/* $NetBSD: dz.c,v 1.2 2002/03/17 19:40:54 atatat Exp $ */ /* * Copyright (c) 1996 Ken C. Wellsch. All rights reserved. * Copyright (c) 1992, 1993 * The Regents of the University of California. All rights reserved. * * This code is derived from software contributed to Berkeley by * Ralph Campbell and Rick Macklem. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __KERNEL_RCSID(0, "$NetBSD: dz.c,v 1.2 2002/03/17 19:40:54 atatat Exp $"); #include "opt_ddb.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define DZ_READ_BYTE(adr) \ bus_space_read_1(sc->sc_iot, sc->sc_ioh, sc->sc_dr.adr) #define DZ_READ_WORD(adr) \ bus_space_read_2(sc->sc_iot, sc->sc_ioh, sc->sc_dr.adr) #define DZ_WRITE_BYTE(adr, val) \ bus_space_write_1(sc->sc_iot, sc->sc_ioh, sc->sc_dr.adr, val) #define DZ_WRITE_WORD(adr, val) \ bus_space_write_2(sc->sc_iot, sc->sc_ioh, sc->sc_dr.adr, val) #include "ioconf.h" /* A DZ-11 has 8 ports while a DZV/DZQ-11 has only 4. We use 8 by default */ #define NDZLINE 8 #define DZ_C2I(c) ((c)<<3) /* convert controller # to index */ #define DZ_I2C(c) ((c)>>3) /* convert minor to controller # */ #define DZ_PORT(u) ((u)&07) /* extract the port # */ /* Flags used to monitor modem bits, make them understood outside driver */ #define DML_DTR TIOCM_DTR #define DML_DCD TIOCM_CD #define DML_RI TIOCM_RI #define DML_BRK 0100000 /* no equivalent, we will mask */ static struct speedtab dzspeedtab[] = { { 0, 0 }, { 50, DZ_LPR_B50 }, { 75, DZ_LPR_B75 }, { 110, DZ_LPR_B110 }, { 134, DZ_LPR_B134 }, { 150, DZ_LPR_B150 }, { 300, DZ_LPR_B300 }, { 600, DZ_LPR_B600 }, { 1200, DZ_LPR_B1200 }, { 1800, DZ_LPR_B1800 }, { 2000, DZ_LPR_B2000 }, { 2400, DZ_LPR_B2400 }, { 3600, DZ_LPR_B3600 }, { 4800, DZ_LPR_B4800 }, { 7200, DZ_LPR_B7200 }, { 9600, DZ_LPR_B9600 }, { 19200, DZ_LPR_B19200 }, { -1, -1 } }; static void dzstart(struct tty *); static int dzparam(struct tty *, struct termios *); static unsigned dzmctl(struct dz_softc *, int, int, int); static void dzscan(void *); cdev_decl(dz); /* * The DZ series doesn't interrupt on carrier transitions, * so we have to use a timer to watch it. */ int dz_timer; /* true if timer started */ struct callout dzscan_ch; #define DZ_DZ 8 /* Unibus DZ-11 board linecount */ #define DZ_DZV 4 /* Q-bus DZV-11 or DZQ-11 */ void dzattach(struct dz_softc *sc, struct evcnt *parent_evcnt) { int n; sc->sc_rxint = sc->sc_brk = 0; sc->sc_dr.dr_tcrw = sc->sc_dr.dr_tcr; DZ_WRITE_WORD(dr_csr, DZ_CSR_MSE | DZ_CSR_RXIE | DZ_CSR_TXIE); DZ_WRITE_BYTE(dr_dtr, 0); DZ_WRITE_BYTE(dr_break, 0); /* Initialize our softc structure. Should be done in open? */ for (n = 0; n < sc->sc_type; n++) sc->sc_dz[n].dz_tty = ttymalloc(); evcnt_attach_dynamic(&sc->sc_rintrcnt, EVCNT_TYPE_INTR, parent_evcnt, sc->sc_dev.dv_xname, "rintr"); evcnt_attach_dynamic(&sc->sc_tintrcnt, EVCNT_TYPE_INTR, parent_evcnt, sc->sc_dev.dv_xname, "tintr"); /* Alas no interrupt on modem bit changes, so we manually scan */ if (dz_timer == 0) { dz_timer = 1; callout_init(&dzscan_ch); callout_reset(&dzscan_ch, hz, dzscan, NULL); } printf("\n"); return; } /* Receiver Interrupt */ void dzrint(void *arg) { struct dz_softc *sc = arg; struct tty *tp; int cc, line; unsigned c; int overrun = 0; sc->sc_rxint++; while ((c = DZ_READ_WORD(dr_rbuf)) & DZ_RBUF_DATA_VALID) { cc = c & 0xFF; line = DZ_PORT(c>>8); tp = sc->sc_dz[line].dz_tty; /* Must be caught early */ if (sc->sc_dz[line].dz_catch && (*sc->sc_dz[line].dz_catch)(sc->sc_dz[line].dz_private, cc)) continue; if (!(tp->t_state & TS_ISOPEN)) { wakeup((caddr_t)&tp->t_rawq); continue; } if ((c & DZ_RBUF_OVERRUN_ERR) && overrun == 0) { log(LOG_WARNING, "%s: silo overflow, line %d\n", sc->sc_dev.dv_xname, line); overrun = 1; } /* A BREAK key will appear as a NULL with a framing error */ if (c & DZ_RBUF_FRAMING_ERR) cc |= TTY_FE; if (c & DZ_RBUF_PARITY_ERR) cc |= TTY_PE; (*tp->t_linesw->l_rint)(cc, tp); } } /* Transmitter Interrupt */ void dzxint(void *arg) { struct dz_softc *sc = arg; struct tty *tp; struct clist *cl; int line, ch, csr; u_char tcr; /* * Switch to POLLED mode. * Some simple measurements indicated that even on * one port, by freeing the scanner in the controller * by either providing a character or turning off * the port when output is complete, the transmitter * was ready to accept more output when polled again. * With just two ports running the game "worms," * almost every interrupt serviced both transmitters! * Each UART is double buffered, so if the scanner * is quick enough and timing works out, we can even * feed the same port twice. * * Ragge 980517: * Do not need to turn off interrupts, already at interrupt level. * Remove the pdma stuff; no great need of it right now. */ while (((csr = DZ_READ_WORD(dr_csr)) & DZ_CSR_TX_READY) != 0) { line = DZ_PORT(csr>>8); tp = sc->sc_dz[line].dz_tty; cl = &tp->t_outq; tp->t_state &= ~TS_BUSY; /* Just send out a char if we have one */ /* As long as we can fill the chip buffer, we just loop here */ if (cl->c_cc) { tp->t_state |= TS_BUSY; ch = getc(cl); DZ_WRITE_BYTE(dr_tbuf, ch); continue; } /* Nothing to send; clear the scan bit */ /* Clear xmit scanner bit; dzstart may set it again */ tcr = DZ_READ_WORD(dr_tcrw); tcr &= 255; tcr &= ~(1 << line); DZ_WRITE_BYTE(dr_tcr, tcr); if (sc->sc_dz[line].dz_catch) continue; if (tp->t_state & TS_FLUSH) tp->t_state &= ~TS_FLUSH; else ndflush (&tp->t_outq, cl->c_cc); (*tp->t_linesw->l_start)(tp); } } int dzopen(dev_t dev, int flag, int mode, struct proc *p) { struct tty *tp; int unit, line; struct dz_softc *sc; int s, error = 0; unit = DZ_I2C(minor(dev)); line = DZ_PORT(minor(dev)); if (unit >= dz_cd.cd_ndevs || dz_cd.cd_devs[unit] == NULL) return (ENXIO); sc = dz_cd.cd_devs[unit]; if (line >= sc->sc_type) return ENXIO; /* if some other device is using the line, it's busy */ if (sc->sc_dz[line].dz_catch) return EBUSY; tp = sc->sc_dz[line].dz_tty; if (tp == NULL) return (ENODEV); tp->t_oproc = dzstart; tp->t_param = dzparam; tp->t_dev = dev; if ((tp->t_state & TS_ISOPEN) == 0) { ttychars(tp); if (tp->t_ispeed == 0) { tp->t_iflag = TTYDEF_IFLAG; tp->t_oflag = TTYDEF_OFLAG; tp->t_cflag = TTYDEF_CFLAG; tp->t_lflag = TTYDEF_LFLAG; tp->t_ispeed = tp->t_ospeed = TTYDEF_SPEED; } (void) dzparam(tp, &tp->t_termios); ttsetwater(tp); } else if ((tp->t_state & TS_XCLUDE) && p->p_ucred->cr_uid != 0) return (EBUSY); /* Use DMBIS and *not* DMSET or else we clobber incoming bits */ if (dzmctl(sc, line, DML_DTR, DMBIS) & DML_DCD) tp->t_state |= TS_CARR_ON; s = spltty(); while (!(flag & O_NONBLOCK) && !(tp->t_cflag & CLOCAL) && !(tp->t_state & TS_CARR_ON)) { tp->t_wopen++; error = ttysleep(tp, (caddr_t)&tp->t_rawq, TTIPRI | PCATCH, ttopen, 0); tp->t_wopen--; if (error) break; } (void) splx(s); if (error) return (error); return ((*tp->t_linesw->l_open)(dev, tp)); } /*ARGSUSED*/ int dzclose(dev_t dev, int flag, int mode, struct proc *p) { struct dz_softc *sc; struct tty *tp; int unit, line; unit = DZ_I2C(minor(dev)); line = DZ_PORT(minor(dev)); sc = dz_cd.cd_devs[unit]; tp = sc->sc_dz[line].dz_tty; (*tp->t_linesw->l_close)(tp, flag); /* Make sure a BREAK state is not left enabled. */ (void) dzmctl(sc, line, DML_BRK, DMBIC); /* Do a hangup if so required. */ if ((tp->t_cflag & HUPCL) || tp->t_wopen || !(tp->t_state & TS_ISOPEN)) (void) dzmctl(sc, line, 0, DMSET); return (ttyclose(tp)); } int dzread(dev_t dev, struct uio *uio, int flag) { struct tty *tp; struct dz_softc *sc; sc = dz_cd.cd_devs[DZ_I2C(minor(dev))]; tp = sc->sc_dz[DZ_PORT(minor(dev))].dz_tty; return ((*tp->t_linesw->l_read)(tp, uio, flag)); } int dzwrite(dev_t dev, struct uio *uio, int flag) { struct tty *tp; struct dz_softc *sc; sc = dz_cd.cd_devs[DZ_I2C(minor(dev))]; tp = sc->sc_dz[DZ_PORT(minor(dev))].dz_tty; return ((*tp->t_linesw->l_write)(tp, uio, flag)); } int dzpoll(dev, events, p) dev_t dev; int events; struct proc *p; { struct tty *tp; struct dz_softc *sc; sc = dz_cd.cd_devs[DZ_I2C(minor(dev))]; tp = sc->sc_dz[DZ_PORT(minor(dev))].dz_tty; return ((*tp->t_linesw->l_poll)(tp, events, p)); } /*ARGSUSED*/ int dzioctl(dev_t dev, u_long cmd, caddr_t data, int flag, struct proc *p) { struct dz_softc *sc; struct tty *tp; int unit, line; int error; unit = DZ_I2C(minor(dev)); line = DZ_PORT(minor(dev)); sc = dz_cd.cd_devs[unit]; tp = sc->sc_dz[line].dz_tty; error = (*tp->t_linesw->l_ioctl)(tp, cmd, data, flag, p); if (error >= 0) return (error); error = ttioctl(tp, cmd, data, flag, p); if (error >= 0) return (error); switch (cmd) { case TIOCSBRK: (void) dzmctl(sc, line, DML_BRK, DMBIS); break; case TIOCCBRK: (void) dzmctl(sc, line, DML_BRK, DMBIC); break; case TIOCSDTR: (void) dzmctl(sc, line, DML_DTR, DMBIS); break; case TIOCCDTR: (void) dzmctl(sc, line, DML_DTR, DMBIC); break; case TIOCMSET: (void) dzmctl(sc, line, *(int *)data, DMSET); break; case TIOCMBIS: (void) dzmctl(sc, line, *(int *)data, DMBIS); break; case TIOCMBIC: (void) dzmctl(sc, line, *(int *)data, DMBIC); break; case TIOCMGET: *(int *)data = (dzmctl(sc, line, 0, DMGET) & ~DML_BRK); break; default: return (EPASSTHROUGH); } return (0); } struct tty * dztty(dev_t dev) { struct dz_softc *sc = dz_cd.cd_devs[DZ_I2C(minor(dev))]; struct tty *tp = sc->sc_dz[DZ_PORT(minor(dev))].dz_tty; return (tp); } /*ARGSUSED*/ void dzstop(struct tty *tp, int flag) { if (tp->t_state & TS_BUSY) if (!(tp->t_state & TS_TTSTOP)) tp->t_state |= TS_FLUSH; } void dzstart(struct tty *tp) { struct dz_softc *sc; struct clist *cl; int unit, line, s; char state; unit = DZ_I2C(minor(tp->t_dev)); line = DZ_PORT(minor(tp->t_dev)); sc = dz_cd.cd_devs[unit]; s = spltty(); if (tp->t_state & (TS_TIMEOUT|TS_BUSY|TS_TTSTOP)) return; cl = &tp->t_outq; if (cl->c_cc <= tp->t_lowat) { if (tp->t_state & TS_ASLEEP) { tp->t_state &= ~TS_ASLEEP; wakeup((caddr_t)cl); } selwakeup(&tp->t_wsel); } if (cl->c_cc == 0) return; tp->t_state |= TS_BUSY; state = DZ_READ_WORD(dr_tcrw) & 255; if ((state & (1 << line)) == 0) { DZ_WRITE_BYTE(dr_tcr, state | (1 << line)); } dzxint(sc); splx(s); } static int dzparam(struct tty *tp, struct termios *t) { struct dz_softc *sc; int cflag = t->c_cflag; int unit, line; int ispeed = ttspeedtab(t->c_ispeed, dzspeedtab); int ospeed = ttspeedtab(t->c_ospeed, dzspeedtab); unsigned lpr; int s; unit = DZ_I2C(minor(tp->t_dev)); line = DZ_PORT(minor(tp->t_dev)); sc = dz_cd.cd_devs[unit]; /* check requested parameters */ if (ospeed < 0 || ispeed < 0 || ispeed != ospeed) return (EINVAL); tp->t_ispeed = t->c_ispeed; tp->t_ospeed = t->c_ospeed; tp->t_cflag = cflag; if (ospeed == 0) { (void) dzmctl(sc, line, 0, DMSET); /* hang up line */ return (0); } s = spltty(); lpr = DZ_LPR_RX_ENABLE | ((ispeed&0xF)<<8) | line; switch (cflag & CSIZE) { case CS5: lpr |= DZ_LPR_5_BIT_CHAR; break; case CS6: lpr |= DZ_LPR_6_BIT_CHAR; break; case CS7: lpr |= DZ_LPR_7_BIT_CHAR; break; default: lpr |= DZ_LPR_8_BIT_CHAR; break; } if (cflag & PARENB) lpr |= DZ_LPR_PARENB; if (cflag & PARODD) lpr |= DZ_LPR_OPAR; if (cflag & CSTOPB) lpr |= DZ_LPR_2_STOP; DZ_WRITE_WORD(dr_lpr, lpr); (void) splx(s); return (0); } static unsigned dzmctl(struct dz_softc *sc, int line, int bits, int how) { unsigned status; unsigned mbits; unsigned bit; int s; s = spltty(); mbits = 0; bit = (1 << line); /* external signals as seen from the port */ status = DZ_READ_BYTE(dr_dcd) | sc->sc_dsr; if (status & bit) mbits |= DML_DCD; status = DZ_READ_BYTE(dr_ring); if (status & bit) mbits |= DML_RI; /* internal signals/state delivered to port */ status = DZ_READ_BYTE(dr_dtr); if (status & bit) mbits |= DML_DTR; if (sc->sc_brk & bit) mbits |= DML_BRK; switch (how) { case DMSET: mbits = bits; break; case DMBIS: mbits |= bits; break; case DMBIC: mbits &= ~bits; break; case DMGET: (void) splx(s); return (mbits); } if (mbits & DML_DTR) { DZ_WRITE_BYTE(dr_dtr, DZ_READ_BYTE(dr_dtr) | bit); } else { DZ_WRITE_BYTE(dr_dtr, DZ_READ_BYTE(dr_dtr) & ~bit); } if (mbits & DML_BRK) { sc->sc_brk |= bit; DZ_WRITE_BYTE(dr_break, sc->sc_brk); } else { sc->sc_brk &= ~bit; DZ_WRITE_BYTE(dr_break, sc->sc_brk); } (void) splx(s); return (mbits); } /* * This is called by timeout() periodically. * Check to see if modem status bits have changed. */ static void dzscan(void *arg) { struct dz_softc *sc; struct tty *tp; int n, bit, port; unsigned csr; int s; s = spltty(); for (n = 0; n < dz_cd.cd_ndevs; n++) { if (dz_cd.cd_devs[n] == NULL) continue; sc = dz_cd.cd_devs[n]; for (port = 0; port < sc->sc_type; port++) { tp = sc->sc_dz[port].dz_tty; bit = (1 << port); if ((DZ_READ_BYTE(dr_dcd) | sc->sc_dsr) & bit) { if (!(tp->t_state & TS_CARR_ON)) (*tp->t_linesw->l_modem) (tp, 1); } else if ((tp->t_state & TS_CARR_ON) && (*tp->t_linesw->l_modem)(tp, 0) == 0) { DZ_WRITE_BYTE(dr_tcr, (DZ_READ_WORD(dr_tcrw) & 255) & ~bit); } } /* * If the RX interrupt rate is this high, switch * the controller to Silo Alarm - which means don't * interrupt until the RX silo has 16 characters in * it (the silo is 64 characters in all). * Avoid oscillating SA on and off by not turning * if off unless the rate is appropriately low. */ csr = DZ_READ_WORD(dr_csr); if (sc->sc_rxint > (16*10)) { if ((csr & DZ_CSR_SAE) == 0) DZ_WRITE_WORD(dr_csr, csr | DZ_CSR_SAE); } else if ((csr & DZ_CSR_SAE) != 0) if (sc->sc_rxint < 10) DZ_WRITE_WORD(dr_csr, csr & ~(DZ_CSR_SAE)); sc->sc_rxint = 0; } (void) splx(s); callout_reset(&dzscan_ch, hz, dzscan, NULL); return; } /* * Called after an ubareset. The DZ card is reset, but the only thing * that must be done is to start the receiver and transmitter again. * No DMA setup to care about. */ void dzreset(struct device *dev) { struct dz_softc *sc = (void *)dev; struct tty *tp; int i; for (i = 0; i < sc->sc_type; i++) { tp = sc->sc_dz[i].dz_tty; if (((tp->t_state & TS_ISOPEN) == 0) || (tp->t_wopen == 0)) continue; dzparam(tp, &tp->t_termios); dzmctl(sc, i, DML_DTR, DMSET); tp->t_state &= ~TS_BUSY; dzstart(tp); /* Kick off transmitter again */ } }