/* $NetBSD: subr_kmem.c,v 1.66 2018/01/09 01:53:55 christos Exp $ */ /*- * Copyright (c) 2009-2015 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Andrew Doran and Maxime Villard. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /*- * Copyright (c)2006 YAMAMOTO Takashi, * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * Allocator of kernel wired memory. This allocator has some debug features * enabled with "option DIAGNOSTIC" and "option DEBUG". */ /* * KMEM_SIZE: detect alloc/free size mismatch bugs. * Prefix each allocations with a fixed-sized, aligned header and record * the exact user-requested allocation size in it. When freeing, compare * it with kmem_free's "size" argument. * * KMEM_REDZONE: detect overrun bugs. * Add a 2-byte pattern (allocate one more memory chunk if needed) at the * end of each allocated buffer. Check this pattern on kmem_free. * * These options are enabled on DIAGNOSTIC. * * |CHUNK|CHUNK|CHUNK|CHUNK|CHUNK|CHUNK|CHUNK|CHUNK|CHUNK|CHUNK|CHUNK| * +-----+-----+-----+-----+-----+-----+-----+-----+-----+---+-+--+--+ * |/////| | | | | | | | | |*|**|UU| * |/HSZ/| | | | | | | | | |*|**|UU| * |/////| | | | | | | | | |*|**|UU| * +-----+-----+-----+-----+-----+-----+-----+-----+-----+---+-+--+--+ * |Size | Buffer usable by the caller (requested size) |RedZ|Unused\ */ /* * KMEM_POISON: detect modify-after-free bugs. * Fill freed (in the sense of kmem_free) memory with a garbage pattern. * Check the pattern on allocation. * * KMEM_GUARD * A kernel with "option DEBUG" has "kmem_guard" debugging feature compiled * in. See the comment below for what kind of bugs it tries to detect. Even * if compiled in, it's disabled by default because it's very expensive. * You can enable it on boot by: * boot -d * db> w kmem_guard_depth 0t30000 * db> c * * The default value of kmem_guard_depth is 0, which means disabled. * It can be changed by KMEM_GUARD_DEPTH kernel config option. */ #include __KERNEL_RCSID(0, "$NetBSD: subr_kmem.c,v 1.66 2018/01/09 01:53:55 christos Exp $"); #ifdef _KERNEL_OPT #include "opt_kmem.h" #endif #include #include #include #include #include #include #include #include #include #include struct kmem_cache_info { size_t kc_size; const char * kc_name; }; static const struct kmem_cache_info kmem_cache_sizes[] = { { 8, "kmem-8" }, { 16, "kmem-16" }, { 24, "kmem-24" }, { 32, "kmem-32" }, { 40, "kmem-40" }, { 48, "kmem-48" }, { 56, "kmem-56" }, { 64, "kmem-64" }, { 80, "kmem-80" }, { 96, "kmem-96" }, { 112, "kmem-112" }, { 128, "kmem-128" }, { 160, "kmem-160" }, { 192, "kmem-192" }, { 224, "kmem-224" }, { 256, "kmem-256" }, { 320, "kmem-320" }, { 384, "kmem-384" }, { 448, "kmem-448" }, { 512, "kmem-512" }, { 768, "kmem-768" }, { 1024, "kmem-1024" }, { 0, NULL } }; static const struct kmem_cache_info kmem_cache_big_sizes[] = { { 2048, "kmem-2048" }, { 4096, "kmem-4096" }, { 8192, "kmem-8192" }, { 16384, "kmem-16384" }, { 0, NULL } }; /* * KMEM_ALIGN is the smallest guaranteed alignment and also the * smallest allocateable quantum. * Every cache size >= CACHE_LINE_SIZE gets CACHE_LINE_SIZE alignment. */ #define KMEM_ALIGN 8 #define KMEM_SHIFT 3 #define KMEM_MAXSIZE 1024 #define KMEM_CACHE_COUNT (KMEM_MAXSIZE >> KMEM_SHIFT) static pool_cache_t kmem_cache[KMEM_CACHE_COUNT] __cacheline_aligned; static size_t kmem_cache_maxidx __read_mostly; #define KMEM_BIG_ALIGN 2048 #define KMEM_BIG_SHIFT 11 #define KMEM_BIG_MAXSIZE 16384 #define KMEM_CACHE_BIG_COUNT (KMEM_BIG_MAXSIZE >> KMEM_BIG_SHIFT) static pool_cache_t kmem_cache_big[KMEM_CACHE_BIG_COUNT] __cacheline_aligned; static size_t kmem_cache_big_maxidx __read_mostly; #if defined(DIAGNOSTIC) && defined(_HARDKERNEL) #define KMEM_SIZE #define KMEM_REDZONE #endif /* defined(DIAGNOSTIC) */ #if defined(DEBUG) && defined(_HARDKERNEL) #define KMEM_SIZE #define KMEM_POISON #define KMEM_GUARD static void *kmem_freecheck; #endif /* defined(DEBUG) */ #if defined(KMEM_POISON) static int kmem_poison_ctor(void *, void *, int); static void kmem_poison_fill(void *, size_t); static void kmem_poison_check(void *, size_t); #else /* defined(KMEM_POISON) */ #define kmem_poison_fill(p, sz) /* nothing */ #define kmem_poison_check(p, sz) /* nothing */ #endif /* defined(KMEM_POISON) */ #if defined(KMEM_REDZONE) #define REDZONE_SIZE 2 static void kmem_redzone_fill(void *, size_t); static void kmem_redzone_check(void *, size_t); #else /* defined(KMEM_REDZONE) */ #define REDZONE_SIZE 0 #define kmem_redzone_fill(p, sz) /* nothing */ #define kmem_redzone_check(p, sz) /* nothing */ #endif /* defined(KMEM_REDZONE) */ #if defined(KMEM_SIZE) struct kmem_header { size_t size; } __aligned(KMEM_ALIGN); #define SIZE_SIZE sizeof(struct kmem_header) static void kmem_size_set(void *, size_t); static void kmem_size_check(void *, size_t); #else #define SIZE_SIZE 0 #define kmem_size_set(p, sz) /* nothing */ #define kmem_size_check(p, sz) /* nothing */ #endif #if defined(KMEM_GUARD) #ifndef KMEM_GUARD_DEPTH #define KMEM_GUARD_DEPTH 0 #endif struct kmem_guard { u_int kg_depth; intptr_t * kg_fifo; u_int kg_rotor; vmem_t * kg_vmem; }; static bool kmem_guard_init(struct kmem_guard *, u_int, vmem_t *); static void *kmem_guard_alloc(struct kmem_guard *, size_t, bool); static void kmem_guard_free(struct kmem_guard *, size_t, void *); int kmem_guard_depth = KMEM_GUARD_DEPTH; static bool kmem_guard_enabled; static struct kmem_guard kmem_guard; #endif /* defined(KMEM_GUARD) */ CTASSERT(KM_SLEEP == PR_WAITOK); CTASSERT(KM_NOSLEEP == PR_NOWAIT); /* * kmem_intr_alloc: allocate wired memory. */ void * kmem_intr_alloc(size_t requested_size, km_flag_t kmflags) { size_t allocsz, index; size_t size; pool_cache_t pc; uint8_t *p; KASSERT(requested_size > 0); KASSERT((kmflags & KM_SLEEP) || (kmflags & KM_NOSLEEP)); KASSERT(!(kmflags & KM_SLEEP) || !(kmflags & KM_NOSLEEP)); #ifdef KMEM_GUARD if (kmem_guard_enabled) { return kmem_guard_alloc(&kmem_guard, requested_size, (kmflags & KM_SLEEP) != 0); } #endif size = kmem_roundup_size(requested_size); allocsz = size + SIZE_SIZE; #ifdef KMEM_REDZONE if (size - requested_size < REDZONE_SIZE) { /* If there isn't enough space in the padding, allocate * one more memory chunk for the red zone. */ allocsz += kmem_roundup_size(REDZONE_SIZE); } #endif if ((index = ((allocsz -1) >> KMEM_SHIFT)) < kmem_cache_maxidx) { pc = kmem_cache[index]; } else if ((index = ((allocsz - 1) >> KMEM_BIG_SHIFT)) < kmem_cache_big_maxidx) { pc = kmem_cache_big[index]; } else { int ret = uvm_km_kmem_alloc(kmem_va_arena, (vsize_t)round_page(size), ((kmflags & KM_SLEEP) ? VM_SLEEP : VM_NOSLEEP) | VM_INSTANTFIT, (vmem_addr_t *)&p); if (ret) { return NULL; } FREECHECK_OUT(&kmem_freecheck, p); return p; } p = pool_cache_get(pc, kmflags); if (__predict_true(p != NULL)) { kmem_poison_check(p, allocsz); FREECHECK_OUT(&kmem_freecheck, p); kmem_size_set(p, requested_size); kmem_redzone_fill(p, requested_size + SIZE_SIZE); return p + SIZE_SIZE; } return p; } /* * kmem_intr_zalloc: allocate zeroed wired memory. */ void * kmem_intr_zalloc(size_t size, km_flag_t kmflags) { void *p; p = kmem_intr_alloc(size, kmflags); if (p != NULL) { memset(p, 0, size); } return p; } /* * kmem_intr_free: free wired memory allocated by kmem_alloc. */ void kmem_intr_free(void *p, size_t requested_size) { size_t allocsz, index; size_t size; pool_cache_t pc; KASSERT(p != NULL); KASSERT(requested_size > 0); #ifdef KMEM_GUARD if (kmem_guard_enabled) { kmem_guard_free(&kmem_guard, requested_size, p); return; } #endif size = kmem_roundup_size(requested_size); allocsz = size + SIZE_SIZE; #ifdef KMEM_REDZONE if (size - requested_size < REDZONE_SIZE) { allocsz += kmem_roundup_size(REDZONE_SIZE); } #endif if ((index = ((allocsz -1) >> KMEM_SHIFT)) < kmem_cache_maxidx) { pc = kmem_cache[index]; } else if ((index = ((allocsz - 1) >> KMEM_BIG_SHIFT)) < kmem_cache_big_maxidx) { pc = kmem_cache_big[index]; } else { FREECHECK_IN(&kmem_freecheck, p); uvm_km_kmem_free(kmem_va_arena, (vaddr_t)p, round_page(size)); return; } p = (uint8_t *)p - SIZE_SIZE; kmem_size_check(p, requested_size); kmem_redzone_check(p, requested_size + SIZE_SIZE); FREECHECK_IN(&kmem_freecheck, p); LOCKDEBUG_MEM_CHECK(p, size); kmem_poison_fill(p, allocsz); pool_cache_put(pc, p); } /* ---- kmem API */ /* * kmem_alloc: allocate wired memory. * => must not be called from interrupt context. */ void * kmem_alloc(size_t size, km_flag_t kmflags) { void *v; KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()), "kmem(9) should not be used from the interrupt context"); v = kmem_intr_alloc(size, kmflags); KASSERT(v || (kmflags & KM_NOSLEEP) != 0); return v; } /* * kmem_zalloc: allocate zeroed wired memory. * => must not be called from interrupt context. */ void * kmem_zalloc(size_t size, km_flag_t kmflags) { void *v; KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()), "kmem(9) should not be used from the interrupt context"); v = kmem_intr_zalloc(size, kmflags); KASSERT(v || (kmflags & KM_NOSLEEP) != 0); return v; } /* * kmem_free: free wired memory allocated by kmem_alloc. * => must not be called from interrupt context. */ void kmem_free(void *p, size_t size) { KASSERT(!cpu_intr_p()); KASSERT(!cpu_softintr_p()); kmem_intr_free(p, size); } static size_t kmem_create_caches(const struct kmem_cache_info *array, pool_cache_t alloc_table[], size_t maxsize, int shift, int ipl) { size_t maxidx = 0; size_t table_unit = (1 << shift); size_t size = table_unit; int i; for (i = 0; array[i].kc_size != 0 ; i++) { const char *name = array[i].kc_name; size_t cache_size = array[i].kc_size; struct pool_allocator *pa; int flags = PR_NOALIGN; pool_cache_t pc; size_t align; if ((cache_size & (CACHE_LINE_SIZE - 1)) == 0) align = CACHE_LINE_SIZE; else if ((cache_size & (PAGE_SIZE - 1)) == 0) align = PAGE_SIZE; else align = KMEM_ALIGN; if (cache_size < CACHE_LINE_SIZE) flags |= PR_NOTOUCH; /* check if we reached the requested size */ if (cache_size > maxsize || cache_size > PAGE_SIZE) { break; } if ((cache_size >> shift) > maxidx) { maxidx = cache_size >> shift; } if ((cache_size >> shift) > maxidx) { maxidx = cache_size >> shift; } pa = &pool_allocator_kmem; #if defined(KMEM_POISON) pc = pool_cache_init(cache_size, align, 0, flags, name, pa, ipl, kmem_poison_ctor, NULL, (void *)cache_size); #else /* defined(KMEM_POISON) */ pc = pool_cache_init(cache_size, align, 0, flags, name, pa, ipl, NULL, NULL, NULL); #endif /* defined(KMEM_POISON) */ while (size <= cache_size) { alloc_table[(size - 1) >> shift] = pc; size += table_unit; } } return maxidx; } void kmem_init(void) { #ifdef KMEM_GUARD kmem_guard_enabled = kmem_guard_init(&kmem_guard, kmem_guard_depth, kmem_va_arena); #endif kmem_cache_maxidx = kmem_create_caches(kmem_cache_sizes, kmem_cache, KMEM_MAXSIZE, KMEM_SHIFT, IPL_VM); kmem_cache_big_maxidx = kmem_create_caches(kmem_cache_big_sizes, kmem_cache_big, PAGE_SIZE, KMEM_BIG_SHIFT, IPL_VM); } size_t kmem_roundup_size(size_t size) { return (size + (KMEM_ALIGN - 1)) & ~(KMEM_ALIGN - 1); } /* * Used to dynamically allocate string with kmem accordingly to format. */ char * kmem_asprintf(const char *fmt, ...) { int size __diagused, len; va_list va; char *str; va_start(va, fmt); len = vsnprintf(NULL, 0, fmt, va); va_end(va); str = kmem_alloc(len + 1, KM_SLEEP); va_start(va, fmt); size = vsnprintf(str, len + 1, fmt, va); va_end(va); KASSERT(size == len); return str; } char * kmem_strdupsize(const char *str, size_t *lenp, km_flag_t flags) { size_t len = strlen(str) + 1; char *ptr = kmem_alloc(len, flags); if (ptr == NULL) return NULL; if (lenp) *lenp = len; memcpy(ptr, str, len); return ptr; } char * kmem_strndup(const char *str, size_t maxlen, km_flag_t flags) { KASSERT(str != NULL); KASSERT(maxlen != 0); size_t len = strnlen(str, maxlen); char *ptr = kmem_alloc(len + 1, flags); if (ptr == NULL) return NULL; memcpy(ptr, str, len); ptr[len] = '\0'; return ptr; } void kmem_strfree(char *str) { if (str == NULL) return; kmem_free(str, strlen(str) + 1); } /* ------------------ DEBUG / DIAGNOSTIC ------------------ */ #if defined(KMEM_POISON) || defined(KMEM_REDZONE) #if defined(_LP64) #define PRIME 0x9e37fffffffc0000UL #else /* defined(_LP64) */ #define PRIME 0x9e3779b1 #endif /* defined(_LP64) */ static inline uint8_t kmem_pattern_generate(const void *p) { return (uint8_t)(((uintptr_t)p) * PRIME >> ((sizeof(uintptr_t) - sizeof(uint8_t))) * CHAR_BIT); } #endif /* defined(KMEM_POISON) || defined(KMEM_REDZONE) */ #if defined(KMEM_POISON) static int kmem_poison_ctor(void *arg, void *obj, int flag) { size_t sz = (size_t)arg; kmem_poison_fill(obj, sz); return 0; } static void kmem_poison_fill(void *p, size_t sz) { uint8_t *cp; const uint8_t *ep; cp = p; ep = cp + sz; while (cp < ep) { *cp = kmem_pattern_generate(cp); cp++; } } static void kmem_poison_check(void *p, size_t sz) { uint8_t *cp; const uint8_t *ep; cp = p; ep = cp + sz; while (cp < ep) { const uint8_t expected = kmem_pattern_generate(cp); if (*cp != expected) { panic("%s: %p: 0x%02x != 0x%02x\n", __func__, cp, *cp, expected); } cp++; } } #endif /* defined(KMEM_POISON) */ #if defined(KMEM_SIZE) static void kmem_size_set(void *p, size_t sz) { struct kmem_header *hd; hd = (struct kmem_header *)p; hd->size = sz; } static void kmem_size_check(void *p, size_t sz) { struct kmem_header *hd; size_t hsz; hd = (struct kmem_header *)p; hsz = hd->size; if (hsz != sz) { panic("kmem_free(%p, %zu) != allocated size %zu", (const uint8_t *)p + SIZE_SIZE, sz, hsz); } } #endif /* defined(KMEM_SIZE) */ #if defined(KMEM_REDZONE) #define STATIC_BYTE 0xFE CTASSERT(REDZONE_SIZE > 1); static void kmem_redzone_fill(void *p, size_t sz) { uint8_t *cp, pat; const uint8_t *ep; cp = (uint8_t *)p + sz; ep = cp + REDZONE_SIZE; /* * We really don't want the first byte of the red zone to be '\0'; * an off-by-one in a string may not be properly detected. */ pat = kmem_pattern_generate(cp); *cp = (pat == '\0') ? STATIC_BYTE: pat; cp++; while (cp < ep) { *cp = kmem_pattern_generate(cp); cp++; } } static void kmem_redzone_check(void *p, size_t sz) { uint8_t *cp, pat, expected; const uint8_t *ep; cp = (uint8_t *)p + sz; ep = cp + REDZONE_SIZE; pat = kmem_pattern_generate(cp); expected = (pat == '\0') ? STATIC_BYTE: pat; if (expected != *cp) { panic("%s: %p: 0x%02x != 0x%02x\n", __func__, cp, *cp, expected); } cp++; while (cp < ep) { expected = kmem_pattern_generate(cp); if (*cp != expected) { panic("%s: %p: 0x%02x != 0x%02x\n", __func__, cp, *cp, expected); } cp++; } } #endif /* defined(KMEM_REDZONE) */ #if defined(KMEM_GUARD) /* * The ultimate memory allocator for debugging, baby. It tries to catch: * * 1. Overflow, in realtime. A guard page sits immediately after the * requested area; a read/write overflow therefore triggers a page * fault. * 2. Invalid pointer/size passed, at free. A kmem_header structure sits * just before the requested area, and holds the allocated size. Any * difference with what is given at free triggers a panic. * 3. Underflow, at free. If an underflow occurs, the kmem header will be * modified, and 2. will trigger a panic. * 4. Use-after-free. When freeing, the memory is unmapped, and depending * on the value of kmem_guard_depth, the kernel will more or less delay * the recycling of that memory. Which means that any ulterior read/write * access to the memory will trigger a page fault, given it hasn't been * recycled yet. */ #include #include static bool kmem_guard_init(struct kmem_guard *kg, u_int depth, vmem_t *vm) { vaddr_t va; /* If not enabled, we have nothing to do. */ if (depth == 0) { return false; } depth = roundup(depth, PAGE_SIZE / sizeof(void *)); KASSERT(depth != 0); /* * Allocate fifo. */ va = uvm_km_alloc(kernel_map, depth * sizeof(void *), PAGE_SIZE, UVM_KMF_WIRED | UVM_KMF_ZERO); if (va == 0) { return false; } /* * Init object. */ kg->kg_vmem = vm; kg->kg_fifo = (void *)va; kg->kg_depth = depth; kg->kg_rotor = 0; printf("kmem_guard(%p): depth %d\n", kg, depth); return true; } static void * kmem_guard_alloc(struct kmem_guard *kg, size_t requested_size, bool waitok) { struct vm_page *pg; vm_flag_t flags; vmem_addr_t va; vaddr_t loopva; vsize_t loopsize; size_t size; void **p; /* * Compute the size: take the kmem header into account, and add a guard * page at the end. */ size = round_page(requested_size + SIZE_SIZE) + PAGE_SIZE; /* Allocate pages of kernel VA, but do not map anything in yet. */ flags = VM_BESTFIT | (waitok ? VM_SLEEP : VM_NOSLEEP); if (vmem_alloc(kg->kg_vmem, size, flags, &va) != 0) { return NULL; } loopva = va; loopsize = size - PAGE_SIZE; while (loopsize) { pg = uvm_pagealloc(NULL, loopva, NULL, 0); if (__predict_false(pg == NULL)) { if (waitok) { uvm_wait("kmem_guard"); continue; } else { uvm_km_pgremove_intrsafe(kernel_map, va, va + size); vmem_free(kg->kg_vmem, va, size); return NULL; } } pg->flags &= ~PG_BUSY; /* new page */ UVM_PAGE_OWN(pg, NULL); pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg), VM_PROT_READ|VM_PROT_WRITE, PMAP_KMPAGE); loopva += PAGE_SIZE; loopsize -= PAGE_SIZE; } pmap_update(pmap_kernel()); /* * Offset the returned pointer so that the unmapped guard page sits * immediately after the returned object. */ p = (void **)((va + (size - PAGE_SIZE) - requested_size) & ~(uintptr_t)ALIGNBYTES); kmem_size_set((uint8_t *)p - SIZE_SIZE, requested_size); return (void *)p; } static void kmem_guard_free(struct kmem_guard *kg, size_t requested_size, void *p) { vaddr_t va; u_int rotor; size_t size; uint8_t *ptr; ptr = (uint8_t *)p - SIZE_SIZE; kmem_size_check(ptr, requested_size); va = trunc_page((vaddr_t)ptr); size = round_page(requested_size + SIZE_SIZE) + PAGE_SIZE; KASSERT(pmap_extract(pmap_kernel(), va, NULL)); KASSERT(!pmap_extract(pmap_kernel(), va + (size - PAGE_SIZE), NULL)); /* * Unmap and free the pages. The last one is never allocated. */ uvm_km_pgremove_intrsafe(kernel_map, va, va + size); pmap_update(pmap_kernel()); #if 0 /* * XXX: Here, we need to atomically register the va and its size in the * fifo. */ /* * Put the VA allocation into the list and swap an old one out to free. * This behaves mostly like a fifo. */ rotor = atomic_inc_uint_nv(&kg->kg_rotor) % kg->kg_depth; va = (vaddr_t)atomic_swap_ptr(&kg->kg_fifo[rotor], (void *)va); if (va != 0) { vmem_free(kg->kg_vmem, va, size); } #else (void)rotor; vmem_free(kg->kg_vmem, va, size); #endif } #endif /* defined(KMEM_GUARD) */