/* $NetBSD: rf_paritylogging.c,v 1.22 2004/02/29 04:03:50 oster Exp $ */ /* * Copyright (c) 1995 Carnegie-Mellon University. * All rights reserved. * * Author: William V. Courtright II * * Permission to use, copy, modify and distribute this software and * its documentation is hereby granted, provided that both the copyright * notice and this permission notice appear in all copies of the * software, derivative works or modified versions, and any portions * thereof, and that both notices appear in supporting documentation. * * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. * * Carnegie Mellon requests users of this software to return to * * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU * School of Computer Science * Carnegie Mellon University * Pittsburgh PA 15213-3890 * * any improvements or extensions that they make and grant Carnegie the * rights to redistribute these changes. */ /* parity logging configuration, dag selection, and mapping is implemented here */ #include __KERNEL_RCSID(0, "$NetBSD: rf_paritylogging.c,v 1.22 2004/02/29 04:03:50 oster Exp $"); #include "rf_archs.h" #if RF_INCLUDE_PARITYLOGGING > 0 #include #include "rf_raid.h" #include "rf_dag.h" #include "rf_dagutils.h" #include "rf_dagfuncs.h" #include "rf_dagffrd.h" #include "rf_dagffwr.h" #include "rf_dagdegrd.h" #include "rf_dagdegwr.h" #include "rf_paritylog.h" #include "rf_paritylogDiskMgr.h" #include "rf_paritylogging.h" #include "rf_parityloggingdags.h" #include "rf_general.h" #include "rf_map.h" #include "rf_utils.h" #include "rf_shutdown.h" typedef struct RF_ParityLoggingConfigInfo_s { RF_RowCol_t **stripeIdentifier; /* filled in at config time & used by * IdentifyStripe */ } RF_ParityLoggingConfigInfo_t; static void FreeRegionInfo(RF_Raid_t * raidPtr, RF_RegionId_t regionID); static void rf_ShutdownParityLogging(RF_ThreadArg_t arg); static void rf_ShutdownParityLoggingRegionInfo(RF_ThreadArg_t arg); static void rf_ShutdownParityLoggingPool(RF_ThreadArg_t arg); static void rf_ShutdownParityLoggingRegionBufferPool(RF_ThreadArg_t arg); static void rf_ShutdownParityLoggingParityBufferPool(RF_ThreadArg_t arg); static void rf_ShutdownParityLoggingDiskQueue(RF_ThreadArg_t arg); int rf_ConfigureParityLogging( RF_ShutdownList_t ** listp, RF_Raid_t * raidPtr, RF_Config_t * cfgPtr) { int i, j, startdisk, rc; RF_SectorCount_t totalLogCapacity, fragmentation, lastRegionCapacity; RF_SectorCount_t parityBufferCapacity, maxRegionParityRange; RF_RaidLayout_t *layoutPtr = &raidPtr->Layout; RF_ParityLoggingConfigInfo_t *info; RF_ParityLog_t *l = NULL, *next; caddr_t lHeapPtr; if (rf_numParityRegions <= 0) return(EINVAL); /* * We create multiple entries on the shutdown list here, since * this configuration routine is fairly complicated in and of * itself, and this makes backing out of a failed configuration * much simpler. */ raidPtr->numSectorsPerLog = RF_DEFAULT_NUM_SECTORS_PER_LOG; /* create a parity logging configuration structure */ RF_MallocAndAdd(info, sizeof(RF_ParityLoggingConfigInfo_t), (RF_ParityLoggingConfigInfo_t *), raidPtr->cleanupList); if (info == NULL) return (ENOMEM); layoutPtr->layoutSpecificInfo = (void *) info; /* the stripe identifier must identify the disks in each stripe, IN * THE ORDER THAT THEY APPEAR IN THE STRIPE. */ info->stripeIdentifier = rf_make_2d_array((raidPtr->numCol), (raidPtr->numCol), raidPtr->cleanupList); if (info->stripeIdentifier == NULL) return (ENOMEM); startdisk = 0; for (i = 0; i < (raidPtr->numCol); i++) { for (j = 0; j < (raidPtr->numCol); j++) { info->stripeIdentifier[i][j] = (startdisk + j) % (raidPtr->numCol - 1); } if ((--startdisk) < 0) startdisk = raidPtr->numCol - 1 - 1; } /* fill in the remaining layout parameters */ layoutPtr->numStripe = layoutPtr->stripeUnitsPerDisk; layoutPtr->numParityCol = 1; layoutPtr->numParityLogCol = 1; layoutPtr->numDataCol = raidPtr->numCol - layoutPtr->numParityCol - layoutPtr->numParityLogCol; layoutPtr->dataSectorsPerStripe = layoutPtr->numDataCol * layoutPtr->sectorsPerStripeUnit; layoutPtr->dataStripeUnitsPerDisk = layoutPtr->stripeUnitsPerDisk; raidPtr->sectorsPerDisk = layoutPtr->stripeUnitsPerDisk * layoutPtr->sectorsPerStripeUnit; raidPtr->totalSectors = layoutPtr->stripeUnitsPerDisk * layoutPtr->numDataCol * layoutPtr->sectorsPerStripeUnit; /* configure parity log parameters * * parameter comment/constraints * ------------------------------------------- * numParityRegions* all regions (except possibly last) * of equal size * totalInCoreLogCapacity* amount of memory in bytes available * for in-core logs (default 1 MB) * numSectorsPerLog# capacity of an in-core log in sectors * (1 * disk track) * numParityLogs total number of in-core logs, * should be at least numParityRegions * regionLogCapacity size of a region log (except possibly * last one) in sectors * totalLogCapacity total amount of log space in sectors * * where '*' denotes a user settable parameter. * Note that logs are fixed to be the size of a disk track, * value #defined in rf_paritylog.h * */ totalLogCapacity = layoutPtr->stripeUnitsPerDisk * layoutPtr->sectorsPerStripeUnit * layoutPtr->numParityLogCol; raidPtr->regionLogCapacity = totalLogCapacity / rf_numParityRegions; if (rf_parityLogDebug) printf("bytes per sector %d\n", raidPtr->bytesPerSector); /* reduce fragmentation within a disk region by adjusting the number * of regions in an attempt to allow an integral number of logs to fit * into a disk region */ fragmentation = raidPtr->regionLogCapacity % raidPtr->numSectorsPerLog; if (fragmentation > 0) for (i = 1; i < (raidPtr->numSectorsPerLog / 2); i++) { if (((totalLogCapacity / (rf_numParityRegions + i)) % raidPtr->numSectorsPerLog) < fragmentation) { rf_numParityRegions++; raidPtr->regionLogCapacity = totalLogCapacity / rf_numParityRegions; fragmentation = raidPtr->regionLogCapacity % raidPtr->numSectorsPerLog; } if (((totalLogCapacity / (rf_numParityRegions - i)) % raidPtr->numSectorsPerLog) < fragmentation) { rf_numParityRegions--; raidPtr->regionLogCapacity = totalLogCapacity / rf_numParityRegions; fragmentation = raidPtr->regionLogCapacity % raidPtr->numSectorsPerLog; } } /* ensure integral number of regions per log */ raidPtr->regionLogCapacity = (raidPtr->regionLogCapacity / raidPtr->numSectorsPerLog) * raidPtr->numSectorsPerLog; raidPtr->numParityLogs = rf_totalInCoreLogCapacity / (raidPtr->bytesPerSector * raidPtr->numSectorsPerLog); /* to avoid deadlock, must ensure that enough logs exist for each * region to have one simultaneously */ if (raidPtr->numParityLogs < rf_numParityRegions) raidPtr->numParityLogs = rf_numParityRegions; /* create region information structs */ printf("Allocating %d bytes for in-core parity region info\n", (int) (rf_numParityRegions * sizeof(RF_RegionInfo_t))); RF_Malloc(raidPtr->regionInfo, (rf_numParityRegions * sizeof(RF_RegionInfo_t)), (RF_RegionInfo_t *)); if (raidPtr->regionInfo == NULL) return (ENOMEM); /* last region may not be full capacity */ lastRegionCapacity = raidPtr->regionLogCapacity; while ((rf_numParityRegions - 1) * raidPtr->regionLogCapacity + lastRegionCapacity > totalLogCapacity) lastRegionCapacity = lastRegionCapacity - raidPtr->numSectorsPerLog; raidPtr->regionParityRange = raidPtr->sectorsPerDisk / rf_numParityRegions; maxRegionParityRange = raidPtr->regionParityRange; /* i can't remember why this line is in the code -wvcii 6/30/95 */ /* if (raidPtr->sectorsPerDisk % rf_numParityRegions > 0) regionParityRange++; */ /* build pool of unused parity logs */ printf("Allocating %d bytes for %d parity logs\n", raidPtr->numParityLogs * raidPtr->numSectorsPerLog * raidPtr->bytesPerSector, raidPtr->numParityLogs); RF_Malloc(raidPtr->parityLogBufferHeap, raidPtr->numParityLogs * raidPtr->numSectorsPerLog * raidPtr->bytesPerSector, (caddr_t)); if (raidPtr->parityLogBufferHeap == NULL) return (ENOMEM); lHeapPtr = raidPtr->parityLogBufferHeap; rc = rf_mutex_init(&raidPtr->parityLogPool.mutex); if (rc) { rf_print_unable_to_init_mutex(__FILE__, __LINE__, rc); RF_Free(raidPtr->parityLogBufferHeap, raidPtr->numParityLogs * raidPtr->numSectorsPerLog * raidPtr->bytesPerSector); return (ENOMEM); } for (i = 0; i < raidPtr->numParityLogs; i++) { if (i == 0) { RF_Malloc(raidPtr->parityLogPool.parityLogs, sizeof(RF_ParityLog_t), (RF_ParityLog_t *)); if (raidPtr->parityLogPool.parityLogs == NULL) { RF_Free(raidPtr->parityLogBufferHeap, raidPtr->numParityLogs * raidPtr->numSectorsPerLog * raidPtr->bytesPerSector); return (ENOMEM); } l = raidPtr->parityLogPool.parityLogs; } else { RF_Malloc(l->next, sizeof(RF_ParityLog_t), (RF_ParityLog_t *)); if (l->next == NULL) { RF_Free(raidPtr->parityLogBufferHeap, raidPtr->numParityLogs * raidPtr->numSectorsPerLog * raidPtr->bytesPerSector); for (l = raidPtr->parityLogPool.parityLogs; l; l = next) { next = l->next; if (l->records) RF_Free(l->records, (raidPtr->numSectorsPerLog * sizeof(RF_ParityLogRecord_t))); RF_Free(l, sizeof(RF_ParityLog_t)); } return (ENOMEM); } l = l->next; } l->bufPtr = lHeapPtr; lHeapPtr += raidPtr->numSectorsPerLog * raidPtr->bytesPerSector; RF_Malloc(l->records, (raidPtr->numSectorsPerLog * sizeof(RF_ParityLogRecord_t)), (RF_ParityLogRecord_t *)); if (l->records == NULL) { RF_Free(raidPtr->parityLogBufferHeap, raidPtr->numParityLogs * raidPtr->numSectorsPerLog * raidPtr->bytesPerSector); for (l = raidPtr->parityLogPool.parityLogs; l; l = next) { next = l->next; if (l->records) RF_Free(l->records, (raidPtr->numSectorsPerLog * sizeof(RF_ParityLogRecord_t))); RF_Free(l, sizeof(RF_ParityLog_t)); } return (ENOMEM); } } rf_ShutdownCreate(listp, rf_ShutdownParityLoggingPool, raidPtr); /* build pool of region buffers */ rc = rf_mutex_init(&raidPtr->regionBufferPool.mutex); if (rc) { rf_print_unable_to_init_mutex(__FILE__, __LINE__, rc); return (ENOMEM); } raidPtr->regionBufferPool.cond = 0; raidPtr->regionBufferPool.bufferSize = raidPtr->regionLogCapacity * raidPtr->bytesPerSector; printf("regionBufferPool.bufferSize %d\n", raidPtr->regionBufferPool.bufferSize); /* for now, only one region at a time may be reintegrated */ raidPtr->regionBufferPool.totalBuffers = 1; raidPtr->regionBufferPool.availableBuffers = raidPtr->regionBufferPool.totalBuffers; raidPtr->regionBufferPool.availBuffersIndex = 0; raidPtr->regionBufferPool.emptyBuffersIndex = 0; printf("Allocating %d bytes for regionBufferPool\n", (int) (raidPtr->regionBufferPool.totalBuffers * sizeof(caddr_t))); RF_Malloc(raidPtr->regionBufferPool.buffers, raidPtr->regionBufferPool.totalBuffers * sizeof(caddr_t), (caddr_t *)); if (raidPtr->regionBufferPool.buffers == NULL) { return (ENOMEM); } for (i = 0; i < raidPtr->regionBufferPool.totalBuffers; i++) { printf("Allocating %d bytes for regionBufferPool#%d\n", (int) (raidPtr->regionBufferPool.bufferSize * sizeof(char)), i); RF_Malloc(raidPtr->regionBufferPool.buffers[i], raidPtr->regionBufferPool.bufferSize * sizeof(char), (caddr_t)); if (raidPtr->regionBufferPool.buffers[i] == NULL) { for (j = 0; j < i; j++) { RF_Free(raidPtr->regionBufferPool.buffers[i], raidPtr->regionBufferPool.bufferSize * sizeof(char)); } RF_Free(raidPtr->regionBufferPool.buffers, raidPtr->regionBufferPool.totalBuffers * sizeof(caddr_t)); return (ENOMEM); } printf("raidPtr->regionBufferPool.buffers[%d] = %lx\n", i, (long) raidPtr->regionBufferPool.buffers[i]); } rf_ShutdownCreate(listp, rf_ShutdownParityLoggingRegionBufferPool, raidPtr); /* build pool of parity buffers */ parityBufferCapacity = maxRegionParityRange; rc = rf_mutex_init(&raidPtr->parityBufferPool.mutex); if (rc) { rf_print_unable_to_init_mutex(__FILE__, __LINE__, rc); return (rc); } raidPtr->parityBufferPool.cond = 0; raidPtr->parityBufferPool.bufferSize = parityBufferCapacity * raidPtr->bytesPerSector; printf("parityBufferPool.bufferSize %d\n", raidPtr->parityBufferPool.bufferSize); /* for now, only one region at a time may be reintegrated */ raidPtr->parityBufferPool.totalBuffers = 1; raidPtr->parityBufferPool.availableBuffers = raidPtr->parityBufferPool.totalBuffers; raidPtr->parityBufferPool.availBuffersIndex = 0; raidPtr->parityBufferPool.emptyBuffersIndex = 0; printf("Allocating %d bytes for parityBufferPool of %d units\n", (int) (raidPtr->parityBufferPool.totalBuffers * sizeof(caddr_t)), raidPtr->parityBufferPool.totalBuffers ); RF_Malloc(raidPtr->parityBufferPool.buffers, raidPtr->parityBufferPool.totalBuffers * sizeof(caddr_t), (caddr_t *)); if (raidPtr->parityBufferPool.buffers == NULL) { return (ENOMEM); } for (i = 0; i < raidPtr->parityBufferPool.totalBuffers; i++) { printf("Allocating %d bytes for parityBufferPool#%d\n", (int) (raidPtr->parityBufferPool.bufferSize * sizeof(char)),i); RF_Malloc(raidPtr->parityBufferPool.buffers[i], raidPtr->parityBufferPool.bufferSize * sizeof(char), (caddr_t)); if (raidPtr->parityBufferPool.buffers == NULL) { for (j = 0; j < i; j++) { RF_Free(raidPtr->parityBufferPool.buffers[i], raidPtr->regionBufferPool.bufferSize * sizeof(char)); } RF_Free(raidPtr->parityBufferPool.buffers, raidPtr->regionBufferPool.totalBuffers * sizeof(caddr_t)); return (ENOMEM); } printf("parityBufferPool.buffers[%d] = %lx\n", i, (long) raidPtr->parityBufferPool.buffers[i]); } rf_ShutdownCreate(listp, rf_ShutdownParityLoggingParityBufferPool, raidPtr); /* initialize parityLogDiskQueue */ rf_mutex_init(&raidPtr->parityLogDiskQueue.mutex); raidPtr->parityLogDiskQueue.cond = 0; raidPtr->parityLogDiskQueue.flushQueue = NULL; raidPtr->parityLogDiskQueue.reintQueue = NULL; raidPtr->parityLogDiskQueue.bufHead = NULL; raidPtr->parityLogDiskQueue.bufTail = NULL; raidPtr->parityLogDiskQueue.reintHead = NULL; raidPtr->parityLogDiskQueue.reintTail = NULL; raidPtr->parityLogDiskQueue.logBlockHead = NULL; raidPtr->parityLogDiskQueue.logBlockTail = NULL; raidPtr->parityLogDiskQueue.reintBlockHead = NULL; raidPtr->parityLogDiskQueue.reintBlockTail = NULL; raidPtr->parityLogDiskQueue.freeDataList = NULL; raidPtr->parityLogDiskQueue.freeCommonList = NULL; rf_ShutdownCreate(listp, rf_ShutdownParityLoggingDiskQueue, raidPtr); for (i = 0; i < rf_numParityRegions; i++) { rc = rf_mutex_init(&raidPtr->regionInfo[i].mutex); if (rc) { rf_print_unable_to_init_mutex(__FILE__, __LINE__, rc); for (j = 0; j < i; j++) FreeRegionInfo(raidPtr, j); RF_Free(raidPtr->regionInfo, (rf_numParityRegions * sizeof(RF_RegionInfo_t))); return (ENOMEM); } rc = rf_mutex_init(&raidPtr->regionInfo[i].reintMutex); if (rc) { rf_print_unable_to_init_mutex(__FILE__, __LINE__, rc); for (j = 0; j < i; j++) FreeRegionInfo(raidPtr, j); RF_Free(raidPtr->regionInfo, (rf_numParityRegions * sizeof(RF_RegionInfo_t))); return (ENOMEM); } raidPtr->regionInfo[i].reintInProgress = RF_FALSE; raidPtr->regionInfo[i].regionStartAddr = raidPtr->regionLogCapacity * i; raidPtr->regionInfo[i].parityStartAddr = raidPtr->regionParityRange * i; if (i < rf_numParityRegions - 1) { raidPtr->regionInfo[i].capacity = raidPtr->regionLogCapacity; raidPtr->regionInfo[i].numSectorsParity = raidPtr->regionParityRange; } else { raidPtr->regionInfo[i].capacity = lastRegionCapacity; raidPtr->regionInfo[i].numSectorsParity = raidPtr->sectorsPerDisk - raidPtr->regionParityRange * i; if (raidPtr->regionInfo[i].numSectorsParity > maxRegionParityRange) maxRegionParityRange = raidPtr->regionInfo[i].numSectorsParity; } raidPtr->regionInfo[i].diskCount = 0; RF_ASSERT(raidPtr->regionInfo[i].capacity + raidPtr->regionInfo[i].regionStartAddr <= totalLogCapacity); RF_ASSERT(raidPtr->regionInfo[i].parityStartAddr + raidPtr->regionInfo[i].numSectorsParity <= raidPtr->sectorsPerDisk); printf("Allocating %d bytes for region %d\n", (int) (raidPtr->regionInfo[i].capacity * sizeof(RF_DiskMap_t)), i); RF_Malloc(raidPtr->regionInfo[i].diskMap, (raidPtr->regionInfo[i].capacity * sizeof(RF_DiskMap_t)), (RF_DiskMap_t *)); if (raidPtr->regionInfo[i].diskMap == NULL) { for (j = 0; j < i; j++) FreeRegionInfo(raidPtr, j); RF_Free(raidPtr->regionInfo, (rf_numParityRegions * sizeof(RF_RegionInfo_t))); return (ENOMEM); } raidPtr->regionInfo[i].loggingEnabled = RF_FALSE; raidPtr->regionInfo[i].coreLog = NULL; } rf_ShutdownCreate(listp, rf_ShutdownParityLoggingRegionInfo, raidPtr); RF_ASSERT(raidPtr->parityLogDiskQueue.threadState == 0); raidPtr->parityLogDiskQueue.threadState = RF_PLOG_CREATED; rc = RF_CREATE_THREAD(raidPtr->pLogDiskThreadHandle, rf_ParityLoggingDiskManager, raidPtr,"rf_log"); if (rc) { raidPtr->parityLogDiskQueue.threadState = 0; RF_ERRORMSG3("Unable to create parity logging disk thread file %s line %d rc=%d\n", __FILE__, __LINE__, rc); return (ENOMEM); } /* wait for thread to start */ RF_LOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex); while (!(raidPtr->parityLogDiskQueue.threadState & RF_PLOG_RUNNING)) { RF_WAIT_COND(raidPtr->parityLogDiskQueue.cond, raidPtr->parityLogDiskQueue.mutex); } RF_UNLOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex); rf_ShutdownCreate(listp, rf_ShutdownParityLogging, raidPtr); if (rf_parityLogDebug) { printf(" size of disk log in sectors: %d\n", (int) totalLogCapacity); printf(" total number of parity regions is %d\n", (int) rf_numParityRegions); printf(" nominal sectors of log per parity region is %d\n", (int) raidPtr->regionLogCapacity); printf(" nominal region fragmentation is %d sectors\n", (int) fragmentation); printf(" total number of parity logs is %d\n", raidPtr->numParityLogs); printf(" parity log size is %d sectors\n", raidPtr->numSectorsPerLog); printf(" total in-core log space is %d bytes\n", (int) rf_totalInCoreLogCapacity); } rf_EnableParityLogging(raidPtr); return (0); } static void FreeRegionInfo( RF_Raid_t * raidPtr, RF_RegionId_t regionID) { RF_LOCK_MUTEX(raidPtr->regionInfo[regionID].mutex); RF_Free(raidPtr->regionInfo[regionID].diskMap, (raidPtr->regionInfo[regionID].capacity * sizeof(RF_DiskMap_t))); if (!rf_forceParityLogReint && raidPtr->regionInfo[regionID].coreLog) { rf_ReleaseParityLogs(raidPtr, raidPtr->regionInfo[regionID].coreLog); raidPtr->regionInfo[regionID].coreLog = NULL; } else { RF_ASSERT(raidPtr->regionInfo[regionID].coreLog == NULL); RF_ASSERT(raidPtr->regionInfo[regionID].diskCount == 0); } RF_UNLOCK_MUTEX(raidPtr->regionInfo[regionID].mutex); } static void FreeParityLogQueue( RF_Raid_t * raidPtr, RF_ParityLogQueue_t * queue) { RF_ParityLog_t *l1, *l2; RF_LOCK_MUTEX(queue->mutex); l1 = queue->parityLogs; while (l1) { l2 = l1; l1 = l2->next; RF_Free(l2->records, (raidPtr->numSectorsPerLog * sizeof(RF_ParityLogRecord_t))); RF_Free(l2, sizeof(RF_ParityLog_t)); } RF_UNLOCK_MUTEX(queue->mutex); } static void FreeRegionBufferQueue(RF_RegionBufferQueue_t * queue) { int i; RF_LOCK_MUTEX(queue->mutex); if (queue->availableBuffers != queue->totalBuffers) { printf("Attempt to free region queue which is still in use!\n"); RF_ASSERT(0); } for (i = 0; i < queue->totalBuffers; i++) RF_Free(queue->buffers[i], queue->bufferSize); RF_Free(queue->buffers, queue->totalBuffers * sizeof(caddr_t)); RF_UNLOCK_MUTEX(queue->mutex); } static void rf_ShutdownParityLoggingRegionInfo(RF_ThreadArg_t arg) { RF_Raid_t *raidPtr; RF_RegionId_t i; raidPtr = (RF_Raid_t *) arg; if (rf_parityLogDebug) { printf("raid%d: ShutdownParityLoggingRegionInfo\n", raidPtr->raidid); } /* free region information structs */ for (i = 0; i < rf_numParityRegions; i++) FreeRegionInfo(raidPtr, i); RF_Free(raidPtr->regionInfo, (rf_numParityRegions * sizeof(raidPtr->regionInfo))); raidPtr->regionInfo = NULL; } static void rf_ShutdownParityLoggingPool(RF_ThreadArg_t arg) { RF_Raid_t *raidPtr; raidPtr = (RF_Raid_t *) arg; if (rf_parityLogDebug) { printf("raid%d: ShutdownParityLoggingPool\n", raidPtr->raidid); } /* free contents of parityLogPool */ FreeParityLogQueue(raidPtr, &raidPtr->parityLogPool); RF_Free(raidPtr->parityLogBufferHeap, raidPtr->numParityLogs * raidPtr->numSectorsPerLog * raidPtr->bytesPerSector); } static void rf_ShutdownParityLoggingRegionBufferPool(RF_ThreadArg_t arg) { RF_Raid_t *raidPtr; raidPtr = (RF_Raid_t *) arg; if (rf_parityLogDebug) { printf("raid%d: ShutdownParityLoggingRegionBufferPool\n", raidPtr->raidid); } FreeRegionBufferQueue(&raidPtr->regionBufferPool); } static void rf_ShutdownParityLoggingParityBufferPool(RF_ThreadArg_t arg) { RF_Raid_t *raidPtr; raidPtr = (RF_Raid_t *) arg; if (rf_parityLogDebug) { printf("raid%d: ShutdownParityLoggingParityBufferPool\n", raidPtr->raidid); } FreeRegionBufferQueue(&raidPtr->parityBufferPool); } static void rf_ShutdownParityLoggingDiskQueue(RF_ThreadArg_t arg) { RF_ParityLogData_t *d; RF_CommonLogData_t *c; RF_Raid_t *raidPtr; raidPtr = (RF_Raid_t *) arg; if (rf_parityLogDebug) { printf("raid%d: ShutdownParityLoggingDiskQueue\n", raidPtr->raidid); } /* free disk manager stuff */ RF_ASSERT(raidPtr->parityLogDiskQueue.bufHead == NULL); RF_ASSERT(raidPtr->parityLogDiskQueue.bufTail == NULL); RF_ASSERT(raidPtr->parityLogDiskQueue.reintHead == NULL); RF_ASSERT(raidPtr->parityLogDiskQueue.reintTail == NULL); while (raidPtr->parityLogDiskQueue.freeDataList) { d = raidPtr->parityLogDiskQueue.freeDataList; raidPtr->parityLogDiskQueue.freeDataList = raidPtr->parityLogDiskQueue.freeDataList->next; RF_Free(d, sizeof(RF_ParityLogData_t)); } while (raidPtr->parityLogDiskQueue.freeCommonList) { c = raidPtr->parityLogDiskQueue.freeCommonList; raidPtr->parityLogDiskQueue.freeCommonList = raidPtr->parityLogDiskQueue.freeCommonList->next; RF_Free(c, sizeof(RF_CommonLogData_t)); } } static void rf_ShutdownParityLogging(RF_ThreadArg_t arg) { RF_Raid_t *raidPtr; raidPtr = (RF_Raid_t *) arg; if (rf_parityLogDebug) { printf("raid%d: ShutdownParityLogging\n", raidPtr->raidid); } /* shutdown disk thread */ /* This has the desirable side-effect of forcing all regions to be * reintegrated. This is necessary since all parity log maps are * currently held in volatile memory. */ RF_LOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex); raidPtr->parityLogDiskQueue.threadState |= RF_PLOG_TERMINATE; RF_UNLOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex); RF_SIGNAL_COND(raidPtr->parityLogDiskQueue.cond); /* * pLogDiskThread will now terminate when queues are cleared * now wait for it to be done */ RF_LOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex); while (!(raidPtr->parityLogDiskQueue.threadState & RF_PLOG_SHUTDOWN)) { RF_WAIT_COND(raidPtr->parityLogDiskQueue.cond, raidPtr->parityLogDiskQueue.mutex); } RF_UNLOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex); if (rf_parityLogDebug) { printf("raid%d: ShutdownParityLogging done (thread completed)\n", raidPtr->raidid); } } int rf_GetDefaultNumFloatingReconBuffersParityLogging(RF_Raid_t * raidPtr) { return (20); } RF_HeadSepLimit_t rf_GetDefaultHeadSepLimitParityLogging(RF_Raid_t * raidPtr) { return (10); } /* return the region ID for a given RAID address */ RF_RegionId_t rf_MapRegionIDParityLogging( RF_Raid_t * raidPtr, RF_SectorNum_t address) { RF_RegionId_t regionID; /* regionID = address / (raidPtr->regionParityRange * raidPtr->Layout.numDataCol); */ regionID = address / raidPtr->regionParityRange; if (regionID == rf_numParityRegions) { /* last region may be larger than other regions */ regionID--; } RF_ASSERT(address >= raidPtr->regionInfo[regionID].parityStartAddr); RF_ASSERT(address < raidPtr->regionInfo[regionID].parityStartAddr + raidPtr->regionInfo[regionID].numSectorsParity); RF_ASSERT(regionID < rf_numParityRegions); return (regionID); } /* given a logical RAID sector, determine physical disk address of data */ void rf_MapSectorParityLogging( RF_Raid_t * raidPtr, RF_RaidAddr_t raidSector, RF_RowCol_t * col, RF_SectorNum_t * diskSector, int remap) { RF_StripeNum_t SUID = raidSector / raidPtr->Layout.sectorsPerStripeUnit; /* *col = (SUID % (raidPtr->numCol - * raidPtr->Layout.numParityLogCol)); */ *col = SUID % raidPtr->Layout.numDataCol; *diskSector = (SUID / (raidPtr->Layout.numDataCol)) * raidPtr->Layout.sectorsPerStripeUnit + (raidSector % raidPtr->Layout.sectorsPerStripeUnit); } /* given a logical RAID sector, determine physical disk address of parity */ void rf_MapParityParityLogging( RF_Raid_t * raidPtr, RF_RaidAddr_t raidSector, RF_RowCol_t * col, RF_SectorNum_t * diskSector, int remap) { RF_StripeNum_t SUID = raidSector / raidPtr->Layout.sectorsPerStripeUnit; /* *col = * raidPtr->Layout.numDataCol-(SUID/raidPtr->Layout.numDataCol)%(raidPt * r->numCol - raidPtr->Layout.numParityLogCol); */ *col = raidPtr->Layout.numDataCol; *diskSector = (SUID / (raidPtr->Layout.numDataCol)) * raidPtr->Layout.sectorsPerStripeUnit + (raidSector % raidPtr->Layout.sectorsPerStripeUnit); } /* given a regionID and sector offset, determine the physical disk address of the parity log */ void rf_MapLogParityLogging( RF_Raid_t * raidPtr, RF_RegionId_t regionID, RF_SectorNum_t regionOffset, RF_RowCol_t * col, RF_SectorNum_t * startSector) { *col = raidPtr->numCol - 1; *startSector = raidPtr->regionInfo[regionID].regionStartAddr + regionOffset; } /* given a regionID, determine the physical disk address of the logged parity for that region */ void rf_MapRegionParity( RF_Raid_t * raidPtr, RF_RegionId_t regionID, RF_RowCol_t * col, RF_SectorNum_t * startSector, RF_SectorCount_t * numSector) { *col = raidPtr->numCol - 2; *startSector = raidPtr->regionInfo[regionID].parityStartAddr; *numSector = raidPtr->regionInfo[regionID].numSectorsParity; } /* given a logical RAID address, determine the participating disks in the stripe */ void rf_IdentifyStripeParityLogging( RF_Raid_t * raidPtr, RF_RaidAddr_t addr, RF_RowCol_t ** diskids) { RF_StripeNum_t stripeID = rf_RaidAddressToStripeID(&raidPtr->Layout, addr); RF_ParityLoggingConfigInfo_t *info = (RF_ParityLoggingConfigInfo_t *) raidPtr->Layout.layoutSpecificInfo; *diskids = info->stripeIdentifier[stripeID % raidPtr->numCol]; } void rf_MapSIDToPSIDParityLogging( RF_RaidLayout_t * layoutPtr, RF_StripeNum_t stripeID, RF_StripeNum_t * psID, RF_ReconUnitNum_t * which_ru) { *which_ru = 0; *psID = stripeID; } /* select an algorithm for performing an access. Returns two pointers, * one to a function that will return information about the DAG, and * another to a function that will create the dag. */ void rf_ParityLoggingDagSelect( RF_Raid_t * raidPtr, RF_IoType_t type, RF_AccessStripeMap_t * asmp, RF_VoidFuncPtr * createFunc) { RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout); RF_PhysDiskAddr_t *failedPDA = NULL; RF_RowCol_t fcol; RF_RowStatus_t rstat; int prior_recon; RF_ASSERT(RF_IO_IS_R_OR_W(type)); if (asmp->numDataFailed + asmp->numParityFailed > 1) { RF_ERRORMSG("Multiple disks failed in a single group! Aborting I/O operation.\n"); *createFunc = NULL; return; } else if (asmp->numDataFailed + asmp->numParityFailed == 1) { /* if under recon & already reconstructed, redirect * the access to the spare drive and eliminate the * failure indication */ failedPDA = asmp->failedPDAs[0]; fcol = failedPDA->col; rstat = raidPtr->status; prior_recon = (rstat == rf_rs_reconfigured) || ( (rstat == rf_rs_reconstructing) ? rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, failedPDA->startSector) : 0 ); if (prior_recon) { RF_RowCol_t oc = failedPDA->col; RF_SectorNum_t oo = failedPDA->startSector; if (layoutPtr->map->flags & RF_DISTRIBUTE_SPARE) { /* redirect to dist spare space */ if (failedPDA == asmp->parityInfo) { /* parity has failed */ (layoutPtr->map->MapParity) (raidPtr, failedPDA->raidAddress, &failedPDA->col, &failedPDA->startSector, RF_REMAP); if (asmp->parityInfo->next) { /* redir 2nd component, * if any */ RF_PhysDiskAddr_t *p = asmp->parityInfo->next; RF_SectorNum_t SUoffs = p->startSector % layoutPtr->sectorsPerStripeUnit; p->col = failedPDA->col; p->startSector = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, failedPDA->startSector) + SUoffs; /* cheating: * startSector is not * really a RAID address */ } } else if (asmp->parityInfo->next && failedPDA == asmp->parityInfo->next) { RF_ASSERT(0); /* should not ever * happen */ } else { /* data has failed */ (layoutPtr->map->MapSector) (raidPtr, failedPDA->raidAddress, &failedPDA->col, &failedPDA->startSector, RF_REMAP); } } else { /* redirect to dedicated spare space */ failedPDA->col = raidPtr->Disks[fcol].spareCol; /* the parity may have two distinct * components, both of which may need * to be redirected */ if (asmp->parityInfo->next) { if (failedPDA == asmp->parityInfo) { failedPDA->next->col = failedPDA->col; } else if (failedPDA == asmp->parityInfo->next) { /* paranoid: should never occur */ asmp->parityInfo->col = failedPDA->col; } } } RF_ASSERT(failedPDA->col != -1); if (rf_dagDebug || rf_mapDebug) { printf("raid%d: Redirected type '%c' c %d o %ld -> c %d o %ld\n", raidPtr->raidid, type, oc, (long) oo, failedPDA->col, (long) failedPDA->startSector); } asmp->numDataFailed = asmp->numParityFailed = 0; } } if (type == RF_IO_TYPE_READ) { if (asmp->numDataFailed == 0) *createFunc = (RF_VoidFuncPtr) rf_CreateFaultFreeReadDAG; else *createFunc = (RF_VoidFuncPtr) rf_CreateRaidFiveDegradedReadDAG; } else { /* if mirroring, always use large writes. If the access * requires two distinct parity updates, always do a small * write. If the stripe contains a failure but the access * does not, do a small write. The first conditional * (numStripeUnitsAccessed <= numDataCol/2) uses a * less-than-or-equal rather than just a less-than because * when G is 3 or 4, numDataCol/2 is 1, and I want * single-stripe-unit updates to use just one disk. */ if ((asmp->numDataFailed + asmp->numParityFailed) == 0) { if (((asmp->numStripeUnitsAccessed <= (layoutPtr->numDataCol / 2)) && (layoutPtr->numDataCol != 1)) || (asmp->parityInfo->next != NULL) || rf_CheckStripeForFailures(raidPtr, asmp)) { *createFunc = (RF_VoidFuncPtr) rf_CreateParityLoggingSmallWriteDAG; } else *createFunc = (RF_VoidFuncPtr) rf_CreateParityLoggingLargeWriteDAG; } else if (asmp->numParityFailed == 1) *createFunc = (RF_VoidFuncPtr) rf_CreateNonRedundantWriteDAG; else if (asmp->numStripeUnitsAccessed != 1 && failedPDA->numSector != layoutPtr->sectorsPerStripeUnit) *createFunc = NULL; else *createFunc = (RF_VoidFuncPtr) rf_CreateDegradedWriteDAG; } } #endif /* RF_INCLUDE_PARITYLOGGING > 0 */