/* $NetBSD: localtime.c,v 1.105 2016/11/04 19:41:53 christos Exp $ */ /* ** This file is in the public domain, so clarified as of ** 1996-06-05 by Arthur David Olson. */ #include #if defined(LIBC_SCCS) && !defined(lint) #if 0 static char elsieid[] = "@(#)localtime.c 8.17"; #else __RCSID("$NetBSD: localtime.c,v 1.105 2016/11/04 19:41:53 christos Exp $"); #endif #endif /* LIBC_SCCS and not lint */ /* ** Leap second handling from Bradley White. ** POSIX-style TZ environment variable handling from Guy Harris. */ /*LINTLIBRARY*/ #include "namespace.h" #include #define LOCALTIME_IMPLEMENTATION #include "private.h" #include "tzfile.h" #include "fcntl.h" #include "reentrant.h" #if NETBSD_INSPIRED # define NETBSD_INSPIRED_EXTERN #else # define NETBSD_INSPIRED_EXTERN static #endif #if defined(__weak_alias) __weak_alias(daylight,_daylight) __weak_alias(tzname,_tzname) #endif #ifndef TZ_ABBR_MAX_LEN #define TZ_ABBR_MAX_LEN 16 #endif /* !defined TZ_ABBR_MAX_LEN */ #ifndef TZ_ABBR_CHAR_SET #define TZ_ABBR_CHAR_SET \ "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789 :+-._" #endif /* !defined TZ_ABBR_CHAR_SET */ #ifndef TZ_ABBR_ERR_CHAR #define TZ_ABBR_ERR_CHAR '_' #endif /* !defined TZ_ABBR_ERR_CHAR */ /* ** SunOS 4.1.1 headers lack O_BINARY. */ #ifdef O_BINARY #define OPEN_MODE (O_RDONLY | O_BINARY | O_CLOEXEC) #endif /* defined O_BINARY */ #ifndef O_BINARY #define OPEN_MODE (O_RDONLY | O_CLOEXEC) #endif /* !defined O_BINARY */ #ifndef WILDABBR /* ** Someone might make incorrect use of a time zone abbreviation: ** 1. They might reference tzname[0] before calling tzset (explicitly ** or implicitly). ** 2. They might reference tzname[1] before calling tzset (explicitly ** or implicitly). ** 3. They might reference tzname[1] after setting to a time zone ** in which Daylight Saving Time is never observed. ** 4. They might reference tzname[0] after setting to a time zone ** in which Standard Time is never observed. ** 5. They might reference tm.TM_ZONE after calling offtime. ** What's best to do in the above cases is open to debate; ** for now, we just set things up so that in any of the five cases ** WILDABBR is used. Another possibility: initialize tzname[0] to the ** string "tzname[0] used before set", and similarly for the other cases. ** And another: initialize tzname[0] to "ERA", with an explanation in the ** manual page of what this "time zone abbreviation" means (doing this so ** that tzname[0] has the "normal" length of three characters). */ #define WILDABBR " " #endif /* !defined WILDABBR */ static const char wildabbr[] = WILDABBR; static const char gmt[] = "GMT"; /* ** The DST rules to use if TZ has no rules and we can't load TZDEFRULES. ** We default to US rules as of 1999-08-17. ** POSIX 1003.1 section 8.1.1 says that the default DST rules are ** implementation dependent; for historical reasons, US rules are a ** common default. */ #ifndef TZDEFRULESTRING #define TZDEFRULESTRING ",M4.1.0,M10.5.0" #endif /* !defined TZDEFDST */ struct ttinfo { /* time type information */ int_fast32_t tt_gmtoff; /* UT offset in seconds */ bool tt_isdst; /* used to set tm_isdst */ int tt_abbrind; /* abbreviation list index */ bool tt_ttisstd; /* transition is std time */ bool tt_ttisgmt; /* transition is UT */ }; struct lsinfo { /* leap second information */ time_t ls_trans; /* transition time */ int_fast64_t ls_corr; /* correction to apply */ }; #define SMALLEST(a, b) (((a) < (b)) ? (a) : (b)) #define BIGGEST(a, b) (((a) > (b)) ? (a) : (b)) #ifdef TZNAME_MAX #define MY_TZNAME_MAX TZNAME_MAX #endif /* defined TZNAME_MAX */ #ifndef TZNAME_MAX #define MY_TZNAME_MAX 255 #endif /* !defined TZNAME_MAX */ #define state __state struct state { int leapcnt; int timecnt; int typecnt; int charcnt; bool goback; bool goahead; time_t ats[TZ_MAX_TIMES]; unsigned char types[TZ_MAX_TIMES]; struct ttinfo ttis[TZ_MAX_TYPES]; char chars[/*CONSTCOND*/BIGGEST(BIGGEST(TZ_MAX_CHARS + 1, sizeof gmt), (2 * (MY_TZNAME_MAX + 1)))]; struct lsinfo lsis[TZ_MAX_LEAPS]; int defaulttype; /* for early times or if no transitions */ }; enum r_type { JULIAN_DAY, /* Jn = Julian day */ DAY_OF_YEAR, /* n = day of year */ MONTH_NTH_DAY_OF_WEEK /* Mm.n.d = month, week, day of week */ }; struct rule { enum r_type r_type; /* type of rule */ int r_day; /* day number of rule */ int r_week; /* week number of rule */ int r_mon; /* month number of rule */ int_fast32_t r_time; /* transition time of rule */ }; static struct tm *gmtsub(struct state const *, time_t const *, int_fast32_t, struct tm *); static bool increment_overflow(int *, int); static bool increment_overflow_time(time_t *, int_fast32_t); static bool normalize_overflow32(int_fast32_t *, int *, int); static struct tm *timesub(time_t const *, int_fast32_t, struct state const *, struct tm *); static bool typesequiv(struct state const *, int, int); static bool tzparse(char const *, struct state *, bool); static timezone_t lclptr; static timezone_t gmtptr; #ifndef TZ_STRLEN_MAX #define TZ_STRLEN_MAX 255 #endif /* !defined TZ_STRLEN_MAX */ static char lcl_TZname[TZ_STRLEN_MAX + 1]; static int lcl_is_set; #ifdef _REENTRANT static rwlock_t lcl_lock = RWLOCK_INITIALIZER; #endif /* ** Section 4.12.3 of X3.159-1989 requires that ** Except for the strftime function, these functions [asctime, ** ctime, gmtime, localtime] return values in one of two static ** objects: a broken-down time structure and an array of char. ** Thanks to Paul Eggert for noting this. */ static struct tm tm; #if !HAVE_POSIX_DECLS || defined(__NetBSD__) # if !defined(__LIBC12_SOURCE__) __aconst char * tzname[2] = { (__aconst char *)__UNCONST(wildabbr), (__aconst char *)__UNCONST(wildabbr) }; # else extern __aconst char * tzname[2]; # endif /* __LIBC12_SOURCE__ */ # ifdef USG_COMPAT # if !defined(__LIBC12_SOURCE__) long timezone = 0; int daylight = 0; #else extern int daylight; extern long timezone __RENAME(__timezone13); # endif /* __LIBC12_SOURCE__ */ # endif /* defined USG_COMPAT */ #endif /* !HAVE_POSIX_DECLS */ #ifdef ALTZONE long altzone = 0; #endif /* defined ALTZONE */ /* Initialize *S to a value based on GMTOFF, ISDST, and ABBRIND. */ static void init_ttinfo(struct ttinfo *s, int_fast32_t gmtoff, bool isdst, int abbrind) { s->tt_gmtoff = gmtoff; s->tt_isdst = isdst; s->tt_abbrind = abbrind; s->tt_ttisstd = false; s->tt_ttisgmt = false; } static int_fast32_t detzcode(const char *const codep) { int_fast32_t result; int i; int_fast32_t one = 1; int_fast32_t halfmaxval = one << (32 - 2); int_fast32_t maxval = halfmaxval - 1 + halfmaxval; int_fast32_t minval = -1 - maxval; result = codep[0] & 0x7f; for (i = 1; i < 4; ++i) result = (result << 8) | (codep[i] & 0xff); if (codep[0] & 0x80) { /* Do two's-complement negation even on non-two's-complement machines. If the result would be minval - 1, return minval. */ result -= !TWOS_COMPLEMENT(int_fast32_t) && result != 0; result += minval; } return result; } static int_fast64_t detzcode64(const char *const codep) { int_fast64_t result; int i; int_fast64_t one = 1; int_fast64_t halfmaxval = one << (64 - 2); int_fast64_t maxval = halfmaxval - 1 + halfmaxval; int_fast64_t minval = -TWOS_COMPLEMENT(int_fast64_t) - maxval; result = codep[0] & 0x7f; for (i = 1; i < 8; ++i) result = (result << 8) | (codep[i] & 0xff); if (codep[0] & 0x80) { /* Do two's-complement negation even on non-two's-complement machines. If the result would be minval - 1, return minval. */ result -= !TWOS_COMPLEMENT(int_fast64_t) && result != 0; result += minval; } return result; } const char * tzgetname(const timezone_t sp, int isdst) { int i; for (i = 0; i < sp->typecnt; ++i) { const struct ttinfo *const ttisp = &sp->ttis[sp->types[i]]; if (ttisp->tt_isdst == isdst) return &sp->chars[ttisp->tt_abbrind]; } errno = ESRCH; return NULL; } long tzgetgmtoff(const timezone_t sp, int isdst) { int i; long l = -1; for (i = 0; i < sp->typecnt; ++i) { const struct ttinfo *const ttisp = &sp->ttis[sp->types[i]]; if (ttisp->tt_isdst == isdst) { l = ttisp->tt_gmtoff; if (sp->types[i] != 0) return l; } } if (l == -1) errno = ESRCH; return l; } static void scrub_abbrs(struct state *sp) { int i; /* ** First, replace bogus characters. */ for (i = 0; i < sp->charcnt; ++i) if (strchr(TZ_ABBR_CHAR_SET, sp->chars[i]) == NULL) sp->chars[i] = TZ_ABBR_ERR_CHAR; /* ** Second, truncate long abbreviations. */ for (i = 0; i < sp->typecnt; ++i) { const struct ttinfo * const ttisp = &sp->ttis[i]; char * cp = &sp->chars[ttisp->tt_abbrind]; if (strlen(cp) > TZ_ABBR_MAX_LEN && strcmp(cp, GRANDPARENTED) != 0) *(cp + TZ_ABBR_MAX_LEN) = '\0'; } } static void update_tzname_etc(const struct state *sp, const struct ttinfo *ttisp) { tzname[ttisp->tt_isdst] = __UNCONST(&sp->chars[ttisp->tt_abbrind]); #ifdef USG_COMPAT if (!ttisp->tt_isdst) timezone = - ttisp->tt_gmtoff; #endif #ifdef ALTZONE if (ttisp->tt_isdst) altzone = - ttisp->tt_gmtoff; #endif /* defined ALTZONE */ } static void settzname(void) { timezone_t const sp = lclptr; int i; tzname[0] = (__aconst char *)__UNCONST(wildabbr); tzname[1] = (__aconst char *)__UNCONST(wildabbr); #ifdef USG_COMPAT daylight = 0; timezone = 0; #endif /* defined USG_COMPAT */ #ifdef ALTZONE altzone = 0; #endif /* defined ALTZONE */ if (sp == NULL) { tzname[0] = tzname[1] = (__aconst char *)__UNCONST(gmt); return; } /* ** And to get the latest zone names into tzname. . . */ for (i = 0; i < sp->typecnt; ++i) update_tzname_etc(sp, &sp->ttis[i]); for (i = 0; i < sp->timecnt; ++i) { const struct ttinfo * const ttisp = &sp->ttis[sp->types[i]]; update_tzname_etc(sp, ttisp); #ifdef USG_COMPAT if (ttisp->tt_isdst) daylight = 1; #endif /* defined USG_COMPAT */ } } static bool differ_by_repeat(const time_t t1, const time_t t0) { if (TYPE_BIT(time_t) - TYPE_SIGNED(time_t) < SECSPERREPEAT_BITS) return 0; return (int_fast64_t)t1 - (int_fast64_t)t0 == SECSPERREPEAT; } union input_buffer { /* The first part of the buffer, interpreted as a header. */ struct tzhead tzhead; /* The entire buffer. */ char buf[2 * sizeof(struct tzhead) + 2 * sizeof (struct state) + 4 * TZ_MAX_TIMES]; }; /* Local storage needed for 'tzloadbody'. */ union local_storage { /* The file name to be opened. */ char fullname[FILENAME_MAX + 1]; /* The results of analyzing the file's contents after it is opened. */ struct { /* The input buffer. */ union input_buffer u; /* A temporary state used for parsing a TZ string in the file. */ struct state st; } u; }; /* Load tz data from the file named NAME into *SP. Read extended format if DOEXTEND. Use *LSP for temporary storage. Return 0 on success, an errno value on failure. */ static int tzloadbody(char const *name, struct state *sp, bool doextend, union local_storage *lsp) { int i; int fid; int stored; ssize_t nread; bool doaccess; char *fullname = lsp->fullname; union input_buffer *up = &lsp->u.u; size_t tzheadsize = sizeof(struct tzhead); sp->goback = sp->goahead = false; if (! name) { name = TZDEFAULT; if (! name) return EINVAL; } if (name[0] == ':') ++name; doaccess = name[0] == '/'; if (!doaccess) { char const *p = TZDIR; if (! p) return EINVAL; if (sizeof lsp->fullname - 1 <= strlen(p) + strlen(name)) return ENAMETOOLONG; strcpy(fullname, p); strcat(fullname, "/"); strcat(fullname, name); /* Set doaccess if '.' (as in "../") shows up in name. */ if (strchr(name, '.')) doaccess = true; name = fullname; } if (doaccess && access(name, R_OK) != 0) return errno; fid = open(name, OPEN_MODE); if (fid < 0) return errno; nread = read(fid, up->buf, sizeof up->buf); if (nread < (ssize_t)tzheadsize) { int err = nread < 0 ? errno : EINVAL; close(fid); return err; } if (close(fid) < 0) return errno; for (stored = 4; stored <= 8; stored *= 2) { int_fast32_t ttisstdcnt = detzcode(up->tzhead.tzh_ttisstdcnt); int_fast32_t ttisgmtcnt = detzcode(up->tzhead.tzh_ttisgmtcnt); int_fast32_t leapcnt = detzcode(up->tzhead.tzh_leapcnt); int_fast32_t timecnt = detzcode(up->tzhead.tzh_timecnt); int_fast32_t typecnt = detzcode(up->tzhead.tzh_typecnt); int_fast32_t charcnt = detzcode(up->tzhead.tzh_charcnt); char const *p = up->buf + tzheadsize; if (! (0 <= leapcnt && leapcnt < TZ_MAX_LEAPS && 0 < typecnt && typecnt < TZ_MAX_TYPES && 0 <= timecnt && timecnt < TZ_MAX_TIMES && 0 <= charcnt && charcnt < TZ_MAX_CHARS && (ttisstdcnt == typecnt || ttisstdcnt == 0) && (ttisgmtcnt == typecnt || ttisgmtcnt == 0))) return EINVAL; if ((size_t)nread < (tzheadsize /* struct tzhead */ + timecnt * stored /* ats */ + timecnt /* types */ + typecnt * 6 /* ttinfos */ + charcnt /* chars */ + leapcnt * (stored + 4) /* lsinfos */ + ttisstdcnt /* ttisstds */ + ttisgmtcnt)) /* ttisgmts */ return EINVAL; sp->leapcnt = leapcnt; sp->timecnt = timecnt; sp->typecnt = typecnt; sp->charcnt = charcnt; /* Read transitions, discarding those out of time_t range. But pretend the last transition before time_t_min occurred at time_t_min. */ timecnt = 0; for (i = 0; i < sp->timecnt; ++i) { int_fast64_t at = stored == 4 ? detzcode(p) : detzcode64(p); sp->types[i] = at <= time_t_max; if (sp->types[i]) { time_t attime = ((TYPE_SIGNED(time_t) ? at < time_t_min : at < 0) ? time_t_min : (time_t)at); if (timecnt && attime <= sp->ats[timecnt - 1]) { if (attime < sp->ats[timecnt - 1]) return EINVAL; sp->types[i - 1] = 0; timecnt--; } sp->ats[timecnt++] = attime; } p += stored; } timecnt = 0; for (i = 0; i < sp->timecnt; ++i) { unsigned char typ = *p++; if (sp->typecnt <= typ) return EINVAL; if (sp->types[i]) sp->types[timecnt++] = typ; } sp->timecnt = timecnt; for (i = 0; i < sp->typecnt; ++i) { struct ttinfo * ttisp; unsigned char isdst, abbrind; ttisp = &sp->ttis[i]; ttisp->tt_gmtoff = detzcode(p); p += 4; isdst = *p++; if (! (isdst < 2)) return EINVAL; ttisp->tt_isdst = isdst; abbrind = *p++; if (! (abbrind < sp->charcnt)) return EINVAL; ttisp->tt_abbrind = abbrind; } for (i = 0; i < sp->charcnt; ++i) sp->chars[i] = *p++; sp->chars[i] = '\0'; /* ensure '\0' at end */ /* Read leap seconds, discarding those out of time_t range. */ leapcnt = 0; for (i = 0; i < sp->leapcnt; ++i) { int_fast64_t tr = stored == 4 ? detzcode(p) : detzcode64(p); int_fast32_t corr = detzcode(p + stored); p += stored + 4; if (tr <= time_t_max) { time_t trans = ((TYPE_SIGNED(time_t) ? tr < time_t_min : tr < 0) ? time_t_min : (time_t)tr); if (leapcnt && trans <= sp->lsis[leapcnt - 1].ls_trans) { if (trans < sp->lsis[leapcnt - 1].ls_trans) return EINVAL; leapcnt--; } sp->lsis[leapcnt].ls_trans = trans; sp->lsis[leapcnt].ls_corr = corr; leapcnt++; } } sp->leapcnt = leapcnt; for (i = 0; i < sp->typecnt; ++i) { struct ttinfo * ttisp; ttisp = &sp->ttis[i]; if (ttisstdcnt == 0) ttisp->tt_ttisstd = false; else { if (*p != true && *p != false) return EINVAL; ttisp->tt_ttisstd = *p++; } } for (i = 0; i < sp->typecnt; ++i) { struct ttinfo * ttisp; ttisp = &sp->ttis[i]; if (ttisgmtcnt == 0) ttisp->tt_ttisgmt = false; else { if (*p != true && *p != false) return EINVAL; ttisp->tt_ttisgmt = *p++; } } /* ** If this is an old file, we're done. */ if (up->tzhead.tzh_version[0] == '\0') break; nread -= p - up->buf; memmove(up->buf, p, (size_t)nread); } if (doextend && nread > 2 && up->buf[0] == '\n' && up->buf[nread - 1] == '\n' && sp->typecnt + 2 <= TZ_MAX_TYPES) { struct state *ts = &lsp->u.st; up->buf[nread - 1] = '\0'; if (tzparse(&up->buf[1], ts, false) && ts->typecnt == 2) { /* Attempt to reuse existing abbreviations. Without this, America/Anchorage would stop working after 2037 when TZ_MAX_CHARS is 50, as sp->charcnt equals 42 (for LMT CAT CAWT CAPT AHST AHDT YST AKDT AKST) and ts->charcnt equals 10 (for AKST AKDT). Reusing means sp->charcnt can stay 42 in this example. */ int gotabbr = 0; int charcnt = sp->charcnt; for (i = 0; i < 2; i++) { char *tsabbr = ts->chars + ts->ttis[i].tt_abbrind; int j; for (j = 0; j < charcnt; j++) if (strcmp(sp->chars + j, tsabbr) == 0) { ts->ttis[i].tt_abbrind = j; gotabbr++; break; } if (! (j < charcnt)) { size_t tsabbrlen = strlen(tsabbr); if (j + tsabbrlen < TZ_MAX_CHARS) { strcpy(sp->chars + j, tsabbr); charcnt = (int_fast32_t)(j + tsabbrlen + 1); ts->ttis[i].tt_abbrind = j; gotabbr++; } } } if (gotabbr == 2) { sp->charcnt = charcnt; for (i = 0; i < ts->timecnt; i++) if (sp->ats[sp->timecnt - 1] < ts->ats[i]) break; while (i < ts->timecnt && sp->timecnt < TZ_MAX_TIMES) { sp->ats[sp->timecnt] = ts->ats[i]; sp->types[sp->timecnt] = (sp->typecnt + ts->types[i]); sp->timecnt++; i++; } sp->ttis[sp->typecnt++] = ts->ttis[0]; sp->ttis[sp->typecnt++] = ts->ttis[1]; } } } if (sp->timecnt > 1) { for (i = 1; i < sp->timecnt; ++i) if (typesequiv(sp, sp->types[i], sp->types[0]) && differ_by_repeat(sp->ats[i], sp->ats[0])) { sp->goback = true; break; } for (i = sp->timecnt - 2; i >= 0; --i) if (typesequiv(sp, sp->types[sp->timecnt - 1], sp->types[i]) && differ_by_repeat(sp->ats[sp->timecnt - 1], sp->ats[i])) { sp->goahead = true; break; } } /* ** If type 0 is is unused in transitions, ** it's the type to use for early times. */ for (i = 0; i < sp->timecnt; ++i) if (sp->types[i] == 0) break; i = i < sp->timecnt ? -1 : 0; /* ** Absent the above, ** if there are transition times ** and the first transition is to a daylight time ** find the standard type less than and closest to ** the type of the first transition. */ if (i < 0 && sp->timecnt > 0 && sp->ttis[sp->types[0]].tt_isdst) { i = sp->types[0]; while (--i >= 0) if (!sp->ttis[i].tt_isdst) break; } /* ** If no result yet, find the first standard type. ** If there is none, punt to type zero. */ if (i < 0) { i = 0; while (sp->ttis[i].tt_isdst) if (++i >= sp->typecnt) { i = 0; break; } } sp->defaulttype = i; return 0; } /* Load tz data from the file named NAME into *SP. Read extended format if DOEXTEND. Return 0 on success, an errno value on failure. */ static int tzload(char const *name, struct state *sp, bool doextend) { union local_storage *lsp = malloc(sizeof *lsp); if (!lsp) return errno; else { int err = tzloadbody(name, sp, doextend, lsp); free(lsp); return err; } } static bool typesequiv(const struct state *sp, int a, int b) { bool result; if (sp == NULL || a < 0 || a >= sp->typecnt || b < 0 || b >= sp->typecnt) result = false; else { const struct ttinfo * ap = &sp->ttis[a]; const struct ttinfo * bp = &sp->ttis[b]; result = ap->tt_gmtoff == bp->tt_gmtoff && ap->tt_isdst == bp->tt_isdst && ap->tt_ttisstd == bp->tt_ttisstd && ap->tt_ttisgmt == bp->tt_ttisgmt && strcmp(&sp->chars[ap->tt_abbrind], &sp->chars[bp->tt_abbrind]) == 0; } return result; } static const int mon_lengths[2][MONSPERYEAR] = { { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }, { 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 } }; static const int year_lengths[2] = { DAYSPERNYEAR, DAYSPERLYEAR }; /* ** Given a pointer into a time zone string, scan until a character that is not ** a valid character in a zone name is found. Return a pointer to that ** character. */ static const char * ATTRIBUTE_PURE getzname(const char *strp) { char c; while ((c = *strp) != '\0' && !is_digit(c) && c != ',' && c != '-' && c != '+') ++strp; return strp; } /* ** Given a pointer into an extended time zone string, scan until the ending ** delimiter of the zone name is located. Return a pointer to the delimiter. ** ** As with getzname above, the legal character set is actually quite ** restricted, with other characters producing undefined results. ** We don't do any checking here; checking is done later in common-case code. */ static const char * ATTRIBUTE_PURE getqzname(const char *strp, const int delim) { int c; while ((c = *strp) != '\0' && c != delim) ++strp; return strp; } /* ** Given a pointer into a time zone string, extract a number from that string. ** Check that the number is within a specified range; if it is not, return ** NULL. ** Otherwise, return a pointer to the first character not part of the number. */ static const char * getnum(const char *strp, int *const nump, const int min, const int max) { char c; int num; if (strp == NULL || !is_digit(c = *strp)) { errno = EINVAL; return NULL; } num = 0; do { num = num * 10 + (c - '0'); if (num > max) { errno = EOVERFLOW; return NULL; /* illegal value */ } c = *++strp; } while (is_digit(c)); if (num < min) { errno = EINVAL; return NULL; /* illegal value */ } *nump = num; return strp; } /* ** Given a pointer into a time zone string, extract a number of seconds, ** in hh[:mm[:ss]] form, from the string. ** If any error occurs, return NULL. ** Otherwise, return a pointer to the first character not part of the number ** of seconds. */ static const char * getsecs(const char *strp, int_fast32_t *const secsp) { int num; /* ** 'HOURSPERDAY * DAYSPERWEEK - 1' allows quasi-Posix rules like ** "M10.4.6/26", which does not conform to Posix, ** but which specifies the equivalent of ** "02:00 on the first Sunday on or after 23 Oct". */ strp = getnum(strp, &num, 0, HOURSPERDAY * DAYSPERWEEK - 1); if (strp == NULL) return NULL; *secsp = num * (int_fast32_t) SECSPERHOUR; if (*strp == ':') { ++strp; strp = getnum(strp, &num, 0, MINSPERHOUR - 1); if (strp == NULL) return NULL; *secsp += num * SECSPERMIN; if (*strp == ':') { ++strp; /* 'SECSPERMIN' allows for leap seconds. */ strp = getnum(strp, &num, 0, SECSPERMIN); if (strp == NULL) return NULL; *secsp += num; } } return strp; } /* ** Given a pointer into a time zone string, extract an offset, in ** [+-]hh[:mm[:ss]] form, from the string. ** If any error occurs, return NULL. ** Otherwise, return a pointer to the first character not part of the time. */ static const char * getoffset(const char *strp, int_fast32_t *const offsetp) { bool neg = false; if (*strp == '-') { neg = true; ++strp; } else if (*strp == '+') ++strp; strp = getsecs(strp, offsetp); if (strp == NULL) return NULL; /* illegal time */ if (neg) *offsetp = -*offsetp; return strp; } /* ** Given a pointer into a time zone string, extract a rule in the form ** date[/time]. See POSIX section 8 for the format of "date" and "time". ** If a valid rule is not found, return NULL. ** Otherwise, return a pointer to the first character not part of the rule. */ static const char * getrule(const char *strp, struct rule *const rulep) { if (*strp == 'J') { /* ** Julian day. */ rulep->r_type = JULIAN_DAY; ++strp; strp = getnum(strp, &rulep->r_day, 1, DAYSPERNYEAR); } else if (*strp == 'M') { /* ** Month, week, day. */ rulep->r_type = MONTH_NTH_DAY_OF_WEEK; ++strp; strp = getnum(strp, &rulep->r_mon, 1, MONSPERYEAR); if (strp == NULL) return NULL; if (*strp++ != '.') return NULL; strp = getnum(strp, &rulep->r_week, 1, 5); if (strp == NULL) return NULL; if (*strp++ != '.') return NULL; strp = getnum(strp, &rulep->r_day, 0, DAYSPERWEEK - 1); } else if (is_digit(*strp)) { /* ** Day of year. */ rulep->r_type = DAY_OF_YEAR; strp = getnum(strp, &rulep->r_day, 0, DAYSPERLYEAR - 1); } else return NULL; /* invalid format */ if (strp == NULL) return NULL; if (*strp == '/') { /* ** Time specified. */ ++strp; strp = getoffset(strp, &rulep->r_time); } else rulep->r_time = 2 * SECSPERHOUR; /* default = 2:00:00 */ return strp; } /* ** Given a year, a rule, and the offset from UT at the time that rule takes ** effect, calculate the year-relative time that rule takes effect. */ static int_fast32_t ATTRIBUTE_PURE transtime(const int year, const struct rule *const rulep, const int_fast32_t offset) { bool leapyear; int_fast32_t value; int i; int d, m1, yy0, yy1, yy2, dow; INITIALIZE(value); leapyear = isleap(year); switch (rulep->r_type) { case JULIAN_DAY: /* ** Jn - Julian day, 1 == January 1, 60 == March 1 even in leap ** years. ** In non-leap years, or if the day number is 59 or less, just ** add SECSPERDAY times the day number-1 to the time of ** January 1, midnight, to get the day. */ value = (rulep->r_day - 1) * SECSPERDAY; if (leapyear && rulep->r_day >= 60) value += SECSPERDAY; break; case DAY_OF_YEAR: /* ** n - day of year. ** Just add SECSPERDAY times the day number to the time of ** January 1, midnight, to get the day. */ value = rulep->r_day * SECSPERDAY; break; case MONTH_NTH_DAY_OF_WEEK: /* ** Mm.n.d - nth "dth day" of month m. */ /* ** Use Zeller's Congruence to get day-of-week of first day of ** month. */ m1 = (rulep->r_mon + 9) % 12 + 1; yy0 = (rulep->r_mon <= 2) ? (year - 1) : year; yy1 = yy0 / 100; yy2 = yy0 % 100; dow = ((26 * m1 - 2) / 10 + 1 + yy2 + yy2 / 4 + yy1 / 4 - 2 * yy1) % 7; if (dow < 0) dow += DAYSPERWEEK; /* ** "dow" is the day-of-week of the first day of the month. Get ** the day-of-month (zero-origin) of the first "dow" day of the ** month. */ d = rulep->r_day - dow; if (d < 0) d += DAYSPERWEEK; for (i = 1; i < rulep->r_week; ++i) { if (d + DAYSPERWEEK >= mon_lengths[leapyear][rulep->r_mon - 1]) break; d += DAYSPERWEEK; } /* ** "d" is the day-of-month (zero-origin) of the day we want. */ value = d * SECSPERDAY; for (i = 0; i < rulep->r_mon - 1; ++i) value += mon_lengths[leapyear][i] * SECSPERDAY; break; } /* ** "value" is the year-relative time of 00:00:00 UT on the day in ** question. To get the year-relative time of the specified local ** time on that day, add the transition time and the current offset ** from UT. */ return value + rulep->r_time + offset; } /* ** Given a POSIX section 8-style TZ string, fill in the rule tables as ** appropriate. */ static bool tzparse(const char *name, struct state *sp, bool lastditch) { const char * stdname; const char * dstname; size_t stdlen; size_t dstlen; size_t charcnt; int_fast32_t stdoffset; int_fast32_t dstoffset; char * cp; bool load_ok; dstname = NULL; /* XXX gcc */ stdname = name; if (lastditch) { stdlen = sizeof gmt - 1; name += stdlen; stdoffset = 0; } else { if (*name == '<') { name++; stdname = name; name = getqzname(name, '>'); if (*name != '>') return false; stdlen = name - stdname; name++; } else { name = getzname(name); stdlen = name - stdname; } if (!stdlen) return false; name = getoffset(name, &stdoffset); if (name == NULL) return false; } charcnt = stdlen + 1; if (sizeof sp->chars < charcnt) return false; load_ok = tzload(TZDEFRULES, sp, false) == 0; if (!load_ok) sp->leapcnt = 0; /* so, we're off a little */ if (*name != '\0') { if (*name == '<') { dstname = ++name; name = getqzname(name, '>'); if (*name != '>') return false; dstlen = name - dstname; name++; } else { dstname = name; name = getzname(name); dstlen = name - dstname; /* length of DST zone name */ } if (!dstlen) return false; charcnt += dstlen + 1; if (sizeof sp->chars < charcnt) return false; if (*name != '\0' && *name != ',' && *name != ';') { name = getoffset(name, &dstoffset); if (name == NULL) return false; } else dstoffset = stdoffset - SECSPERHOUR; if (*name == '\0' && !load_ok) name = TZDEFRULESTRING; if (*name == ',' || *name == ';') { struct rule start; struct rule end; int year; int yearlim; int timecnt; time_t janfirst; ++name; if ((name = getrule(name, &start)) == NULL) return false; if (*name++ != ',') return false; if ((name = getrule(name, &end)) == NULL) return false; if (*name != '\0') return false; sp->typecnt = 2; /* standard time and DST */ /* ** Two transitions per year, from EPOCH_YEAR forward. */ init_ttinfo(&sp->ttis[0], -dstoffset, true, (int)(stdlen + 1)); init_ttinfo(&sp->ttis[1], -stdoffset, false, 0); sp->defaulttype = 0; timecnt = 0; janfirst = 0; yearlim = EPOCH_YEAR + YEARSPERREPEAT; for (year = EPOCH_YEAR; year < yearlim; year++) { int_fast32_t starttime = transtime(year, &start, stdoffset), endtime = transtime(year, &end, dstoffset); int_fast32_t yearsecs = (year_lengths[isleap(year)] * SECSPERDAY); bool reversed = endtime < starttime; if (reversed) { int_fast32_t swap = starttime; starttime = endtime; endtime = swap; } if (reversed || (starttime < endtime && (endtime - starttime < (yearsecs + (stdoffset - dstoffset))))) { if (TZ_MAX_TIMES - 2 < timecnt) break; yearlim = year + YEARSPERREPEAT + 1; sp->ats[timecnt] = janfirst; if (increment_overflow_time (&sp->ats[timecnt], starttime)) break; sp->types[timecnt++] = reversed; sp->ats[timecnt] = janfirst; if (increment_overflow_time (&sp->ats[timecnt], endtime)) break; sp->types[timecnt++] = !reversed; } if (increment_overflow_time(&janfirst, yearsecs)) break; } sp->timecnt = timecnt; if (!timecnt) sp->typecnt = 1; /* Perpetual DST. */ } else { int_fast32_t theirstdoffset; int_fast32_t theirdstoffset; int_fast32_t theiroffset; bool isdst; int i; int j; if (*name != '\0') return false; /* ** Initial values of theirstdoffset and theirdstoffset. */ theirstdoffset = 0; for (i = 0; i < sp->timecnt; ++i) { j = sp->types[i]; if (!sp->ttis[j].tt_isdst) { theirstdoffset = -sp->ttis[j].tt_gmtoff; break; } } theirdstoffset = 0; for (i = 0; i < sp->timecnt; ++i) { j = sp->types[i]; if (sp->ttis[j].tt_isdst) { theirdstoffset = -sp->ttis[j].tt_gmtoff; break; } } /* ** Initially we're assumed to be in standard time. */ isdst = false; theiroffset = theirstdoffset; /* ** Now juggle transition times and types ** tracking offsets as you do. */ for (i = 0; i < sp->timecnt; ++i) { j = sp->types[i]; sp->types[i] = sp->ttis[j].tt_isdst; if (sp->ttis[j].tt_ttisgmt) { /* No adjustment to transition time */ } else { /* ** If summer time is in effect, and the ** transition time was not specified as ** standard time, add the summer time ** offset to the transition time; ** otherwise, add the standard time ** offset to the transition time. */ /* ** Transitions from DST to DDST ** will effectively disappear since ** POSIX provides for only one DST ** offset. */ if (isdst && !sp->ttis[j].tt_ttisstd) { sp->ats[i] += (time_t) (dstoffset - theirdstoffset); } else { sp->ats[i] += (time_t) (stdoffset - theirstdoffset); } } theiroffset = -sp->ttis[j].tt_gmtoff; if (sp->ttis[j].tt_isdst) theirstdoffset = theiroffset; else theirdstoffset = theiroffset; } /* ** Finally, fill in ttis. */ init_ttinfo(&sp->ttis[0], -stdoffset, false, 0); init_ttinfo(&sp->ttis[1], -dstoffset, true, (int)(stdlen + 1)); sp->typecnt = 2; sp->defaulttype = 0; } } else { dstlen = 0; sp->typecnt = 1; /* only standard time */ sp->timecnt = 0; init_ttinfo(&sp->ttis[0], -stdoffset, false, 0); init_ttinfo(&sp->ttis[1], 0, false, 0); sp->defaulttype = 0; } sp->charcnt = (int)charcnt; cp = sp->chars; (void) memcpy(cp, stdname, stdlen); cp += stdlen; *cp++ = '\0'; if (dstlen != 0) { (void) memcpy(cp, dstname, dstlen); *(cp + dstlen) = '\0'; } return true; } static void gmtload(struct state *const sp) { if (tzload(gmt, sp, true) != 0) (void) tzparse(gmt, sp, true); } static int zoneinit(struct state *sp, char const *name) { if (name && ! name[0]) { /* ** User wants it fast rather than right. */ sp->leapcnt = 0; /* so, we're off a little */ sp->timecnt = 0; sp->typecnt = 0; sp->charcnt = 0; sp->goback = sp->goahead = false; init_ttinfo(&sp->ttis[0], 0, false, 0); strcpy(sp->chars, gmt); sp->defaulttype = 0; return 0; } else { int err = tzload(name, sp, true); if (err != 0 && name && name[0] != ':' && tzparse(name, sp, false)) err = 0; if (err == 0) scrub_abbrs(sp); return err; } } static void tzsetlcl(char const *name) { struct state *sp = lclptr; int lcl = name ? strlen(name) < sizeof lcl_TZname : -1; if (lcl < 0 ? lcl_is_set < 0 : 0 < lcl_is_set && strcmp(lcl_TZname, name) == 0) return; if (! sp) lclptr = sp = malloc(sizeof *lclptr); if (sp) { if (zoneinit(sp, name) != 0) zoneinit(sp, ""); if (0 < lcl) strcpy(lcl_TZname, name); } settzname(); lcl_is_set = lcl; } #ifdef STD_INSPIRED void tzsetwall(void) { rwlock_wrlock(&lcl_lock); tzsetlcl(NULL); rwlock_unlock(&lcl_lock); } #endif static void tzset_unlocked(void) { tzsetlcl(getenv("TZ")); } void tzset(void) { rwlock_wrlock(&lcl_lock); tzset_unlocked(); rwlock_unlock(&lcl_lock); } static void gmtcheck(void) { static bool gmt_is_set; rwlock_wrlock(&lcl_lock); if (! gmt_is_set) { gmtptr = malloc(sizeof *gmtptr); if (gmtptr) gmtload(gmtptr); gmt_is_set = true; } rwlock_unlock(&lcl_lock); } #if NETBSD_INSPIRED timezone_t tzalloc(const char *name) { timezone_t sp = malloc(sizeof *sp); if (sp) { int err = zoneinit(sp, name); if (err != 0) { free(sp); errno = err; return NULL; } } return sp; } void tzfree(timezone_t sp) { free(sp); } /* ** NetBSD 6.1.4 has ctime_rz, but omit it because POSIX says ctime and ** ctime_r are obsolescent and have potential security problems that ** ctime_rz would share. Callers can instead use localtime_rz + strftime. ** ** NetBSD 6.1.4 has tzgetname, but omit it because it doesn't work ** in zones with three or more time zone abbreviations. ** Callers can instead use localtime_rz + strftime. */ #endif /* ** The easy way to behave "as if no library function calls" localtime ** is to not call it, so we drop its guts into "localsub", which can be ** freely called. (And no, the PANS doesn't require the above behavior, ** but it *is* desirable.) ** ** If successful and SETNAME is nonzero, ** set the applicable parts of tzname, timezone and altzone; ** however, it's OK to omit this step if the time zone is POSIX-compatible, ** since in that case tzset should have already done this step correctly. ** SETNAME's type is intfast32_t for compatibility with gmtsub, ** but it is actually a boolean and its value should be 0 or 1. */ /*ARGSUSED*/ static struct tm * localsub(struct state const *sp, time_t const *timep, int_fast32_t setname, struct tm *const tmp) { const struct ttinfo * ttisp; int i; struct tm * result; const time_t t = *timep; if (sp == NULL) { /* Don't bother to set tzname etc.; tzset has already done it. */ return gmtsub(gmtptr, timep, 0, tmp); } if ((sp->goback && t < sp->ats[0]) || (sp->goahead && t > sp->ats[sp->timecnt - 1])) { time_t newt = t; time_t seconds; time_t years; if (t < sp->ats[0]) seconds = sp->ats[0] - t; else seconds = t - sp->ats[sp->timecnt - 1]; --seconds; years = (time_t)((seconds / SECSPERREPEAT + 1) * YEARSPERREPEAT); seconds = (time_t)(years * AVGSECSPERYEAR); if (t < sp->ats[0]) newt += seconds; else newt -= seconds; if (newt < sp->ats[0] || newt > sp->ats[sp->timecnt - 1]) { errno = EINVAL; return NULL; /* "cannot happen" */ } result = localsub(sp, &newt, setname, tmp); if (result) { int_fast64_t newy; newy = result->tm_year; if (t < sp->ats[0]) newy -= years; else newy += years; if (! (INT_MIN <= newy && newy <= INT_MAX)) { errno = EOVERFLOW; return NULL; } result->tm_year = (int)newy; } return result; } if (sp->timecnt == 0 || t < sp->ats[0]) { i = sp->defaulttype; } else { int lo = 1; int hi = sp->timecnt; while (lo < hi) { int mid = (lo + hi) / 2; if (t < sp->ats[mid]) hi = mid; else lo = mid + 1; } i = (int) sp->types[lo - 1]; } ttisp = &sp->ttis[i]; /* ** To get (wrong) behavior that's compatible with System V Release 2.0 ** you'd replace the statement below with ** t += ttisp->tt_gmtoff; ** timesub(&t, 0L, sp, tmp); */ result = timesub(&t, ttisp->tt_gmtoff, sp, tmp); if (result) { result->tm_isdst = ttisp->tt_isdst; #ifdef TM_ZONE result->TM_ZONE = __UNCONST(&sp->chars[ttisp->tt_abbrind]); #endif /* defined TM_ZONE */ if (setname) update_tzname_etc(sp, ttisp); } return result; } #if NETBSD_INSPIRED struct tm * localtime_rz(timezone_t sp, time_t const *timep, struct tm *tmp) { return localsub(sp, timep, 0, tmp); } #endif static struct tm * localtime_tzset(time_t const *timep, struct tm *tmp, bool setname) { rwlock_wrlock(&lcl_lock); if (setname || !lcl_is_set) tzset_unlocked(); tmp = localsub(lclptr, timep, setname, tmp); rwlock_unlock(&lcl_lock); return tmp; } struct tm * localtime(const time_t *timep) { return localtime_tzset(timep, &tm, true); } struct tm * localtime_r(const time_t * __restrict timep, struct tm *tmp) { return localtime_tzset(timep, tmp, true); } /* ** gmtsub is to gmtime as localsub is to localtime. */ static struct tm * gmtsub(struct state const *sp, const time_t *timep, int_fast32_t offset, struct tm *tmp) { struct tm * result; result = timesub(timep, offset, gmtptr, tmp); #ifdef TM_ZONE /* ** Could get fancy here and deliver something such as ** "+xx" or "-xx" if offset is non-zero, ** but this is no time for a treasure hunt. */ if (result) result->TM_ZONE = offset ? __UNCONST(wildabbr) : gmtptr ? gmtptr->chars : __UNCONST(gmt); #endif /* defined TM_ZONE */ return result; } /* ** Re-entrant version of gmtime. */ struct tm * gmtime_r(const time_t *timep, struct tm *tmp) { gmtcheck(); return gmtsub(NULL, timep, 0, tmp); } struct tm * gmtime(const time_t *timep) { return gmtime_r(timep, &tm); } #ifdef STD_INSPIRED struct tm * offtime(const time_t *timep, long offset) { gmtcheck(); return gmtsub(gmtptr, timep, (int_fast32_t)offset, &tm); } struct tm * offtime_r(const time_t *timep, long offset, struct tm *tmp) { gmtcheck(); return gmtsub(NULL, timep, (int_fast32_t)offset, tmp); } #endif /* defined STD_INSPIRED */ #if defined time_tz || EPOCH_LOCAL || EPOCH_OFFSET != 0 # ifndef USG_COMPAT # define daylight 0 # define timezone 0 # endif # ifndef ALTZONE # define altzone 0 # endif /* Convert from the underlying system's time_t to the ersatz time_tz, which is called 'time_t' in this file. Typically, this merely converts the time's integer width. On some platforms, the system time is local time not UT, or uses some epoch other than the POSIX epoch. Although this code appears to define a function named 'time' that returns time_t, the macros in private.h cause this code to actually define a function named 'tz_time' that returns tz_time_t. The call to sys_time invokes the underlying system's 'time' function. */ time_t time(time_t *p) { time_t r = sys_time(0); if (r != (time_t) -1) { int_fast32_t offset = EPOCH_LOCAL ? (daylight ? timezone : altzone) : 0; if (increment_overflow32(&offset, -EPOCH_OFFSET) || increment_overflow_time (&r, offset)) { errno = EOVERFLOW; r = -1; } } if (p) *p = r; return r; } #endif /* ** Return the number of leap years through the end of the given year ** where, to make the math easy, the answer for year zero is defined as zero. */ static int ATTRIBUTE_PURE leaps_thru_end_of(const int y) { return (y >= 0) ? (y / 4 - y / 100 + y / 400) : -(leaps_thru_end_of(-(y + 1)) + 1); } static struct tm * timesub(const time_t *timep, int_fast32_t offset, const struct state *sp, struct tm *tmp) { const struct lsinfo * lp; time_t tdays; int idays; /* unsigned would be so 2003 */ int_fast64_t rem; int y; const int * ip; int_fast64_t corr; bool hit; int i; corr = 0; hit = false; i = (sp == NULL) ? 0 : sp->leapcnt; while (--i >= 0) { lp = &sp->lsis[i]; if (*timep >= lp->ls_trans) { if (*timep == lp->ls_trans) { hit = ((i == 0 && lp->ls_corr > 0) || lp->ls_corr > sp->lsis[i - 1].ls_corr); if (hit) while (i > 0 && sp->lsis[i].ls_trans == sp->lsis[i - 1].ls_trans + 1 && sp->lsis[i].ls_corr == sp->lsis[i - 1].ls_corr + 1) { ++hit; --i; } } corr = lp->ls_corr; break; } } y = EPOCH_YEAR; tdays = (time_t)(*timep / SECSPERDAY); rem = *timep % SECSPERDAY; while (tdays < 0 || tdays >= year_lengths[isleap(y)]) { int newy; time_t tdelta; int idelta; int leapdays; tdelta = tdays / DAYSPERLYEAR; if (! ((! TYPE_SIGNED(time_t) || INT_MIN <= tdelta) && tdelta <= INT_MAX)) goto out_of_range; _DIAGASSERT(__type_fit(int, tdelta)); idelta = (int)tdelta; if (idelta == 0) idelta = (tdays < 0) ? -1 : 1; newy = y; if (increment_overflow(&newy, idelta)) goto out_of_range; leapdays = leaps_thru_end_of(newy - 1) - leaps_thru_end_of(y - 1); tdays -= ((time_t) newy - y) * DAYSPERNYEAR; tdays -= leapdays; y = newy; } /* ** Given the range, we can now fearlessly cast... */ idays = (int) tdays; rem += offset - corr; while (rem < 0) { rem += SECSPERDAY; --idays; } while (rem >= SECSPERDAY) { rem -= SECSPERDAY; ++idays; } while (idays < 0) { if (increment_overflow(&y, -1)) goto out_of_range; idays += year_lengths[isleap(y)]; } while (idays >= year_lengths[isleap(y)]) { idays -= year_lengths[isleap(y)]; if (increment_overflow(&y, 1)) goto out_of_range; } tmp->tm_year = y; if (increment_overflow(&tmp->tm_year, -TM_YEAR_BASE)) goto out_of_range; tmp->tm_yday = idays; /* ** The "extra" mods below avoid overflow problems. */ tmp->tm_wday = EPOCH_WDAY + ((y - EPOCH_YEAR) % DAYSPERWEEK) * (DAYSPERNYEAR % DAYSPERWEEK) + leaps_thru_end_of(y - 1) - leaps_thru_end_of(EPOCH_YEAR - 1) + idays; tmp->tm_wday %= DAYSPERWEEK; if (tmp->tm_wday < 0) tmp->tm_wday += DAYSPERWEEK; tmp->tm_hour = (int) (rem / SECSPERHOUR); rem %= SECSPERHOUR; tmp->tm_min = (int) (rem / SECSPERMIN); /* ** A positive leap second requires a special ** representation. This uses "... ??:59:60" et seq. */ tmp->tm_sec = (int) (rem % SECSPERMIN) + hit; ip = mon_lengths[isleap(y)]; for (tmp->tm_mon = 0; idays >= ip[tmp->tm_mon]; ++(tmp->tm_mon)) idays -= ip[tmp->tm_mon]; tmp->tm_mday = (int) (idays + 1); tmp->tm_isdst = 0; #ifdef TM_GMTOFF tmp->TM_GMTOFF = offset; #endif /* defined TM_GMTOFF */ return tmp; out_of_range: errno = EOVERFLOW; return NULL; } char * ctime(const time_t *timep) { /* ** Section 4.12.3.2 of X3.159-1989 requires that ** The ctime function converts the calendar time pointed to by timer ** to local time in the form of a string. It is equivalent to ** asctime(localtime(timer)) */ struct tm *tmp = localtime(timep); return tmp ? asctime(tmp) : NULL; } char * ctime_r(const time_t *timep, char *buf) { struct tm mytm; struct tm *tmp = localtime_r(timep, &mytm); return tmp ? asctime_r(tmp, buf) : NULL; } char * ctime_rz(const timezone_t sp, const time_t * timep, char *buf) { struct tm mytm, *rtm; rtm = localtime_rz(sp, timep, &mytm); if (rtm == NULL) return NULL; return asctime_r(rtm, buf); } /* ** Adapted from code provided by Robert Elz, who writes: ** The "best" way to do mktime I think is based on an idea of Bob ** Kridle's (so its said...) from a long time ago. ** It does a binary search of the time_t space. Since time_t's are ** just 32 bits, its a max of 32 iterations (even at 64 bits it ** would still be very reasonable). */ #ifndef WRONG #define WRONG ((time_t)-1) #endif /* !defined WRONG */ /* ** Normalize logic courtesy Paul Eggert. */ static bool increment_overflow(int *ip, int j) { int const i = *ip; /* ** If i >= 0 there can only be overflow if i + j > INT_MAX ** or if j > INT_MAX - i; given i >= 0, INT_MAX - i cannot overflow. ** If i < 0 there can only be overflow if i + j < INT_MIN ** or if j < INT_MIN - i; given i < 0, INT_MIN - i cannot overflow. */ if ((i >= 0) ? (j > INT_MAX - i) : (j < INT_MIN - i)) return true; *ip += j; return false; } static bool increment_overflow32(int_fast32_t *const lp, int const m) { int_fast32_t const l = *lp; if ((l >= 0) ? (m > INT_FAST32_MAX - l) : (m < INT_FAST32_MIN - l)) return true; *lp += m; return false; } static bool increment_overflow_time(time_t *tp, int_fast32_t j) { /* ** This is like ** 'if (! (time_t_min <= *tp + j && *tp + j <= time_t_max)) ...', ** except that it does the right thing even if *tp + j would overflow. */ if (! (j < 0 ? (TYPE_SIGNED(time_t) ? time_t_min - j <= *tp : -1 - j < *tp) : *tp <= time_t_max - j)) return true; *tp += j; return false; } static bool normalize_overflow(int *const tensptr, int *const unitsptr, const int base) { int tensdelta; tensdelta = (*unitsptr >= 0) ? (*unitsptr / base) : (-1 - (-1 - *unitsptr) / base); *unitsptr -= tensdelta * base; return increment_overflow(tensptr, tensdelta); } static bool normalize_overflow32(int_fast32_t *tensptr, int *unitsptr, int base) { int tensdelta; tensdelta = (*unitsptr >= 0) ? (*unitsptr / base) : (-1 - (-1 - *unitsptr) / base); *unitsptr -= tensdelta * base; return increment_overflow32(tensptr, tensdelta); } static int tmcomp(const struct tm *const atmp, const struct tm *const btmp) { int result; if (atmp->tm_year != btmp->tm_year) return atmp->tm_year < btmp->tm_year ? -1 : 1; if ((result = (atmp->tm_mon - btmp->tm_mon)) == 0 && (result = (atmp->tm_mday - btmp->tm_mday)) == 0 && (result = (atmp->tm_hour - btmp->tm_hour)) == 0 && (result = (atmp->tm_min - btmp->tm_min)) == 0) result = atmp->tm_sec - btmp->tm_sec; return result; } static time_t time2sub(struct tm *const tmp, struct tm *(*funcp)(struct state const *, time_t const *, int_fast32_t, struct tm *), struct state const *sp, const int_fast32_t offset, bool *okayp, bool do_norm_secs) { int dir; int i, j; int saved_seconds; int_fast32_t li; time_t lo; time_t hi; #ifdef NO_ERROR_IN_DST_GAP time_t ilo; #endif int_fast32_t y; time_t newt; time_t t; struct tm yourtm, mytm; *okayp = false; yourtm = *tmp; #ifdef NO_ERROR_IN_DST_GAP again: #endif if (do_norm_secs) { if (normalize_overflow(&yourtm.tm_min, &yourtm.tm_sec, SECSPERMIN)) goto out_of_range; } if (normalize_overflow(&yourtm.tm_hour, &yourtm.tm_min, MINSPERHOUR)) goto out_of_range; if (normalize_overflow(&yourtm.tm_mday, &yourtm.tm_hour, HOURSPERDAY)) goto out_of_range; y = yourtm.tm_year; if (normalize_overflow32(&y, &yourtm.tm_mon, MONSPERYEAR)) goto out_of_range; /* ** Turn y into an actual year number for now. ** It is converted back to an offset from TM_YEAR_BASE later. */ if (increment_overflow32(&y, TM_YEAR_BASE)) goto out_of_range; while (yourtm.tm_mday <= 0) { if (increment_overflow32(&y, -1)) goto out_of_range; li = y + (1 < yourtm.tm_mon); yourtm.tm_mday += year_lengths[isleap(li)]; } while (yourtm.tm_mday > DAYSPERLYEAR) { li = y + (1 < yourtm.tm_mon); yourtm.tm_mday -= year_lengths[isleap(li)]; if (increment_overflow32(&y, 1)) goto out_of_range; } for ( ; ; ) { i = mon_lengths[isleap(y)][yourtm.tm_mon]; if (yourtm.tm_mday <= i) break; yourtm.tm_mday -= i; if (++yourtm.tm_mon >= MONSPERYEAR) { yourtm.tm_mon = 0; if (increment_overflow32(&y, 1)) goto out_of_range; } } if (increment_overflow32(&y, -TM_YEAR_BASE)) goto out_of_range; if (! (INT_MIN <= y && y <= INT_MAX)) goto out_of_range; yourtm.tm_year = (int)y; if (yourtm.tm_sec >= 0 && yourtm.tm_sec < SECSPERMIN) saved_seconds = 0; else if (y + TM_YEAR_BASE < EPOCH_YEAR) { /* ** We can't set tm_sec to 0, because that might push the ** time below the minimum representable time. ** Set tm_sec to 59 instead. ** This assumes that the minimum representable time is ** not in the same minute that a leap second was deleted from, ** which is a safer assumption than using 58 would be. */ if (increment_overflow(&yourtm.tm_sec, 1 - SECSPERMIN)) goto out_of_range; saved_seconds = yourtm.tm_sec; yourtm.tm_sec = SECSPERMIN - 1; } else { saved_seconds = yourtm.tm_sec; yourtm.tm_sec = 0; } /* ** Do a binary search (this works whatever time_t's type is). */ lo = time_t_min; hi = time_t_max; #ifdef NO_ERROR_IN_DST_GAP ilo = lo; #endif for ( ; ; ) { t = lo / 2 + hi / 2; if (t < lo) t = lo; else if (t > hi) t = hi; if (! funcp(sp, &t, offset, &mytm)) { /* ** Assume that t is too extreme to be represented in ** a struct tm; arrange things so that it is less ** extreme on the next pass. */ dir = (t > 0) ? 1 : -1; } else dir = tmcomp(&mytm, &yourtm); if (dir != 0) { if (t == lo) { if (t == time_t_max) goto out_of_range; ++t; ++lo; } else if (t == hi) { if (t == time_t_min) goto out_of_range; --t; --hi; } #ifdef NO_ERROR_IN_DST_GAP if (ilo != lo && lo - 1 == hi && yourtm.tm_isdst < 0 && do_norm_secs) { for (i = sp->typecnt - 1; i >= 0; --i) { for (j = sp->typecnt - 1; j >= 0; --j) { time_t off; if (sp->ttis[j].tt_isdst == sp->ttis[i].tt_isdst) continue; off = sp->ttis[j].tt_gmtoff - sp->ttis[i].tt_gmtoff; yourtm.tm_sec += off < 0 ? -off : off; goto again; } } } #endif if (lo > hi) goto invalid; if (dir > 0) hi = t; else lo = t; continue; } #if defined TM_GMTOFF && ! UNINIT_TRAP if (mytm.TM_GMTOFF != yourtm.TM_GMTOFF && (yourtm.TM_GMTOFF < 0 ? (-SECSPERDAY <= yourtm.TM_GMTOFF && (mytm.TM_GMTOFF <= (/*CONSTCOND*/SMALLEST (INT_FAST32_MAX, LONG_MAX) + yourtm.TM_GMTOFF))) : (yourtm.TM_GMTOFF <= SECSPERDAY && ((/*CONSTCOND*/BIGGEST (INT_FAST32_MIN, LONG_MIN) + yourtm.TM_GMTOFF) <= mytm.TM_GMTOFF)))) { /* MYTM matches YOURTM except with the wrong UTC offset. YOURTM.TM_GMTOFF is plausible, so try it instead. It's OK if YOURTM.TM_GMTOFF contains uninitialized data, since the guess gets checked. */ time_t altt = t; int_fast32_t diff = (int_fast32_t) (mytm.TM_GMTOFF - yourtm.TM_GMTOFF); if (!increment_overflow_time(&altt, diff)) { struct tm alttm; if (! funcp(sp, &altt, offset, &alttm) && alttm.tm_isdst == mytm.tm_isdst && alttm.TM_GMTOFF == yourtm.TM_GMTOFF && tmcomp(&alttm, &yourtm)) { t = altt; mytm = alttm; } } } #endif if (yourtm.tm_isdst < 0 || mytm.tm_isdst == yourtm.tm_isdst) break; /* ** Right time, wrong type. ** Hunt for right time, right type. ** It's okay to guess wrong since the guess ** gets checked. */ if (sp == NULL) goto invalid; for (i = sp->typecnt - 1; i >= 0; --i) { if (sp->ttis[i].tt_isdst != yourtm.tm_isdst) continue; for (j = sp->typecnt - 1; j >= 0; --j) { if (sp->ttis[j].tt_isdst == yourtm.tm_isdst) continue; newt = (time_t)(t + sp->ttis[j].tt_gmtoff - sp->ttis[i].tt_gmtoff); if (! funcp(sp, &newt, offset, &mytm)) continue; if (tmcomp(&mytm, &yourtm) != 0) continue; if (mytm.tm_isdst != yourtm.tm_isdst) continue; /* ** We have a match. */ t = newt; goto label; } } goto invalid; } label: newt = t + saved_seconds; if ((newt < t) != (saved_seconds < 0)) goto out_of_range; t = newt; if (funcp(sp, &t, offset, tmp)) { *okayp = true; return t; } out_of_range: errno = EOVERFLOW; return WRONG; invalid: errno = EINVAL; return WRONG; } static time_t time2(struct tm * const tmp, struct tm *(*funcp)(struct state const *, time_t const *, int_fast32_t, struct tm *), struct state const *sp, const int_fast32_t offset, bool *okayp) { time_t t; /* ** First try without normalization of seconds ** (in case tm_sec contains a value associated with a leap second). ** If that fails, try with normalization of seconds. */ t = time2sub(tmp, funcp, sp, offset, okayp, false); return *okayp ? t : time2sub(tmp, funcp, sp, offset, okayp, true); } static time_t time1(struct tm *const tmp, struct tm *(*funcp) (struct state const *, time_t const *, int_fast32_t, struct tm *), struct state const *sp, const int_fast32_t offset) { time_t t; int samei, otheri; int sameind, otherind; int i; int nseen; int save_errno; char seen[TZ_MAX_TYPES]; unsigned char types[TZ_MAX_TYPES]; bool okay; if (tmp == NULL) { errno = EINVAL; return WRONG; } if (tmp->tm_isdst > 1) tmp->tm_isdst = 1; save_errno = errno; t = time2(tmp, funcp, sp, offset, &okay); if (okay) { errno = save_errno; return t; } if (tmp->tm_isdst < 0) #ifdef PCTS /* ** POSIX Conformance Test Suite code courtesy Grant Sullivan. */ tmp->tm_isdst = 0; /* reset to std and try again */ #else return t; #endif /* !defined PCTS */ /* ** We're supposed to assume that somebody took a time of one type ** and did some math on it that yielded a "struct tm" that's bad. ** We try to divine the type they started from and adjust to the ** type they need. */ if (sp == NULL) { errno = EINVAL; return WRONG; } for (i = 0; i < sp->typecnt; ++i) seen[i] = false; nseen = 0; for (i = sp->timecnt - 1; i >= 0; --i) if (!seen[sp->types[i]]) { seen[sp->types[i]] = true; types[nseen++] = sp->types[i]; } for (sameind = 0; sameind < nseen; ++sameind) { samei = types[sameind]; if (sp->ttis[samei].tt_isdst != tmp->tm_isdst) continue; for (otherind = 0; otherind < nseen; ++otherind) { otheri = types[otherind]; if (sp->ttis[otheri].tt_isdst == tmp->tm_isdst) continue; tmp->tm_sec += (int)(sp->ttis[otheri].tt_gmtoff - sp->ttis[samei].tt_gmtoff); tmp->tm_isdst = !tmp->tm_isdst; t = time2(tmp, funcp, sp, offset, &okay); if (okay) { errno = save_errno; return t; } tmp->tm_sec -= (int)(sp->ttis[otheri].tt_gmtoff - sp->ttis[samei].tt_gmtoff); tmp->tm_isdst = !tmp->tm_isdst; } } errno = EOVERFLOW; return WRONG; } static time_t mktime_tzname(timezone_t sp, struct tm *tmp, bool setname) { if (sp) return time1(tmp, localsub, sp, setname); else { gmtcheck(); return time1(tmp, gmtsub, gmtptr, 0); } } #if NETBSD_INSPIRED time_t mktime_z(timezone_t sp, struct tm *const tmp) { return mktime_tzname(sp, tmp, false); } #endif time_t mktime(struct tm *tmp) { time_t t; rwlock_wrlock(&lcl_lock); tzset_unlocked(); t = mktime_tzname(lclptr, tmp, true); rwlock_unlock(&lcl_lock); return t; } #ifdef STD_INSPIRED time_t timelocal_z(const timezone_t sp, struct tm *const tmp) { if (tmp != NULL) tmp->tm_isdst = -1; /* in case it wasn't initialized */ return mktime_z(sp, tmp); } time_t timelocal(struct tm *tmp) { if (tmp != NULL) tmp->tm_isdst = -1; /* in case it wasn't initialized */ return mktime(tmp); } time_t timegm(struct tm *tmp) { return timeoff(tmp, 0); } time_t timeoff(struct tm *tmp, long offset) { if (tmp) tmp->tm_isdst = 0; gmtcheck(); return time1(tmp, gmtsub, gmtptr, (int_fast32_t)offset); } #endif /* defined STD_INSPIRED */ /* ** XXX--is the below the right way to conditionalize?? */ #ifdef STD_INSPIRED /* ** IEEE Std 1003.1-1988 (POSIX) legislates that 536457599 ** shall correspond to "Wed Dec 31 23:59:59 UTC 1986", which ** is not the case if we are accounting for leap seconds. ** So, we provide the following conversion routines for use ** when exchanging timestamps with POSIX conforming systems. */ static int_fast64_t leapcorr(const timezone_t sp, time_t t) { struct lsinfo const * lp; int i; i = sp->leapcnt; while (--i >= 0) { lp = &sp->lsis[i]; if (t >= lp->ls_trans) return lp->ls_corr; } return 0; } NETBSD_INSPIRED_EXTERN time_t ATTRIBUTE_PURE time2posix_z(timezone_t sp, time_t t) { return (time_t)(t - leapcorr(sp, t)); } time_t time2posix(time_t t) { rwlock_wrlock(&lcl_lock); if (!lcl_is_set) tzset_unlocked(); if (lclptr) t = (time_t)(t - leapcorr(lclptr, t)); rwlock_unlock(&lcl_lock); return t; } NETBSD_INSPIRED_EXTERN time_t ATTRIBUTE_PURE posix2time_z(timezone_t sp, time_t t) { time_t x; time_t y; /* ** For a positive leap second hit, the result ** is not unique. For a negative leap second ** hit, the corresponding time doesn't exist, ** so we return an adjacent second. */ x = (time_t)(t + leapcorr(sp, t)); y = (time_t)(x - leapcorr(sp, x)); if (y < t) { do { x++; y = (time_t)(x - leapcorr(sp, x)); } while (y < t); x -= y != t; } else if (y > t) { do { --x; y = (time_t)(x - leapcorr(sp, x)); } while (y > t); x += y != t; } return x; } time_t posix2time(time_t t) { rwlock_wrlock(&lcl_lock); if (!lcl_is_set) tzset_unlocked(); if (lclptr) t = posix2time_z(lclptr, t); rwlock_unlock(&lcl_lock); return t; } #endif /* defined STD_INSPIRED */