/* $NetBSD: nfs_bio.c,v 1.68 2001/06/27 17:33:43 thorpej Exp $ */ /* * Copyright (c) 1989, 1993 * The Regents of the University of California. All rights reserved. * * This code is derived from software contributed to Berkeley by * Rick Macklem at The University of Guelph. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)nfs_bio.c 8.9 (Berkeley) 3/30/95 */ #include "opt_nfs.h" #include "opt_ddb.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include extern int nfs_numasync; extern struct nfsstats nfsstats; /* * Vnode op for read using bio * Any similarity to readip() is purely coincidental */ int nfs_bioread(vp, uio, ioflag, cred, cflag) struct vnode *vp; struct uio *uio; int ioflag, cflag; struct ucred *cred; { struct nfsnode *np = VTONFS(vp); int biosize; struct buf *bp = NULL, *rabp; struct vattr vattr; struct proc *p; struct nfsmount *nmp = VFSTONFS(vp->v_mount); struct nfsdircache *ndp = NULL, *nndp = NULL; caddr_t baddr, ep, edp; int got_buf = 0, error = 0, n = 0, on = 0, en, enn; int enough = 0; struct dirent *dp, *pdp; off_t curoff = 0; #ifdef DIAGNOSTIC if (uio->uio_rw != UIO_READ) panic("nfs_read mode"); #endif if (uio->uio_resid == 0) return (0); if (vp->v_type != VDIR && uio->uio_offset < 0) return (EINVAL); p = uio->uio_procp; #ifndef NFS_V2_ONLY if ((nmp->nm_flag & NFSMNT_NFSV3) && !(nmp->nm_iflag & NFSMNT_GOTFSINFO)) (void)nfs_fsinfo(nmp, vp, cred, p); #endif if (vp->v_type != VDIR && (uio->uio_offset + uio->uio_resid) > nmp->nm_maxfilesize) return (EFBIG); biosize = nmp->nm_rsize; /* * For nfs, cache consistency can only be maintained approximately. * Although RFC1094 does not specify the criteria, the following is * believed to be compatible with the reference port. * For nqnfs, full cache consistency is maintained within the loop. * For nfs: * If the file's modify time on the server has changed since the * last read rpc or you have written to the file, * you may have lost data cache consistency with the * server, so flush all of the file's data out of the cache. * Then force a getattr rpc to ensure that you have up to date * attributes. * NB: This implies that cache data can be read when up to * NFS_ATTRTIMEO seconds out of date. If you find that you need current * attributes this could be forced by setting n_attrstamp to 0 before * the VOP_GETATTR() call. */ if ((nmp->nm_flag & NFSMNT_NQNFS) == 0 && vp->v_type != VLNK) { if (np->n_flag & NMODIFIED) { if (vp->v_type != VREG) { if (vp->v_type != VDIR) panic("nfs: bioread, not dir"); nfs_invaldircache(vp, 0); np->n_direofoffset = 0; error = nfs_vinvalbuf(vp, V_SAVE, cred, p, 1); if (error) return (error); } np->n_attrstamp = 0; error = VOP_GETATTR(vp, &vattr, cred, p); if (error) return (error); np->n_mtime = vattr.va_mtime.tv_sec; } else { error = VOP_GETATTR(vp, &vattr, cred, p); if (error) return (error); if (np->n_mtime != vattr.va_mtime.tv_sec) { if (vp->v_type == VDIR) { nfs_invaldircache(vp, 0); np->n_direofoffset = 0; } error = nfs_vinvalbuf(vp, V_SAVE, cred, p, 1); if (error) return (error); np->n_mtime = vattr.va_mtime.tv_sec; } } } /* * update the cached read creds for this node. */ if (np->n_rcred) { crfree(np->n_rcred); } np->n_rcred = cred; crhold(cred); do { #ifndef NFS_V2_ONLY /* * Get a valid lease. If cached data is stale, flush it. */ if (nmp->nm_flag & NFSMNT_NQNFS) { if (NQNFS_CKINVALID(vp, np, ND_READ)) { do { error = nqnfs_getlease(vp, ND_READ, cred, p); } while (error == NQNFS_EXPIRED); if (error) return (error); if (np->n_lrev != np->n_brev || (np->n_flag & NQNFSNONCACHE) || ((np->n_flag & NMODIFIED) && vp->v_type == VDIR)) { if (vp->v_type == VDIR) { nfs_invaldircache(vp, 0); np->n_direofoffset = 0; } error = nfs_vinvalbuf(vp, V_SAVE, cred, p, 1); if (error) return (error); np->n_brev = np->n_lrev; } } else if (vp->v_type == VDIR && (np->n_flag & NMODIFIED)) { nfs_invaldircache(vp, 0); error = nfs_vinvalbuf(vp, V_SAVE, cred, p, 1); np->n_direofoffset = 0; if (error) return (error); } } #endif /* * Don't cache symlinks. */ if (np->n_flag & NQNFSNONCACHE || ((vp->v_flag & VROOT) && vp->v_type == VLNK)) { switch (vp->v_type) { case VREG: return (nfs_readrpc(vp, uio)); case VLNK: return (nfs_readlinkrpc(vp, uio, cred)); case VDIR: break; default: printf(" NQNFSNONCACHE: type %x unexpected\n", vp->v_type); }; } baddr = (caddr_t)0; switch (vp->v_type) { case VREG: nfsstats.biocache_reads++; error = 0; if (uio->uio_offset >= np->n_size) { break; } while (uio->uio_resid > 0) { void *win; vsize_t bytelen = MIN(np->n_size - uio->uio_offset, uio->uio_resid); if (bytelen == 0) break; win = ubc_alloc(&vp->v_uvm.u_obj, uio->uio_offset, &bytelen, UBC_READ); error = uiomove(win, bytelen, uio); ubc_release(win, 0); if (error) { break; } } n = 0; break; case VLNK: nfsstats.biocache_readlinks++; bp = nfs_getcacheblk(vp, (daddr_t)0, NFS_MAXPATHLEN, p); if (!bp) return (EINTR); if ((bp->b_flags & B_DONE) == 0) { bp->b_flags |= B_READ; error = nfs_doio(bp, p); if (error) { brelse(bp); return (error); } } n = MIN(uio->uio_resid, NFS_MAXPATHLEN - bp->b_resid); got_buf = 1; on = 0; break; case VDIR: diragain: nfsstats.biocache_readdirs++; ndp = nfs_searchdircache(vp, uio->uio_offset, (nmp->nm_flag & NFSMNT_XLATECOOKIE), 0); if (!ndp) { /* * We've been handed a cookie that is not * in the cache. If we're not translating * 32 <-> 64, it may be a value that was * flushed out of the cache because it grew * too big. Let the server judge if it's * valid or not. In the translation case, * we have no way of validating this value, * so punt. */ if (nmp->nm_flag & NFSMNT_XLATECOOKIE) return (EINVAL); ndp = nfs_enterdircache(vp, uio->uio_offset, uio->uio_offset, 0, 0); } if (uio->uio_offset != 0 && ndp->dc_cookie == np->n_direofoffset) { nfsstats.direofcache_hits++; return (0); } bp = nfs_getcacheblk(vp, ndp->dc_blkno, NFS_DIRBLKSIZ, p); if (!bp) return (EINTR); if ((bp->b_flags & B_DONE) == 0) { bp->b_flags |= B_READ; bp->b_dcookie = ndp->dc_blkcookie; error = nfs_doio(bp, p); if (error) { /* * Yuck! The directory has been modified on the * server. Punt and let the userland code * deal with it. */ brelse(bp); if (error == NFSERR_BAD_COOKIE) { nfs_invaldircache(vp, 0); nfs_vinvalbuf(vp, 0, cred, p, 1); error = EINVAL; } return (error); } } /* * Just return if we hit EOF right away with this * block. Always check here, because direofoffset * may have been set by an nfsiod since the last * check. */ if (np->n_direofoffset != 0 && ndp->dc_blkcookie == np->n_direofoffset) { brelse(bp); return (0); } /* * Find the entry we were looking for in the block. */ en = ndp->dc_entry; pdp = dp = (struct dirent *)bp->b_data; edp = bp->b_data + bp->b_bcount - bp->b_resid; enn = 0; while (enn < en && (caddr_t)dp < edp) { pdp = dp; dp = (struct dirent *)((caddr_t)dp + dp->d_reclen); enn++; } /* * If the entry number was bigger than the number of * entries in the block, or the cookie of the previous * entry doesn't match, the directory cache is * stale. Flush it and try again (i.e. go to * the server). */ if ((caddr_t)dp >= edp || (caddr_t)dp + dp->d_reclen > edp || (en > 0 && NFS_GETCOOKIE(pdp) != ndp->dc_cookie)) { #ifdef DEBUG printf("invalid cache: %p %p %p off %lx %lx\n", pdp, dp, edp, (unsigned long)uio->uio_offset, (unsigned long)NFS_GETCOOKIE(pdp)); #endif brelse(bp); nfs_invaldircache(vp, 0); nfs_vinvalbuf(vp, 0, cred, p, 0); goto diragain; } on = (caddr_t)dp - bp->b_data; /* * Cache all entries that may be exported to the * user, as they may be thrown back at us. The * NFSBIO_CACHECOOKIES flag indicates that all * entries are being 'exported', so cache them all. */ if (en == 0 && pdp == dp) { dp = (struct dirent *) ((caddr_t)dp + dp->d_reclen); enn++; } if (uio->uio_resid < (bp->b_bcount - bp->b_resid - on)) { n = uio->uio_resid; enough = 1; } else n = bp->b_bcount - bp->b_resid - on; ep = bp->b_data + on + n; /* * Find last complete entry to copy, caching entries * (if requested) as we go. */ while ((caddr_t)dp < ep && (caddr_t)dp + dp->d_reclen <= ep) { if (cflag & NFSBIO_CACHECOOKIES) { nndp = nfs_enterdircache(vp, NFS_GETCOOKIE(pdp), ndp->dc_blkcookie, enn, bp->b_lblkno); if (nmp->nm_flag & NFSMNT_XLATECOOKIE) { NFS_STASHCOOKIE32(pdp, nndp->dc_cookie32); } } pdp = dp; dp = (struct dirent *)((caddr_t)dp + dp->d_reclen); enn++; } /* * If the last requested entry was not the last in the * buffer (happens if NFS_DIRFRAGSIZ < NFS_DIRBLKSIZ), * cache the cookie of the last requested one, and * set of the offset to it. */ if ((on + n) < bp->b_bcount - bp->b_resid) { curoff = NFS_GETCOOKIE(pdp); nndp = nfs_enterdircache(vp, curoff, ndp->dc_blkcookie, enn, bp->b_lblkno); if (nmp->nm_flag & NFSMNT_XLATECOOKIE) { NFS_STASHCOOKIE32(pdp, nndp->dc_cookie32); curoff = nndp->dc_cookie32; } } else curoff = bp->b_dcookie; /* * Always cache the entry for the next block, * so that readaheads can use it. */ nndp = nfs_enterdircache(vp, bp->b_dcookie, bp->b_dcookie, 0,0); if (nmp->nm_flag & NFSMNT_XLATECOOKIE) { if (curoff == bp->b_dcookie) { NFS_STASHCOOKIE32(pdp, nndp->dc_cookie32); curoff = nndp->dc_cookie32; } } n = ((caddr_t)pdp + pdp->d_reclen) - (bp->b_data + on); /* * If not eof and read aheads are enabled, start one. * (You need the current block first, so that you have the * directory offset cookie of the next block.) */ if (nfs_numasync > 0 && nmp->nm_readahead > 0 && np->n_direofoffset == 0 && !(np->n_flag & NQNFSNONCACHE)) { rabp = nfs_getcacheblk(vp, nndp->dc_blkno, NFS_DIRBLKSIZ, p); if (rabp) { if ((rabp->b_flags & (B_DONE | B_DELWRI)) == 0) { rabp->b_dcookie = nndp->dc_cookie; rabp->b_flags |= (B_READ | B_ASYNC); if (nfs_asyncio(rabp)) { rabp->b_flags |= B_INVAL; brelse(rabp); } } else brelse(rabp); } } got_buf = 1; break; default: printf(" nfsbioread: type %x unexpected\n",vp->v_type); break; } if (n > 0) { if (!baddr) baddr = bp->b_data; error = uiomove(baddr + on, (int)n, uio); } switch (vp->v_type) { case VREG: break; case VLNK: n = 0; break; case VDIR: if (np->n_flag & NQNFSNONCACHE) bp->b_flags |= B_INVAL; uio->uio_offset = curoff; if (enough) n = 0; break; default: printf(" nfsbioread: type %x unexpected\n",vp->v_type); } if (got_buf) brelse(bp); } while (error == 0 && uio->uio_resid > 0 && n > 0); return (error); } /* * Vnode op for write using bio */ int nfs_write(v) void *v; { struct vop_write_args /* { struct vnode *a_vp; struct uio *a_uio; int a_ioflag; struct ucred *a_cred; } */ *ap = v; struct uio *uio = ap->a_uio; struct proc *p = uio->uio_procp; struct vnode *vp = ap->a_vp; struct nfsnode *np = VTONFS(vp); struct ucred *cred = ap->a_cred; int ioflag = ap->a_ioflag; struct vattr vattr; struct nfsmount *nmp = VFSTONFS(vp->v_mount); int error = 0, iomode, must_commit; int rv; #ifdef DIAGNOSTIC if (uio->uio_rw != UIO_WRITE) panic("nfs_write mode"); if (uio->uio_segflg == UIO_USERSPACE && uio->uio_procp != curproc) panic("nfs_write proc"); #endif if (vp->v_type != VREG) return (EIO); if (np->n_flag & NWRITEERR) { np->n_flag &= ~NWRITEERR; return (np->n_error); } #ifndef NFS_V2_ONLY if ((nmp->nm_flag & NFSMNT_NFSV3) && !(nmp->nm_iflag & NFSMNT_GOTFSINFO)) (void)nfs_fsinfo(nmp, vp, cred, p); #endif if (ioflag & (IO_APPEND | IO_SYNC)) { if (np->n_flag & NMODIFIED) { np->n_attrstamp = 0; error = nfs_vinvalbuf(vp, V_SAVE, cred, p, 1); if (error) return (error); } if (ioflag & IO_APPEND) { np->n_attrstamp = 0; error = VOP_GETATTR(vp, &vattr, cred, p); if (error) return (error); uio->uio_offset = np->n_size; } } if (uio->uio_offset < 0) return (EINVAL); if ((uio->uio_offset + uio->uio_resid) > nmp->nm_maxfilesize) return (EFBIG); if (uio->uio_resid == 0) return (0); /* * Maybe this should be above the vnode op call, but so long as * file servers have no limits, i don't think it matters */ if (p && uio->uio_offset + uio->uio_resid > p->p_rlimit[RLIMIT_FSIZE].rlim_cur) { psignal(p, SIGXFSZ); return (EFBIG); } /* * update the cached write creds for this node. */ if (np->n_wcred) { crfree(np->n_wcred); } np->n_wcred = cred; crhold(cred); if ((np->n_flag & NQNFSNONCACHE) && uio->uio_iovcnt == 1) { iomode = NFSV3WRITE_FILESYNC; error = nfs_writerpc(vp, uio, &iomode, &must_commit); if (must_commit) nfs_clearcommit(vp->v_mount); return (error); } do { void *win; voff_t oldoff = uio->uio_offset; vsize_t bytelen = uio->uio_resid; #ifndef NFS_V2_ONLY /* * Check for a valid write lease. */ if ((nmp->nm_flag & NFSMNT_NQNFS) && NQNFS_CKINVALID(vp, np, ND_WRITE)) { do { error = nqnfs_getlease(vp, ND_WRITE, cred, p); } while (error == NQNFS_EXPIRED); if (error) return (error); if (np->n_lrev != np->n_brev || (np->n_flag & NQNFSNONCACHE)) { error = nfs_vinvalbuf(vp, V_SAVE, cred, p, 1); if (error) return (error); np->n_brev = np->n_lrev; } } #endif nfsstats.biocache_writes++; np->n_flag |= NMODIFIED; if (np->n_size < uio->uio_offset + bytelen) { np->n_size = uio->uio_offset + bytelen; uvm_vnp_setsize(vp, np->n_size); } win = ubc_alloc(&vp->v_uvm.u_obj, uio->uio_offset, &bytelen, UBC_WRITE); error = uiomove(win, bytelen, uio); ubc_release(win, 0); rv = 1; if ((np->n_flag & NQNFSNONCACHE) || (ioflag & IO_SYNC)) { simple_lock(&vp->v_uvm.u_obj.vmobjlock); rv = vp->v_uvm.u_obj.pgops->pgo_flush( &vp->v_uvm.u_obj, oldoff & ~(nmp->nm_wsize - 1), uio->uio_offset & ~(nmp->nm_wsize - 1), PGO_CLEANIT|PGO_SYNCIO); simple_unlock(&vp->v_uvm.u_obj.vmobjlock); } else if ((oldoff & ~(nmp->nm_wsize - 1)) != (uio->uio_offset & ~(nmp->nm_wsize - 1))) { simple_lock(&vp->v_uvm.u_obj.vmobjlock); rv = vp->v_uvm.u_obj.pgops->pgo_flush( &vp->v_uvm.u_obj, oldoff & ~(nmp->nm_wsize - 1), uio->uio_offset & ~(nmp->nm_wsize - 1), PGO_CLEANIT|PGO_WEAK); simple_unlock(&vp->v_uvm.u_obj.vmobjlock); } if (!rv) { error = EIO; } if (error) { break; } } while (uio->uio_resid > 0); return error; } /* * Get an nfs cache block. * Allocate a new one if the block isn't currently in the cache * and return the block marked busy. If the calling process is * interrupted by a signal for an interruptible mount point, return * NULL. */ struct buf * nfs_getcacheblk(vp, bn, size, p) struct vnode *vp; daddr_t bn; int size; struct proc *p; { struct buf *bp; struct nfsmount *nmp = VFSTONFS(vp->v_mount); if (nmp->nm_flag & NFSMNT_INT) { bp = getblk(vp, bn, size, PCATCH, 0); while (bp == NULL) { if (nfs_sigintr(nmp, NULL, p)) return (NULL); bp = getblk(vp, bn, size, 0, 2 * hz); } } else bp = getblk(vp, bn, size, 0, 0); return (bp); } /* * Flush and invalidate all dirty buffers. If another process is already * doing the flush, just wait for completion. */ int nfs_vinvalbuf(vp, flags, cred, p, intrflg) struct vnode *vp; int flags; struct ucred *cred; struct proc *p; int intrflg; { struct nfsnode *np = VTONFS(vp); struct nfsmount *nmp = VFSTONFS(vp->v_mount); int error = 0, slpflag, slptimeo; if ((nmp->nm_flag & NFSMNT_INT) == 0) intrflg = 0; if (intrflg) { slpflag = PCATCH; slptimeo = 2 * hz; } else { slpflag = 0; slptimeo = 0; } /* * First wait for any other process doing a flush to complete. */ while (np->n_flag & NFLUSHINPROG) { np->n_flag |= NFLUSHWANT; error = tsleep((caddr_t)&np->n_flag, PRIBIO + 2, "nfsvinval", slptimeo); if (error && intrflg && nfs_sigintr(nmp, NULL, p)) return (EINTR); } /* * Now, flush as required. */ np->n_flag |= NFLUSHINPROG; error = vinvalbuf(vp, flags, cred, p, slpflag, 0); while (error) { if (intrflg && nfs_sigintr(nmp, NULL, p)) { np->n_flag &= ~NFLUSHINPROG; if (np->n_flag & NFLUSHWANT) { np->n_flag &= ~NFLUSHWANT; wakeup((caddr_t)&np->n_flag); } return (EINTR); } error = vinvalbuf(vp, flags, cred, p, 0, slptimeo); } np->n_flag &= ~(NMODIFIED | NFLUSHINPROG); if (np->n_flag & NFLUSHWANT) { np->n_flag &= ~NFLUSHWANT; wakeup((caddr_t)&np->n_flag); } return (0); } /* * Initiate asynchronous I/O. Return an error if no nfsiods are available. * This is mainly to avoid queueing async I/O requests when the nfsiods * are all hung on a dead server. */ int nfs_asyncio(bp) struct buf *bp; { int i; struct nfsmount *nmp; int gotiod, slpflag = 0, slptimeo = 0, error; if (nfs_numasync == 0) return (EIO); nmp = VFSTONFS(bp->b_vp->v_mount); again: if (nmp->nm_flag & NFSMNT_INT) slpflag = PCATCH; gotiod = FALSE; /* * Find a free iod to process this request. */ for (i = 0; i < NFS_MAXASYNCDAEMON; i++) if (nfs_iodwant[i]) { /* * Found one, so wake it up and tell it which * mount to process. */ nfs_iodwant[i] = NULL; nfs_iodmount[i] = nmp; nmp->nm_bufqiods++; wakeup((caddr_t)&nfs_iodwant[i]); gotiod = TRUE; break; } /* * If none are free, we may already have an iod working on this mount * point. If so, it will process our request. */ if (!gotiod && nmp->nm_bufqiods > 0) gotiod = TRUE; /* * If we have an iod which can process the request, then queue * the buffer. */ if (gotiod) { /* * Ensure that the queue never grows too large. */ while (nmp->nm_bufqlen >= 2*nfs_numasync) { nmp->nm_bufqwant = TRUE; error = tsleep(&nmp->nm_bufq, slpflag | PRIBIO, "nfsaio", slptimeo); if (error) { if (nfs_sigintr(nmp, NULL, bp->b_proc)) return (EINTR); if (slpflag == PCATCH) { slpflag = 0; slptimeo = 2 * hz; } } /* * We might have lost our iod while sleeping, * so check and loop if nescessary. */ if (nmp->nm_bufqiods == 0) goto again; } TAILQ_INSERT_TAIL(&nmp->nm_bufq, bp, b_freelist); nmp->nm_bufqlen++; return (0); } /* * All the iods are busy on other mounts, so return EIO to * force the caller to process the i/o synchronously. */ return (EIO); } /* * Do an I/O operation to/from a cache block. This may be called * synchronously or from an nfsiod. */ int nfs_doio(bp, p) struct buf *bp; struct proc *p; { struct uio *uiop; struct vnode *vp; struct nfsnode *np; struct nfsmount *nmp; int error = 0, diff, len, iomode, must_commit = 0; struct uio uio; struct iovec io; vp = bp->b_vp; np = VTONFS(vp); nmp = VFSTONFS(vp->v_mount); uiop = &uio; uiop->uio_iov = &io; uiop->uio_iovcnt = 1; uiop->uio_segflg = UIO_SYSSPACE; uiop->uio_procp = p; /* * Historically, paging was done with physio, but no more... */ if (bp->b_flags & B_PHYS) { /* * ...though reading /dev/drum still gets us here. */ io.iov_len = uiop->uio_resid = bp->b_bcount; /* mapping was done by vmapbuf() */ io.iov_base = bp->b_data; uiop->uio_offset = ((off_t)bp->b_blkno) << DEV_BSHIFT; if (bp->b_flags & B_READ) { uiop->uio_rw = UIO_READ; nfsstats.read_physios++; error = nfs_readrpc(vp, uiop); } else { iomode = NFSV3WRITE_DATASYNC; uiop->uio_rw = UIO_WRITE; nfsstats.write_physios++; error = nfs_writerpc(vp, uiop, &iomode, &must_commit); } if (error) { bp->b_flags |= B_ERROR; bp->b_error = error; } } else if (bp->b_flags & B_READ) { io.iov_len = uiop->uio_resid = bp->b_bcount; io.iov_base = bp->b_data; uiop->uio_rw = UIO_READ; switch (vp->v_type) { case VREG: uiop->uio_offset = ((off_t)bp->b_blkno) << DEV_BSHIFT; nfsstats.read_bios++; error = nfs_readrpc(vp, uiop); if (!error && uiop->uio_resid) { /* * If len > 0, there is a hole in the file and * no writes after the hole have been pushed to * the server yet. * Just zero fill the rest of the valid area. */ diff = bp->b_bcount - uiop->uio_resid; len = np->n_size - ((((off_t)bp->b_blkno) << DEV_BSHIFT) + diff); if (len > 0) { len = MIN(len, uiop->uio_resid); memset((char *)bp->b_data + diff, 0, len); } } if (p && (vp->v_flag & VTEXT) && (((nmp->nm_flag & NFSMNT_NQNFS) && NQNFS_CKINVALID(vp, np, ND_READ) && np->n_lrev != np->n_brev) || (!(nmp->nm_flag & NFSMNT_NQNFS) && np->n_mtime != np->n_vattr->va_mtime.tv_sec))) { uprintf("Process killed due to " "text file modification\n"); psignal(p, SIGKILL); p->p_holdcnt++; } break; case VLNK: uiop->uio_offset = (off_t)0; nfsstats.readlink_bios++; error = nfs_readlinkrpc(vp, uiop, curproc->p_ucred); break; case VDIR: nfsstats.readdir_bios++; uiop->uio_offset = bp->b_dcookie; if (nmp->nm_flag & NFSMNT_RDIRPLUS) { error = nfs_readdirplusrpc(vp, uiop, curproc->p_ucred); if (error == NFSERR_NOTSUPP) nmp->nm_flag &= ~NFSMNT_RDIRPLUS; } if ((nmp->nm_flag & NFSMNT_RDIRPLUS) == 0) error = nfs_readdirrpc(vp, uiop, curproc->p_ucred); if (!error) { bp->b_dcookie = uiop->uio_offset; } break; default: printf("nfs_doio: type %x unexpected\n",vp->v_type); break; } if (error) { bp->b_flags |= B_ERROR; bp->b_error = error; } } else { /* * If B_NEEDCOMMIT is set, a commit rpc may do the trick. If not * an actual write will have to be scheduled. */ io.iov_base = bp->b_data; io.iov_len = uiop->uio_resid = bp->b_bcount; uiop->uio_offset = (((off_t)bp->b_blkno) << DEV_BSHIFT); uiop->uio_rw = UIO_WRITE; nfsstats.write_bios++; iomode = NFSV3WRITE_UNSTABLE; error = nfs_writerpc(vp, uiop, &iomode, &must_commit); } bp->b_resid = uiop->uio_resid; if (must_commit) nfs_clearcommit(vp->v_mount); biodone(bp); return (error); } /* * Vnode op for VM getpages. */ int nfs_getpages(v) void *v; { struct vop_getpages_args /* { struct vnode *a_vp; voff_t a_offset; struct vm_page **a_m; int *a_count; int a_centeridx; vm_prot_t a_access_type; int a_advice; int a_flags; } */ *ap = v; off_t eof, offset, origoffset, startoffset, endoffset; int s, i, error, npages, orignpages, npgs, ridx, pidx, pcount; vaddr_t kva; struct buf *bp, *mbp; struct vnode *vp = ap->a_vp; struct nfsnode *np = VTONFS(vp); struct uvm_object *uobj = &vp->v_uvm.u_obj; struct nfsmount *nmp = VFSTONFS(vp->v_mount); size_t bytes, iobytes, tailbytes, totalbytes, skipbytes; int flags = ap->a_flags; int bsize; struct vm_page *pgs[16]; /* XXXUBC 16 */ boolean_t v3 = NFS_ISV3(vp); boolean_t async = (flags & PGO_SYNCIO) == 0; boolean_t write = (ap->a_access_type & VM_PROT_WRITE) != 0; UVMHIST_FUNC("nfs_getpages"); UVMHIST_CALLED(ubchist); UVMHIST_LOG(ubchist, "vp %p off 0x%x count %d", vp, (int)ap->a_offset, *ap->a_count,0); #ifdef DIAGNOSTIC if (ap->a_centeridx < 0 || ap->a_centeridx >= *ap->a_count) { panic("nfs_getpages: centeridx %d out of range", ap->a_centeridx); } #endif error = 0; origoffset = ap->a_offset; eof = vp->v_uvm.u_size; if (origoffset >= eof) { if ((flags & PGO_LOCKED) == 0) { simple_unlock(&uobj->vmobjlock); } UVMHIST_LOG(ubchist, "off 0x%x past EOF 0x%x", (int)origoffset, (int)eof,0,0); return EINVAL; } if (flags & PGO_LOCKED) { uvn_findpages(uobj, origoffset, ap->a_count, ap->a_m, UFP_NOWAIT|UFP_NOALLOC); return 0; } /* vnode is VOP_LOCKed, uobj is locked */ if (write && (vp->v_flag & VONWORKLST) == 0) { vn_syncer_add_to_worklist(vp, filedelay); } bsize = nmp->nm_rsize; orignpages = MIN(*ap->a_count, round_page(eof - origoffset) >> PAGE_SHIFT); npages = orignpages; startoffset = origoffset & ~(bsize - 1); endoffset = round_page((origoffset + (npages << PAGE_SHIFT) + bsize - 1) & ~(bsize - 1)); endoffset = MIN(endoffset, round_page(eof)); ridx = (origoffset - startoffset) >> PAGE_SHIFT; if (!async && !write) { int rapages = MAX(PAGE_SIZE, nmp->nm_rsize) >> PAGE_SHIFT; (void) VOP_GETPAGES(vp, endoffset, NULL, &rapages, 0, VM_PROT_READ, 0, 0); simple_lock(&uobj->vmobjlock); } UVMHIST_LOG(ubchist, "npages %d offset 0x%x", npages, (int)origoffset, 0,0); memset(pgs, 0, sizeof(pgs)); uvn_findpages(uobj, origoffset, &npages, &pgs[ridx], UFP_ALL); if (flags & PGO_OVERWRITE) { UVMHIST_LOG(ubchist, "PGO_OVERWRITE",0,0,0,0); /* XXXUBC for now, zero the page if we allocated it */ for (i = 0; i < npages; i++) { struct vm_page *pg = pgs[ridx + i]; if (pg->flags & PG_FAKE) { uvm_pagezero(pg); pg->flags &= ~(PG_FAKE); } } npages += ridx; if (v3) { simple_unlock(&uobj->vmobjlock); goto uncommit; } goto out; } /* * if the pages are already resident, just return them. */ for (i = 0; i < npages; i++) { struct vm_page *pg = pgs[ridx + i]; if ((pg->flags & PG_FAKE) != 0 || ((ap->a_access_type & VM_PROT_WRITE) && (pg->flags & PG_RDONLY))) { break; } } if (i == npages) { UVMHIST_LOG(ubchist, "returning cached pages", 0,0,0,0); npages += ridx; goto out; } /* * the page wasn't resident and we're not overwriting, * so we're going to have to do some i/o. * find any additional pages needed to cover the expanded range. */ if (startoffset != origoffset || startoffset + (npages << PAGE_SHIFT) != endoffset) { /* * XXXUBC we need to avoid deadlocks caused by locking * additional pages at lower offsets than pages we * already have locked. for now, unlock them all and * start over. */ for (i = 0; i < npages; i++) { struct vm_page *pg = pgs[ridx + i]; if (pg->flags & PG_FAKE) { pg->flags |= PG_RELEASED; } } uvm_page_unbusy(&pgs[ridx], npages); memset(pgs, 0, sizeof(pgs)); UVMHIST_LOG(ubchist, "reset npages start 0x%x end 0x%x", startoffset, endoffset, 0,0); npages = (endoffset - startoffset) >> PAGE_SHIFT; npgs = npages; uvn_findpages(uobj, startoffset, &npgs, pgs, UFP_ALL); } simple_unlock(&uobj->vmobjlock); /* * update the cached read creds for this node. */ if (np->n_rcred) { crfree(np->n_rcred); } np->n_rcred = curproc->p_ucred; crhold(np->n_rcred); /* * read the desired page(s). */ totalbytes = npages << PAGE_SHIFT; bytes = MIN(totalbytes, vp->v_uvm.u_size - startoffset); tailbytes = totalbytes - bytes; skipbytes = 0; kva = uvm_pagermapin(pgs, npages, UVMPAGER_MAPIN_WAITOK | UVMPAGER_MAPIN_READ); s = splbio(); mbp = pool_get(&bufpool, PR_WAITOK); splx(s); mbp->b_bufsize = totalbytes; mbp->b_data = (void *)kva; mbp->b_resid = mbp->b_bcount = bytes; mbp->b_flags = B_BUSY|B_READ| (async ? B_CALL|B_ASYNC : 0); mbp->b_iodone = uvm_aio_biodone; mbp->b_vp = vp; mbp->b_proc = NULL; /* XXXUBC */ LIST_INIT(&mbp->b_dep); /* * if EOF is in the middle of the last page, zero the part past EOF. */ if (tailbytes > 0 && (pgs[bytes >> PAGE_SHIFT]->flags & PG_FAKE)) { memset((char *)kva + bytes, 0, tailbytes); } /* * now loop over the pages, reading as needed. */ bp = NULL; for (offset = startoffset; bytes > 0; offset += iobytes, bytes -= iobytes) { /* * skip pages which don't need to be read. */ pidx = (offset - startoffset) >> PAGE_SHIFT; UVMHIST_LOG(ubchist, "pidx %d offset 0x%x startoffset 0x%x", pidx, (int)offset, (int)startoffset,0); while ((pgs[pidx]->flags & PG_FAKE) == 0) { size_t b; KASSERT((offset & (PAGE_SIZE - 1)) == 0); b = MIN(PAGE_SIZE, bytes); offset += b; bytes -= b; skipbytes += b; pidx++; UVMHIST_LOG(ubchist, "skipping, new offset 0x%x", (int)offset, 0,0,0); if (bytes == 0) { goto loopdone; } } /* * see how many pages can be read with this i/o. * reduce the i/o size if necessary. */ iobytes = bytes; if (offset + iobytes > round_page(offset)) { pcount = 1; while (pidx + pcount < npages && pgs[pidx + pcount]->flags & PG_FAKE) { pcount++; } iobytes = MIN(iobytes, (pcount << PAGE_SHIFT) - (offset - trunc_page(offset))); } iobytes = MIN(iobytes, nmp->nm_rsize); /* * allocate a sub-buf for this piece of the i/o * (or just use mbp if there's only 1 piece), * and start it going. */ if (offset == startoffset && iobytes == bytes) { bp = mbp; } else { s = splbio(); bp = pool_get(&bufpool, PR_WAITOK); splx(s); bp->b_data = (char *)kva + offset - startoffset; bp->b_resid = bp->b_bcount = iobytes; bp->b_flags = B_BUSY|B_READ|B_CALL|B_ASYNC; bp->b_iodone = uvm_aio_biodone1; bp->b_vp = vp; bp->b_proc = NULL; /* XXXUBC */ LIST_INIT(&bp->b_dep); } bp->b_private = mbp; bp->b_lblkno = bp->b_blkno = offset >> DEV_BSHIFT; UVMHIST_LOG(ubchist, "bp %p offset 0x%x bcount 0x%x blkno 0x%x", bp, offset, iobytes, bp->b_blkno); VOP_STRATEGY(bp); } loopdone: if (skipbytes) { s = splbio(); mbp->b_resid -= skipbytes; if (mbp->b_resid == 0) { biodone(mbp); } splx(s); } if (async) { UVMHIST_LOG(ubchist, "returning 0 (async)",0,0,0,0); return 0; } if (bp != NULL) { error = biowait(mbp); } s = splbio(); pool_put(&bufpool, mbp); splx(s); uvm_pagermapout(kva, npages); if (write && v3) { uncommit: lockmgr(&np->n_commitlock, LK_EXCLUSIVE, NULL); nfs_del_committed_range(vp, origoffset, npages); nfs_del_tobecommitted_range(vp, origoffset, npages); simple_lock(&uobj->vmobjlock); for (i = 0; i < npages; i++) { if (pgs[i] == NULL) { continue; } pgs[i]->flags &= ~(PG_NEEDCOMMIT|PG_RDONLY); } simple_unlock(&uobj->vmobjlock); lockmgr(&np->n_commitlock, LK_RELEASE, NULL); } simple_lock(&uobj->vmobjlock); out: if (error) { uvm_lock_pageq(); for (i = 0; i < npages; i++) { if (pgs[i] == NULL) { continue; } UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x", pgs[i], pgs[i]->flags, 0,0); if (pgs[i]->flags & PG_WANTED) { wakeup(pgs[i]); } if (pgs[i]->flags & PG_RELEASED) { uvm_unlock_pageq(); (uobj->pgops->pgo_releasepg)(pgs[i], NULL); uvm_lock_pageq(); continue; } if (pgs[i]->flags & PG_FAKE) { uvm_pagefree(pgs[i]); continue; } uvm_pageactivate(pgs[i]); pgs[i]->flags &= ~(PG_WANTED|PG_BUSY); UVM_PAGE_OWN(pgs[i], NULL); } uvm_unlock_pageq(); simple_unlock(&uobj->vmobjlock); UVMHIST_LOG(ubchist, "returning error %d", error,0,0,0); return error; } UVMHIST_LOG(ubchist, "ridx %d count %d", ridx, npages, 0,0); uvm_lock_pageq(); for (i = 0; i < npages; i++) { if (pgs[i] == NULL) { continue; } UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x", pgs[i], pgs[i]->flags, 0,0); if (pgs[i]->flags & PG_FAKE) { UVMHIST_LOG(ubchist, "unfaking pg %p offset 0x%x", pgs[i], (int)pgs[i]->offset,0,0); pgs[i]->flags &= ~(PG_FAKE); pmap_clear_modify(pgs[i]); pmap_clear_reference(pgs[i]); } if (i < ridx || i >= ridx + orignpages || async) { UVMHIST_LOG(ubchist, "unbusy pg %p offset 0x%x", pgs[i], (int)pgs[i]->offset,0,0); if (pgs[i]->flags & PG_WANTED) { wakeup(pgs[i]); } if (pgs[i]->flags & PG_RELEASED) { uvm_unlock_pageq(); (uobj->pgops->pgo_releasepg)(pgs[i], NULL); uvm_lock_pageq(); continue; } uvm_pageactivate(pgs[i]); pgs[i]->flags &= ~(PG_WANTED|PG_BUSY); UVM_PAGE_OWN(pgs[i], NULL); } } uvm_unlock_pageq(); simple_unlock(&uobj->vmobjlock); if (ap->a_m != NULL) { memcpy(ap->a_m, &pgs[ridx], *ap->a_count * sizeof(struct vm_page *)); } return 0; } /* * Vnode op for VM putpages. */ int nfs_putpages(v) void *v; { struct vop_putpages_args /* { struct vnode *a_vp; struct vm_page **a_m; int a_count; int a_flags; int *a_rtvals; } */ *ap = v; struct vnode *vp = ap->a_vp; struct nfsnode *np = VTONFS(vp); struct nfsmount *nmp = VFSTONFS(vp->v_mount); struct buf *bp, *mbp; struct vm_page **pgs = ap->a_m; int flags = ap->a_flags; int npages = ap->a_count; int s, error, i; size_t bytes, iobytes, skipbytes; vaddr_t kva; off_t offset, origoffset, commitoff; uint32_t commitbytes; boolean_t v3 = NFS_ISV3(vp); boolean_t async = (flags & PGO_SYNCIO) == 0; boolean_t weak = (flags & PGO_WEAK) && v3; UVMHIST_FUNC("nfs_putpages"); UVMHIST_CALLED(ubchist); UVMHIST_LOG(ubchist, "vp %p pgp %p count %d", vp, ap->a_m, ap->a_count,0); simple_unlock(&vp->v_uvm.u_obj.vmobjlock); error = 0; origoffset = pgs[0]->offset; bytes = MIN(ap->a_count << PAGE_SHIFT, vp->v_uvm.u_size - origoffset); skipbytes = 0; /* * if the range has been committed already, mark the pages thus. * if the range just needs to be committed, we're done * if it's a weak putpage, otherwise commit the range. */ if (v3) { lockmgr(&np->n_commitlock, LK_EXCLUSIVE, NULL); if (nfs_in_committed_range(vp, origoffset, bytes)) { goto committed; } if (nfs_in_tobecommitted_range(vp, origoffset, bytes)) { if (weak) { lockmgr(&np->n_commitlock, LK_RELEASE, NULL); return 0; } else { commitoff = np->n_pushlo; commitbytes = (uint32_t)(np->n_pushhi - np->n_pushlo); goto commit; } } lockmgr(&np->n_commitlock, LK_RELEASE, NULL); } /* * otherwise write or commit all the pages. */ kva = uvm_pagermapin(pgs, ap->a_count, UVMPAGER_MAPIN_WAITOK| UVMPAGER_MAPIN_WRITE); s = splbio(); vp->v_numoutput += 2; mbp = pool_get(&bufpool, PR_WAITOK); UVMHIST_LOG(ubchist, "vp %p mbp %p num now %d bytes 0x%x", vp, mbp, vp->v_numoutput, bytes); splx(s); mbp->b_bufsize = npages << PAGE_SHIFT; mbp->b_data = (void *)kva; mbp->b_resid = mbp->b_bcount = bytes; mbp->b_flags = B_BUSY|B_WRITE|B_AGE | (async ? B_CALL|B_ASYNC : 0) | (curproc == uvm.pagedaemon_proc ? B_PDAEMON : 0); mbp->b_iodone = uvm_aio_biodone; mbp->b_vp = vp; mbp->b_proc = NULL; /* XXXUBC */ LIST_INIT(&mbp->b_dep); for (offset = origoffset; bytes > 0; offset += iobytes, bytes -= iobytes) { iobytes = MIN(nmp->nm_wsize, bytes); /* * skip writing any pages which only need a commit. */ if ((pgs[(offset - origoffset) >> PAGE_SHIFT]->flags & PG_NEEDCOMMIT) != 0) { KASSERT((offset & (PAGE_SIZE - 1)) == 0); iobytes = MIN(PAGE_SIZE, bytes); skipbytes += iobytes; continue; } /* if it's really one i/o, don't make a second buf */ if (offset == origoffset && iobytes == bytes) { bp = mbp; } else { s = splbio(); vp->v_numoutput++; bp = pool_get(&bufpool, PR_WAITOK); UVMHIST_LOG(ubchist, "vp %p bp %p num now %d", vp, bp, vp->v_numoutput, 0); splx(s); bp->b_data = (char *)kva + (offset - origoffset); bp->b_resid = bp->b_bcount = iobytes; bp->b_flags = B_BUSY|B_WRITE|B_CALL|B_ASYNC; bp->b_iodone = uvm_aio_biodone1; bp->b_vp = vp; bp->b_proc = NULL; /* XXXUBC */ LIST_INIT(&bp->b_dep); } bp->b_private = mbp; bp->b_lblkno = bp->b_blkno = (daddr_t)(offset >> DEV_BSHIFT); UVMHIST_LOG(ubchist, "bp %p numout %d", bp, vp->v_numoutput,0,0); VOP_STRATEGY(bp); } if (skipbytes) { UVMHIST_LOG(ubchist, "skipbytes %d", bytes, 0,0,0); s = splbio(); mbp->b_resid -= skipbytes; if (mbp->b_resid == 0) { biodone(mbp); } splx(s); } if (async) { return 0; } if (bp != NULL) { error = biowait(mbp); } s = splbio(); vwakeup(mbp); pool_put(&bufpool, mbp); splx(s); uvm_pagermapout(kva, ap->a_count); if (error || !v3) { UVMHIST_LOG(ubchist, "returning error %d", error, 0,0,0); return error; } /* * for a weak put, mark the range as "to be committed" * and mark the pages read-only so that we will be notified * to remove the pages from the "to be committed" range * if they are made dirty again. * for a strong put, commit the pages and remove them from the * "to be committed" range. also, mark them as writable * and not cleanable with just a commit. */ lockmgr(&np->n_commitlock, LK_EXCLUSIVE, NULL); if (weak) { nfs_add_tobecommitted_range(vp, origoffset, npages << PAGE_SHIFT); for (i = 0; i < npages; i++) { pgs[i]->flags |= PG_NEEDCOMMIT|PG_RDONLY; } } else { commitoff = origoffset; commitbytes = npages << PAGE_SHIFT; commit: error = nfs_commit(vp, commitoff, commitbytes, curproc); nfs_del_tobecommitted_range(vp, commitoff, commitbytes); committed: for (i = 0; i < npages; i++) { pgs[i]->flags &= ~(PG_NEEDCOMMIT|PG_RDONLY); } } lockmgr(&np->n_commitlock, LK_RELEASE, NULL); return error; }