++) { msc = sc->devs[unit]->msc; mutex_enter(msc->lock); msc->seqopen = 1; mutex_exit(msc->lock); } seq_reset(sc); sequencer_exit(sc); DPRINTF(("%s: mode=%d, nmidi=%d\n", __func__, sc->mode, sc->nmidi)); return 0; } static int seq_drain(struct sequencer_softc *sc) { int error; KASSERT(mutex_owned(&sc->lock)); DPRINTFN(3, ("seq_drain: %p, len=%d\n", sc, SEQ_QLEN(&sc->outq))); seq_startoutput(sc); error = 0; while (!SEQ_QEMPTY(&sc->outq) && !error) error = cv_timedwait_sig(&sc->wchan, &sc->lock, 60*hz); return (error); } static void seq_timeout(void *addr) { struct sequencer_softc *sc = addr; proc_t *p; pid_t pid; DPRINTFN(4, ("seq_timeout: %p\n", sc)); mutex_enter(&sc->lock); if (sc->timeout == 0) { mutex_spin_exit(&sc->lock); return; } sc->timeout = 0; seq_startoutput(sc); if (SEQ_QLEN(&sc->outq) >= sc->lowat) { mutex_exit(&sc->lock); return; } cv_broadcast(&sc->wchan); selnotify(&sc->wsel, 0, NOTE_SUBMIT); if ((pid = sc->async) != 0) { mutex_enter(proc_lock); if ((p = proc_find(pid)) != NULL) psignal(p, SIGIO); mutex_exit(proc_lock); } mutex_exit(&sc->lock); } static void seq_startoutput(struct sequencer_softc *sc) { struct sequencer_queue *q = &sc->outq; seq_event_t cmd; KASSERT(mutex_owned(&sc->lock)); if (sc->timeout) return; DPRINTFN(4, ("seq_startoutput: %p, len=%d\n", sc, SEQ_QLEN(q))); while (!SEQ_QEMPTY(q) && !sc->timeout) { SEQ_QGET(q, cmd); seq_do_command(sc, &cmd); } } static int sequencerclose(dev_t dev, int flags, int ifmt, struct lwp *l) { struct sequencer_softc *sc; struct midi_softc *msc; int unit, error; DPRINTF(("sequencerclose: %"PRIx64"\n", dev)); if ((error = sequencer_enter(dev, &sc)) != 0) return error; seq_drain(sc); if (sc->timeout) { callout_halt(&sc->sc_callout, &sc->lock); sc->timeout = 0; } /* Bin input from MIDI devices. */ for (unit = 0; unit < sc->nmidi; unit++) { msc = sc->devs[unit]->msc; mutex_enter(msc->lock); msc->seqopen = 0; mutex_exit(msc->lock); } mutex_exit(&sc->lock); for (unit = 0; unit < sc->nmidi; unit++) if (sc->devs[unit] != NULL) midiseq_close(sc->devs[unit]); if (sc->devs != NULL) { KASSERT(sc->ndevs > 0); kmem_free(sc->devs, sc->ndevs * sizeof(struct midi_dev *)); sc->devs = NULL; } mutex_enter(&sc->lock); sc->isopen = 0; sequencer_exit(sc); DPRINTF(("sequencerclose: %"PRIx64" done\n", dev)); return (0); } static int seq_input_event(struct sequencer_softc *sc, seq_event_t *cmd) { struct sequencer_queue *q; KASSERT(mutex_owned(&sc->lock)); DPRINTFN(2, ("seq_input_event: %02x %02x %02x %02x %02x " "%02x %02x %02x\n", cmd->tag, cmd->unknown.byte[0], cmd->unknown.byte[1], cmd->unknown.byte[2], cmd->unknown.byte[3], cmd->unknown.byte[4], cmd->unknown.byte[5], cmd->unknown.byte[6])); q = &sc->inq; if (SEQ_QFULL(q)) return (ENOMEM); SEQ_QPUT(q, *cmd); cv_broadcast(&sc->rchan); selnotify(&sc->rsel, 0, NOTE_SUBMIT); if (sc->async != 0) { proc_t *p; mutex_enter(proc_lock); if ((p = proc_find(sc->async)) != NULL) psignal(p, SIGIO); mutex_exit(proc_lock); } return 0; } static void seq_softintr(void *addr) { struct sequencer_softc *sc; struct timeval now; seq_event_t ev; int status, chan, unit; sequencer_pcqitem_t qi; u_long t; sc = addr; mutex_enter(&sc->lock); qi.qi_ptr = pcq_get(sc->pcq); if (qi.qi_ptr == NULL) { mutex_exit(&sc->lock); return; } KASSERT((qi.qi_msg[3] & 0x80) != 0); unit = qi.qi_msg[3] & ~0x80; status = MIDI_GET_STATUS(qi.qi_msg[0]); chan = MIDI_GET_CHAN(qi.qi_msg[0]); switch (status) { case MIDI_NOTEON: /* midi(4) always canonicalizes hidden note-off */ ev = SEQ_MK_CHN(NOTEON, .device=unit, .channel=chan, .key=qi.qi_msg[1], .velocity=qi.qi_msg[2]); break; case MIDI_NOTEOFF: ev = SEQ_MK_CHN(NOTEOFF, .device=unit, .channel=chan, .key=qi.qi_msg[1], .velocity=qi.qi_msg[2]); break; case MIDI_KEY_PRESSURE: ev = SEQ_MK_CHN(KEY_PRESSURE, .device=unit, .channel=chan, .key=qi.qi_msg[1], .pressure=qi.qi_msg[2]); break; case MIDI_CTL_CHANGE: /* XXX not correct for MSB */ ev = SEQ_MK_CHN(CTL_CHANGE, .device=unit, .channel=chan, .controller=qi.qi_msg[1], .value=qi.qi_msg[2]); break; case MIDI_PGM_CHANGE: ev = SEQ_MK_CHN(PGM_CHANGE, .device=unit, .channel=chan, .program=qi.qi_msg[1]); break; case MIDI_CHN_PRESSURE: ev = SEQ_MK_CHN(CHN_PRESSURE, .device=unit, .channel=chan, .pressure=qi.qi_msg[1]); break; case MIDI_PITCH_BEND: ev = SEQ_MK_CHN(PITCH_BEND, .device=unit, .channel=chan, .value=(qi.qi_msg[1] & 0x7f) | ((qi.qi_msg[2] & 0x7f) << 7)); break; default: /* this is now the point where MIDI_ACKs disappear */ mutex_exit(&sc->lock); return; } microtime(&now); if (!sc->timer.running) now = sc->timer.stoptime; SUBTIMEVAL(&now, &sc->timer.reftime); t = now.tv_sec * 1000000 + now.tv_usec; t /= sc->timer.usperdiv; t += sc->timer.divs_lastchange; if (t != sc->input_stamp) { seq_input_event(sc, &SEQ_MK_TIMING(WAIT_ABS, .divisions=t)); sc->input_stamp = t; /* XXX wha hoppen if timer is reset? */ } seq_input_event(sc, &ev); mutex_exit(&sc->lock); } static int sequencerread(dev_t dev, struct uio *uio, int ioflag) { struct sequencer_softc *sc; struct sequencer_queue *q; seq_event_t ev; int error; DPRINTFN(20, ("sequencerread: %"PRIx64", count=%d, ioflag=%x\n", dev, (int)uio->uio_resid, ioflag)); if ((error = sequencer_enter(dev, &sc)) != 0) return error; q = &sc->inq; if (sc->mode == SEQ_OLD) { sequencer_exit(sc); DPRINTFN(-1,("sequencerread: old read\n")); return EINVAL; /* XXX unimplemented */ } while (SEQ_QEMPTY(q)) { if (ioflag & IO_NDELAY) { error = EWOULDBLOCK; break; } /* Drop lock to allow concurrent read/write. */ KASSERT(sc->dvlock != 0); sc->dvlock--; error = cv_wait_sig(&sc->rchan, &sc->lock); while (sc->dvlock != 0) { cv_wait(&sc->lchan, &sc->lock); } sc->dvlock++; if (error) { break; } } while (uio->uio_resid >= sizeof(ev) && !error && !SEQ_QEMPTY(q)) { SEQ_QGET(q, ev); mutex_exit(&sc->lock); error = uiomove(&ev, sizeof(ev), uio); mutex_enter(&sc->lock); } sequencer_exit(sc); return error; } static int sequencerwrite(dev_t dev, struct uio *uio, int ioflag) { struct sequencer_softc *sc; struct sequencer_queue *q; int error; seq_event_t cmdbuf; int size; DPRINTFN(2, ("sequencerwrite: %"PRIx64", count=%d\n", dev, (int)uio->uio_resid)); if ((error = sequencer_enter(dev, &sc)) != 0) return error; q = &sc->outq; size = sc->mode == SEQ_NEW ? sizeof cmdbuf : SEQOLD_CMDSIZE; while (uio->uio_resid >= size && error == 0) { mutex_exit(&sc->lock); error = uiomove(&cmdbuf, size, uio); if (error == 0) { if (sc->mode == SEQ_OLD && seq_to_new(&cmdbuf, uio)) { mutex_enter(&sc->lock); continue; } if (cmdbuf.tag == SEQ_FULLSIZE) { /* We do it like OSS does, asynchronously */ error = seq_do_fullsize(sc, &cmdbuf, uio); if (error == 0) { mutex_enter(&sc->lock); continue; } } } mutex_enter(&sc->lock); if (error != 0) { break; } while (SEQ_QFULL(q)) { seq_startoutput(sc); if (SEQ_QFULL(q)) { if (ioflag & IO_NDELAY) { error = EWOULDBLOCK; break; } error = cv_wait_sig(&sc->wchan, &sc->lock); if (error) { break; } } } if (error == 0) { SEQ_QPUT(q, cmdbuf); } } if (error == 0) { seq_startoutput(sc); } else { DPRINTFN(2, ("sequencerwrite: error=%d\n", error)); } sequencer_exit(sc); return error; } static int sequencerioctl(dev_t dev, u_long cmd, void *addr, int flag, struct lwp *l) { struct sequencer_softc *sc; struct synth_info *si; struct midi_dev *md; int devno, error, t; struct timeval now; u_long tx; DPRINTFN(2, ("sequencerioctl: %"PRIx64" cmd=0x%08lx\n", dev, cmd)); if ((error = sequencer_enter(dev, &sc)) != 0) return error; switch (cmd) { case FIONBIO: /* All handled in the upper FS layer. */ break; case FIOASYNC: if (*(int *)addr) { if (sc->async != 0) return EBUSY; sc->async = curproc->p_pid; DPRINTF(("sequencer_ioctl: FIOASYNC %d\n", sc->async)); } else { sc->async = 0; } break; case SEQUENCER_RESET: seq_reset(sc); break; case SEQUENCER_PANIC: seq_reset(sc); /* Do more? OSS doesn't */ break; case SEQUENCER_SYNC: if (sc->flags != FREAD) seq_drain(sc); break; case SEQUENCER_INFO: si = (struct synth_info*)addr; devno = si->device; if (devno < 0 || devno >= sc->nmidi) { error = EINVAL; break; } md = sc->devs[devno]; strncpy(si->name, md->name, sizeof si->name); si->synth_type = SYNTH_TYPE_MIDI; si->synth_subtype = md->subtype; si->nr_voices = md->nr_voices; si->instr_bank_size = md->instr_bank_size; si->capabilities = md->capabilities; break; case SEQUENCER_NRSYNTHS: *(int *)addr = sc->nmidi; break; case SEQUENCER_NRMIDIS: *(int *)addr = sc->nmidi; break; case SEQUENCER_OUTOFBAND: DPRINTFN(3, ("sequencer_ioctl: OOB=%02x %02x %02x %02x %02x %02x %02x %02x\n", *(u_char *)addr, *((u_char *)addr+1), *((u_char *)addr+2), *((u_char *)addr+3), *((u_char *)addr+4), *((u_char *)addr+5), *((u_char *)addr+6), *((u_char *)addr+7))); if ((sc->flags & FWRITE) == 0) { error = EBADF; } else { error = seq_do_command(sc, (seq_event_t *)addr); } break; case SEQUENCER_TMR_TIMEBASE: t = *(int *)addr; if (t < 1) t = 1; if (t > 10000) t = 10000; *(int *)addr = t; sc->timer.timebase_divperbeat = t; sc->timer.divs_lastchange = sc->timer.divs_lastevent; microtime(&sc->timer.reftime); RECALC_USPERDIV(&sc->timer); break; case SEQUENCER_TMR_START: error = seq_do_timing(sc, &SEQ_MK_TIMING(START)); break; case SEQUENCER_TMR_STOP: error = seq_do_timing(sc, &SEQ_MK_TIMING(STOP)); break; case SEQUENCER_TMR_CONTINUE: error = seq_do_timing(sc, &SEQ_MK_TIMING(CONTINUE)); break; case SEQUENCER_TMR_TEMPO: error = seq_do_timing(sc, &SEQ_MK_TIMING(TEMPO, .bpm=*(int *)addr)); if (error == 0) *(int *)addr = sc->timer.tempo_beatpermin; break; case SEQUENCER_TMR_SOURCE: *(int *)addr = SEQUENCER_TMR_INTERNAL; break; case SEQUENCER_TMR_METRONOME: /* noop */ break; case SEQUENCER_THRESHOLD: t = SEQ_MAXQ - *(int *)addr / sizeof (seq_event_rec); if (t < 1) t = 1; if (t > SEQ_MAXQ) t = SEQ_MAXQ; sc->lowat = t; break; case SEQUENCER_CTRLRATE: *(int *)addr = (sc->timer.tempo_beatpermin *sc->timer.timebase_divperbeat + 30) / 60; break; case SEQUENCER_GETTIME: microtime(&now); SUBTIMEVAL(&now, &sc->timer.reftime); tx = now.tv_sec * 1000000 + now.tv_usec; tx /= sc->timer.usperdiv; tx += sc->timer.divs_lastchange; *(int *)addr = tx; break; default: DPRINTFN(-1,("sequencer_ioctl: unimpl %08lx\n", cmd)); error = EINVAL; break; } sequencer_exit(sc); return error; } static int sequencerpoll(dev_t dev, int events, struct lwp *l) { struct sequencer_softc *sc; int revents = 0; if ((sc = sequencerget(SEQUENCERUNIT(dev))) == NULL) return ENXIO; DPRINTF(("sequencerpoll: %p events=0x%x\n", sc, events)); mutex_enter(&sc->lock); if (events & (POLLIN | POLLRDNORM)) if ((sc->flags&FREAD) && !SEQ_QEMPTY(&sc->inq)) revents |= events & (POLLIN | POLLRDNORM); if (events & (POLLOUT | POLLWRNORM)) if ((sc->flags&FWRITE) && SEQ_QLEN(&sc->outq) < sc->lowat) revents |= events & (POLLOUT | POLLWRNORM); if (revents == 0) { if ((sc->flags&FREAD) && (events & (POLLIN | POLLRDNORM))) selrecord(l, &sc->rsel); if ((sc->flags&FWRITE) && (events & (POLLOUT | POLLWRNORM))) selrecord(l, &sc->wsel); } mutex_exit(&sc->lock); return revents; } static void filt_sequencerrdetach(struct knote *kn) { struct sequencer_softc *sc = kn->kn_hook; mutex_enter(&sc->lock); SLIST_REMOVE(&sc->rsel.sel_klist, kn, knote, kn_selnext); mutex_exit(&sc->lock); } static int filt_sequencerread(struct knote *kn, long hint) { struct sequencer_softc *sc = kn->kn_hook; int rv; if (hint != NOTE_SUBMIT) { mutex_enter(&sc->lock); } if (SEQ_QEMPTY(&sc->inq)) { rv = 0; } else { kn->kn_data = sizeof(seq_event_rec); rv = 1; } if (hint != NOTE_SUBMIT) { mutex_exit(&sc->lock); } return rv; } static const struct filterops sequencerread_filtops = { 1, NULL, filt_sequencerrdetach, filt_sequencerread }; static void filt_sequencerwdetach(struct knote *kn) { struct sequencer_softc *sc = kn->kn_hook; mutex_enter(&sc->lock); SLIST_REMOVE(&sc->wsel.sel_klist, kn, knote, kn_selnext); mutex_exit(&sc->lock); } static int filt_sequencerwrite(struct knote *kn, long hint) { struct sequencer_softc *sc = kn->kn_hook; int rv; if (hint != NOTE_SUBMIT) { mutex_enter(&sc->lock); } if (SEQ_QLEN(&sc->outq) >= sc->lowat) { rv = 0; } else { kn->kn_data = sizeof(seq_event_rec); rv = 1; } if (hint != NOTE_SUBMIT) { mutex_exit(&sc->lock); } return rv; } static const struct filterops sequencerwrite_filtops = { 1, NULL, filt_sequencerwdetach, filt_sequencerwrite }; static int sequencerkqfilter(dev_t dev, struct knote *kn) { struct sequencer_softc *sc; struct klist *klist; if ((sc = sequencerget(SEQUENCERUNIT(dev))) == NULL) return ENXIO; switch (kn->kn_filter) { case EVFILT_READ: klist = &sc->rsel.sel_klist; kn->kn_fop = &sequencerread_filtops; break; case EVFILT_WRITE: klist = &sc->wsel.sel_klist; kn->kn_fop = &sequencerwrite_filtops; break; default: return (EINVAL); } kn->kn_hook = sc; mutex_enter(&sc->lock); SLIST_INSERT_HEAD(klist, kn, kn_selnext); mutex_exit(&sc->lock); return (0); } static void seq_reset(struct sequencer_softc *sc) { int i, chn; struct midi_dev *md; KASSERT(mutex_owned(&sc->lock)); if ( !(sc->flags & FWRITE) ) return; for (i = 0; i < sc->nmidi; i++) { md = sc->devs[i]; midiseq_reset(md); for (chn = 0; chn < MAXCHAN; chn++) { midiseq_ctlchange(md, chn, &SEQ_MK_CHN(CTL_CHANGE, .controller=MIDI_CTRL_NOTES_OFF)); midiseq_ctlchange(md, chn, &SEQ_MK_CHN(CTL_CHANGE, .controller=MIDI_CTRL_RESET)); midiseq_pitchbend(md, chn, &SEQ_MK_CHN(PITCH_BEND, .value=MIDI_BEND_NEUTRAL)); } } } static int seq_do_command(struct sequencer_softc *sc, seq_event_t *b) { int dev; KASSERT(mutex_owned(&sc->lock)); DPRINTFN(4, ("seq_do_command: %p cmd=0x%02x\n", sc, b->timing.op)); switch(b->tag) { case SEQ_LOCAL: return seq_do_local(sc, b); case SEQ_TIMING: return seq_do_timing(sc, b); case SEQ_CHN_VOICE: return seq_do_chnvoice(sc, b); case SEQ_CHN_COMMON: return seq_do_chncommon(sc, b); case SEQ_SYSEX: return seq_do_sysex(sc, b); /* COMPAT */ case SEQOLD_MIDIPUTC: dev = b->putc.device; if (dev < 0 || dev >= sc->nmidi) return (ENXIO); return midiseq_out(sc->devs[dev], &b->putc.byte, 1, 0); default: DPRINTFN(-1,("seq_do_command: unimpl command %02x\n", b->tag)); return (EINVAL); } } static int seq_do_chnvoice(struct sequencer_softc *sc, seq_event_t *b) { int dev; int error; struct midi_dev *md; KASSERT(mutex_owned(&sc->lock)); dev = b->voice.device; if (dev < 0 || dev >= sc->nmidi || b->voice.channel > 15 || b->voice.key >= SEQ_NOTE_MAX) return ENXIO; md = sc->devs[dev]; switch(b->voice.op) { case MIDI_NOTEON: /* no need to special-case hidden noteoff here */ error = midiseq_noteon(md, b->voice.channel, b->voice.key, b); break; case MIDI_NOTEOFF: error = midiseq_noteoff(md, b->voice.channel, b->voice.key, b); break; case MIDI_KEY_PRESSURE: error = midiseq_keypressure(md, b->voice.channel, b->voice.key, b); break; default: DPRINTFN(-1,("seq_do_chnvoice: unimpl command %02x\n", b->voice.op)); error = EINVAL; break; } return error; } static int seq_do_chncommon(struct sequencer_softc *sc, seq_event_t *b) { int dev; int error; struct midi_dev *md; KASSERT(mutex_owned(&sc->lock)); dev = b->common.device; if (dev < 0 || dev >= sc->nmidi || b->common.channel > 15) return ENXIO; md = sc->devs[dev]; DPRINTFN(2,("seq_do_chncommon: %02x\n", b->common.op)); error = 0; switch(b->common.op) { case MIDI_PGM_CHANGE: error = midiseq_pgmchange(md, b->common.channel, b); break; case MIDI_CTL_CHANGE: error = midiseq_ctlchange(md, b->common.channel, b); break; case MIDI_PITCH_BEND: error = midiseq_pitchbend(md, b->common.channel, b); break; case MIDI_CHN_PRESSURE: error = midiseq_chnpressure(md, b->common.channel, b); break; default: DPRINTFN(-1,("seq_do_chncommon: unimpl command %02x\n", b->common.op)); error = EINVAL; break; } return error; } static int seq_do_local(struct sequencer_softc *sc, seq_event_t *b) { KASSERT(mutex_owned(&sc->lock)); return (EINVAL); } static int seq_do_sysex(struct sequencer_softc *sc, seq_event_t *b) { int dev, i; struct midi_dev *md; uint8_t *bf = b->sysex.buffer; KASSERT(mutex_owned(&sc->lock)); dev = b->sysex.device; if (dev < 0 || dev >= sc->nmidi) return (ENXIO); DPRINTF(("seq_do_sysex: dev=%d\n", dev)); md = sc->devs[dev]; if (!md->doingsysex) { midiseq_out(md, (uint8_t[]){MIDI_SYSEX_START}, 1, 0); md->doingsysex = 1; } for (i = 0; i < 6 && bf[i] != 0xff; i++) ; midiseq_out(md, bf, i, 0); if (i < 6 || (i > 0 && bf[i-1] == MIDI_SYSEX_END)) md->doingsysex = 0; return 0; } static void seq_timer_waitabs(struct sequencer_softc *sc, uint32_t divs) { struct timeval when; long long usec; struct syn_timer *t; int ticks; KASSERT(mutex_owned(&sc->lock)); t = &sc->timer; t->divs_lastevent = divs; divs -= t->divs_lastchange; usec = (long long)divs * (long long)t->usperdiv; /* convert to usec */ when.tv_sec = usec / 1000000; when.tv_usec = usec % 1000000; DPRINTFN(4, ("seq_timer_waitabs: adjdivs=%d, sleep when=%"PRId64".%06"PRId64, divs, when.tv_sec, (uint64_t)when.tv_usec)); ADDTIMEVAL(&when, &t->reftime); /* abstime for end */ ticks = tvhzto(&when); DPRINTFN(4, (" when+start=%"PRId64".%06"PRId64", tick=%d\n", when.tv_sec, (uint64_t)when.tv_usec, ticks)); if (ticks > 0) { #ifdef DIAGNOSTIC if (ticks > 20 * hz) { /* Waiting more than 20s */ printf("seq_timer_waitabs: funny ticks=%d, " "usec=%lld\n", ticks, usec); } #endif sc->timeout = 1; callout_reset(&sc->sc_callout, ticks, seq_timeout, sc); } #ifdef SEQUENCER_DEBUG else if (tick < 0) DPRINTF(("seq_timer_waitabs: ticks = %d\n", ticks)); #endif } static int seq_do_timing(struct sequencer_softc *sc, seq_event_t *b) { struct syn_timer *t = &sc->timer; struct timeval when; int error; KASSERT(mutex_owned(&sc->lock)); error = 0; switch(b->timing.op) { case TMR_WAIT_REL: seq_timer_waitabs(sc, b->t_WAIT_REL.divisions + t->divs_lastevent); break; case TMR_WAIT_ABS: seq_timer_waitabs(sc, b->t_WAIT_ABS.divisions); break; case TMR_START: microtime(&t->reftime); t->divs_lastevent = t->divs_lastchange = 0; t->running = 1; break; case TMR_STOP: microtime(&t->stoptime); t->running = 0; break; case TMR_CONTINUE: if (t->running) break; microtime(&when); SUBTIMEVAL(&when, &t->stoptime); ADDTIMEVAL(&t->reftime, &when); t->running = 1; break; case TMR_TEMPO: /* bpm is unambiguously MIDI clocks per minute / 24 */ /* (24 MIDI clocks are usually but not always a quarter note) */ if (b->t_TEMPO.bpm < 8) /* where are these limits specified? */ t->tempo_beatpermin = 8; else if (b->t_TEMPO.bpm > 360) /* ? */ t->tempo_beatpermin = 360; else t->tempo_beatpermin = b->t_TEMPO.bpm; t->divs_lastchange = t->divs_lastevent; microtime(&t->reftime); RECALC_USPERDIV(t); break; case TMR_ECHO: error = seq_input_event(sc, b); break; case TMR_RESET: t->divs_lastevent = t->divs_lastchange = 0; microtime(&t->reftime); break; case TMR_SPP: case TMR_TIMESIG: DPRINTF(("seq_do_timing: unimplemented %02x\n", b->timing.op)); error = EINVAL; /* not quite accurate... */ break; default: DPRINTF(("seq_timer: unknown %02x\n", b->timing.op)); error = EINVAL; break; } return (error); } static int seq_do_fullsize(struct sequencer_softc *sc, seq_event_t *b, struct uio *uio) { struct sysex_info sysex; u_int dev; #ifdef DIAGNOSTIC if (sizeof(seq_event_rec) != SEQ_SYSEX_HDRSIZE) { printf("seq_do_fullsize: sysex size ??\n"); return EINVAL; } #endif memcpy(&sysex, b, sizeof sysex); dev = sysex.device_no; if (/* dev < 0 || */ dev >= sc->nmidi) return (ENXIO); DPRINTFN(2, ("seq_do_fullsize: fmt=%04x, dev=%d, len=%d\n", sysex.key, dev, sysex.len)); return (midiseq_loadpatch(sc->devs[dev], &sysex, uio)); } /* * Convert an old sequencer event to a new one. * NOTE: on entry, *ev may contain valid data only in the first 4 bytes. * That may be true even on exit (!) in the case of SEQOLD_MIDIPUTC; the * caller will only look at the first bytes in that case anyway. Ugly? Sure. */ static int seq_to_new(seq_event_t *ev, struct uio *uio) { int cmd, chan, note, parm; uint32_t tmp_delay; int error; uint8_t *bfp; cmd = ev->tag; bfp = ev->unknown.byte; chan = *bfp++; note = *bfp++; parm = *bfp++; DPRINTFN(3, ("seq_to_new: 0x%02x %d %d %d\n", cmd, chan, note, parm)); if (cmd >= 0x80) { /* Fill the event record */ if (uio->uio_resid >= sizeof *ev - SEQOLD_CMDSIZE) { error = uiomove(bfp, sizeof *ev - SEQOLD_CMDSIZE, uio); if (error) return error; } else return EINVAL; } switch(cmd) { case SEQOLD_NOTEOFF: /* * What's with the SEQ_NOTE_XXX? In OSS this seems to have * been undocumented magic for messing with the overall volume * of a 'voice', equated precariously with 'channel' and * pretty much unimplementable except by directly frobbing a * synth chip. For us, who treat everything as interfaced over * MIDI, this will just be unceremoniously discarded as * invalid in midiseq_noteoff, making the whole event an * elaborate no-op, and that doesn't seem to be any different * from what happens on linux with a MIDI-interfaced device, * by the way. The moral is ... use the new /dev/music API, ok? */ *ev = SEQ_MK_CHN(NOTEOFF, .device=0, .channel=chan, .key=SEQ_NOTE_XXX, .velocity=parm); break; case SEQOLD_NOTEON: *ev = SEQ_MK_CHN(NOTEON, .device=0, .channel=chan, .key=note, .velocity=parm); break; case SEQOLD_WAIT: /* * This event cannot even /exist/ on non-littleendian machines, * and so help me, that's exactly the way OSS defined it. * Also, the OSS programmer's guide states (p. 74, v1.11) * that seqold time units are system clock ticks, unlike * the new 'divisions' which are determined by timebase. In * that case we would need to do scaling here - but no such * behavior is visible in linux either--which also treats this * value, surprisingly, as an absolute, not relative, time. * My guess is that this event has gone unused so long that * nobody could agree we got it wrong no matter what we do. */ tmp_delay = *(uint32_t *)ev >> 8; *ev = SEQ_MK_TIMING(WAIT_ABS, .divisions=tmp_delay); break; case SEQOLD_SYNCTIMER: /* * The TMR_RESET event is not defined in any OSS materials * I can find; it may have been invented here just to provide * an accurate _to_new translation of this event. */ *ev = SEQ_MK_TIMING(RESET); break; case SEQOLD_PGMCHANGE: *ev = SEQ_MK_CHN(PGM_CHANGE, .device=0, .channel=chan, .program=note); break; case SEQOLD_MIDIPUTC: break; /* interpret in normal mode */ case SEQOLD_ECHO: case SEQOLD_PRIVATE: case SEQOLD_EXTENDED: default: DPRINTF(("seq_to_new: not impl 0x%02x\n", cmd)); return EINVAL; /* In case new-style events show up */ case SEQ_TIMING: case SEQ_CHN_VOICE: case SEQ_CHN_COMMON: case SEQ_FULLSIZE: break; } return 0; } /**********************************************/ void midiseq_in(struct midi_dev *md, u_char *msg, int len) { struct sequencer_softc *sc; sequencer_pcqitem_t qi; DPRINTFN(2, ("midiseq_in: %p %02x %02x %02x\n", md, msg[0], msg[1], msg[2])); sc = md->seq; qi.qi_msg[0] = msg[0]; qi.qi_msg[1] = msg[1]; qi.qi_msg[2] = msg[2]; qi.qi_msg[3] = md->unit | 0x80; /* ensure non-zero value of qi_ptr */ pcq_put(sc->pcq, qi.qi_ptr); softint_schedule(sc->sih); } static struct midi_dev * midiseq_open(int unit, int flags) { extern struct cfdriver midi_cd; int error; struct midi_dev *md; struct midi_softc *sc; struct midi_info mi; int major; dev_t dev; vnode_t *vp; int oflags; major = devsw_name2chr("midi", NULL, 0); dev = makedev(major, unit); DPRINTFN(2, ("midiseq_open: %d %d\n", unit, flags)); error = cdevvp(dev, &vp); if (error) return NULL; vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); error = VOP_OPEN(vp, flags, kauth_cred_get()); VOP_UNLOCK(vp); if (error) { vrele(vp); return NULL; } /* Only after we have acquired reference via VOP_OPEN(). */ midi_getinfo(dev, &mi); oflags = flags; if ((mi.props & MIDI_PROP_CAN_INPUT) == 0) flags &= ~FREAD; if ((flags & (FREAD|FWRITE)) == 0) { VOP_CLOSE(vp, oflags, kauth_cred_get()); vrele(vp); return NULL; } sc = device_lookup_private(&midi_cd, unit); md = kmem_zalloc(sizeof(*md), KM_SLEEP); md->msc = sc; md->unit = unit; md->name = mi.name; md->subtype = 0; md->nr_voices = 128; /* XXX */ md->instr_bank_size = 128; /* XXX */ md->vp = vp; if (mi.props & MIDI_PROP_CAN_INPUT) md->capabilities |= SYNTH_CAP_INPUT; sc->seq_md = md; return (md); } static void midiseq_close(struct midi_dev *md) { DPRINTFN(2, ("midiseq_close: %d\n", md->unit)); (void)vn_close(md->vp, 0, kauth_cred_get()); kmem_free(md, sizeof(*md)); } static void midiseq_reset(struct midi_dev *md) { /* XXX send GM reset? */ DPRINTFN(3, ("midiseq_reset: %d\n", md->unit)); } static int midiseq_out(struct midi_dev *md, u_char *bf, u_int cc, int chk) { DPRINTFN(5, ("midiseq_out: m=%p, unit=%d, bf[0]=0x%02x, cc=%d\n", md->msc, md->unit, bf[0], cc)); /* midi(4) does running status compression where appropriate. */ return midi_writebytes(md->unit, bf, cc); } /* * If the writing process hands us a hidden note-off in a note-on event, * we will simply write it that way; no need to special case it here, * as midi(4) will always canonicalize or compress as appropriate anyway. */ static int midiseq_noteon(struct midi_dev *md, int chan, int key, seq_event_t *ev) { return midiseq_out(md, (uint8_t[]){ MIDI_NOTEON | chan, key, ev->c_NOTEON.velocity & 0x7f}, 3, 1); } static int midiseq_noteoff(struct midi_dev *md, int chan, int key, seq_event_t *ev) { return midiseq_out(md, (uint8_t[]){ MIDI_NOTEOFF | chan, key, ev->c_NOTEOFF.velocity & 0x7f}, 3, 1); } static int midiseq_keypressure(struct midi_dev *md, int chan, int key, seq_event_t *ev) { return midiseq_out(md, (uint8_t[]){ MIDI_KEY_PRESSURE | chan, key, ev->c_KEY_PRESSURE.pressure & 0x7f}, 3, 1); } static int midiseq_pgmchange(struct midi_dev *md, int chan, seq_event_t *ev) { if (ev->c_PGM_CHANGE.program > 127) return EINVAL; return midiseq_out(md, (uint8_t[]){ MIDI_PGM_CHANGE | chan, ev->c_PGM_CHANGE.program}, 2, 1); } static int midiseq_chnpressure(struct midi_dev *md, int chan, seq_event_t *ev) { if (ev->c_CHN_PRESSURE.pressure > 127) return EINVAL; return midiseq_out(md, (uint8_t[]){ MIDI_CHN_PRESSURE | chan, ev->c_CHN_PRESSURE.pressure}, 2, 1); } static int midiseq_ctlchange(struct midi_dev *md, int chan, seq_event_t *ev) { if (ev->c_CTL_CHANGE.controller > 127) return EINVAL; return midiseq_out( md, (uint8_t[]){ MIDI_CTL_CHANGE | chan, ev->c_CTL_CHANGE.controller, ev->c_CTL_CHANGE.value & 0x7f /* XXX this is SO wrong */ }, 3, 1); } static int midiseq_pitchbend(struct midi_dev *md, int chan, seq_event_t *ev) { return midiseq_out(md, (uint8_t[]){ MIDI_PITCH_BEND | chan, ev->c_PITCH_BEND.value & 0x7f, (ev->c_PITCH_BEND.value >> 7) & 0x7f}, 3, 1); } static int midiseq_loadpatch(struct midi_dev *md, struct sysex_info *sysex, struct uio *uio) { struct sequencer_softc *sc; u_char c, bf[128]; int i, cc, error; if (sysex->key != SEQ_SYSEX_PATCH) { DPRINTFN(-1,("midiseq_loadpatch: bad patch key 0x%04x\n", sysex->key)); return (EINVAL); } if (uio->uio_resid < sysex->len) /* adjust length, should be an error */ sysex->len = uio->uio_resid; DPRINTFN(2, ("midiseq_loadpatch: len=%d\n", sysex->len)); if (sysex->len == 0) return EINVAL; error = uiomove(&c, 1, uio); if (error) return error; if (c != MIDI_SYSEX_START) /* must start like this */ return EINVAL; sc = md->seq; mutex_enter(&sc->lock); error = midiseq_out(md, &c, 1, 0); mutex_exit(&sc->lock); if (error) return error; --sysex->len; while (sysex->len > 0) { cc = sysex->len; if (cc > sizeof bf) cc = sizeof bf; error = uiomove(bf, cc, uio); if (error) break; for(i = 0; i < cc && !MIDI_IS_STATUS(bf[i]); i++) ; /* * XXX midi(4)'s buffer might not accommodate this, and the * function will not block us (though in this case we have * a process and could in principle block). */ mutex_enter(&sc->lock); error = midiseq_out(md, bf, i, 0); mutex_exit(&sc->lock); if (error) break; sysex->len -= i; if (i != cc) break; } /* * Any leftover data in uio is rubbish; * the SYSEX should be one write ending in SYSEX_END. */ uio->uio_resid = 0; c = MIDI_SYSEX_END; mutex_enter(&sc->lock); error = midiseq_out(md, &c, 1, 0); mutex_exit(&sc->lock); return error; } #include "midi.h" #if NMIDI == 0 static dev_type_open(midiopen); static dev_type_close(midiclose); const struct cdevsw midi_cdevsw = { midiopen, midiclose, noread, nowrite, noioctl, nostop, notty, nopoll, nommap, nokqfilter, D_OTHER | D_MPSAFE }; /* * If someone has a sequencer, but no midi devices there will * be unresolved references, so we provide little stubs. */ int midi_unit_count(void) { return (0); } static int midiopen(dev_t dev, int flags, int ifmt, struct lwp *l) { return (ENXIO); } struct cfdriver midi_cd; void midi_getinfo(dev_t dev, struct midi_info *mi) { mi->name = "Dummy MIDI device"; mi->props = 0; } static int midiclose(dev_t dev, int flags, int ifmt, struct lwp *l) { return (ENXIO); } int midi_writebytes(int unit, u_char *bf, int cc) { return (ENXIO); } #endif /* NMIDI == 0 */