/* $NetBSD: nslu2_machdep.c,v 1.6 2008/04/27 18:58:47 matt Exp $ */ /*- * Copyright (c) 2006 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Steve C. Woodford. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the NetBSD * Foundation, Inc. and its contributors. * 4. Neither the name of The NetBSD Foundation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * Copyright (c) 2003 * Ichiro FUKUHARA . * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Ichiro FUKUHARA. * 4. The name of the company nor the name of the author may be used to * endorse or promote products derived from this software without specific * prior written permission. * * THIS SOFTWARE IS PROVIDED BY ICHIRO FUKUHARA ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL ICHIRO FUKUHARA OR THE VOICES IN HIS HEAD BE LIABLE FOR * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * Copyright (c) 1997,1998 Mark Brinicombe. * Copyright (c) 1997,1998 Causality Limited. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Mark Brinicombe * for the NetBSD Project. * 4. The name of the company nor the name of the author may be used to * endorse or promote products derived from this software without specific * prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * Machine dependant functions for kernel setup for Linksys NSLU2 * using RedBoot firmware. */ #include __KERNEL_RCSID(0, "$NetBSD: nslu2_machdep.c,v 1.6 2008/04/27 18:58:47 matt Exp $"); #include "opt_ddb.h" #include "opt_kgdb.h" #include "opt_pmap_debug.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "com.h" #if NCOM > 0 #include #include #endif #include "ksyms.h" /* Kernel text starts 2MB in from the bottom of the kernel address space. */ #define KERNEL_TEXT_BASE (KERNEL_BASE + 0x00200000) #define KERNEL_VM_BASE (KERNEL_BASE + 0x01000000) /* * The range 0xc1000000 - 0xccffffff is available for kernel VM space * Core-logic registers and I/O mappings occupy 0xfd000000 - 0xffffffff */ #define KERNEL_VM_SIZE 0x0C000000 /* * Address to call from cpu_reset() to reset the machine. * This is machine architecture dependant as it varies depending * on where the ROM appears when you turn the MMU off. */ u_int cpu_reset_address = 0x00000000; /* Define various stack sizes in pages */ #define IRQ_STACK_SIZE 1 #define ABT_STACK_SIZE 1 #define UND_STACK_SIZE 1 BootConfig bootconfig; /* Boot config storage */ char *boot_args = NULL; char *boot_file = NULL; vm_offset_t physical_start; vm_offset_t physical_freestart; vm_offset_t physical_freeend; vm_offset_t physical_end; u_int free_pages; vm_offset_t pagetables_start; int physmem = 0; /* Physical and virtual addresses for some global pages */ pv_addr_t irqstack; pv_addr_t undstack; pv_addr_t abtstack; pv_addr_t kernelstack; pv_addr_t minidataclean; vm_offset_t msgbufphys; extern u_int data_abort_handler_address; extern u_int prefetch_abort_handler_address; extern u_int undefined_handler_address; extern int end; #ifdef PMAP_DEBUG extern int pmap_debug_level; #endif #define KERNEL_PT_SYS 0 /* L2 table for mapping zero page */ #define KERNEL_PT_KERNEL 1 /* L2 table for mapping kernel */ #define KERNEL_PT_KERNEL_NUM 4 #define KERNEL_PT_IO (KERNEL_PT_KERNEL + KERNEL_PT_KERNEL_NUM) /* L2 tables for mapping kernel VM */ #define KERNEL_PT_VMDATA (KERNEL_PT_IO + 1) #define KERNEL_PT_VMDATA_NUM 4 /* start with 16MB of KVM */ #define NUM_KERNEL_PTS (KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM) pv_addr_t kernel_pt_table[NUM_KERNEL_PTS]; struct user *proc0paddr; /* Prototypes */ void consinit(void); u_int cpu_get_control __P((void)); /* * Define the default console speed for the board. This is generally * what the firmware provided with the board defaults to. */ #ifndef CONSPEED #define CONSPEED B115200 #endif /* ! CONSPEED */ #ifndef CONUNIT #define CONUNIT 0 #endif #ifndef CONMODE #define CONMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB)) | CS8) /* 8N1 */ #endif int comcnspeed = CONSPEED; int comcnmode = CONMODE; int comcnunit = CONUNIT; #if KGDB #ifndef KGDB_DEVNAME #error Must define KGDB_DEVNAME #endif const char kgdb_devname[] = KGDB_DEVNAME; #ifndef KGDB_DEVADDR #error Must define KGDB_DEVADDR #endif unsigned long kgdb_devaddr = KGDB_DEVADDR; #ifndef KGDB_DEVRATE #define KGDB_DEVRATE CONSPEED #endif int kgdb_devrate = KGDB_DEVRATE; #ifndef KGDB_DEVMODE #define KGDB_DEVMODE CONMODE #endif int kgdb_devmode = KGDB_DEVMODE; #endif /* KGDB */ /* * void cpu_reboot(int howto, char *bootstr) * * Reboots the system * * Deal with any syncing, unmounting, dumping and shutdown hooks, * then reset the CPU. */ void cpu_reboot(int howto, char *bootstr) { #ifdef DIAGNOSTIC /* info */ printf("boot: howto=%08x curproc=%p\n", howto, curproc); #endif /* * If we are still cold then hit the air brakes * and crash to earth fast */ if (cold) { doshutdownhooks(); printf("The operating system has halted.\n"); printf("Please press any key to reboot.\n\n"); cngetc(); goto reset; } /* Disable console buffering */ /* * If RB_NOSYNC was not specified sync the discs. * Note: Unless cold is set to 1 here, syslogd will die during the * unmount. It looks like syslogd is getting woken up only to find * that it cannot page part of the binary in as the filesystem has * been unmounted. */ if (!(howto & RB_NOSYNC)) bootsync(); /* Say NO to interrupts */ splhigh(); /* Do a dump if requested. */ if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP) dumpsys(); /* Run any shutdown hooks */ doshutdownhooks(); /* Make sure IRQ's are disabled */ IRQdisable; if ((howto & (RB_HALT | RB_POWERDOWN)) == RB_HALT) { printf("The operating system has halted.\n"); printf("Please press any key to reboot.\n\n"); cngetc(); } reset: /* * Make really really sure that all interrupts are disabled, */ (void) disable_interrupts(I32_bit | F32_bit); if (howto & RB_POWERDOWN) { uint32_t reg; printf("powering down...\n\r"); /* Delay to allow the UART's Tx FIFO to drain */ delay(50000); #define GPRD(r) *((volatile uint32_t *)(IXP425_GPIO_VBASE+(r))) #define GPWR(r,v) *((volatile uint32_t *)(IXP425_GPIO_VBASE+(r))) = (v) /* * Power-down pin requires a short pulse */ reg = GPRD(IXP425_GPIO_GPOUTR); reg |= 1u << GPIO_POWER_OFF; GPWR(IXP425_GPIO_GPOUTR, reg); delay(1000); reg = GPRD(IXP425_GPIO_GPOUTR); reg &= ~(1u << GPIO_POWER_OFF); GPWR(IXP425_GPIO_GPOUTR, reg); delay(500000); printf("POWER OFF FAILED! TRYING TO REBOOT INSTEAD\n\r"); } printf("rebooting...\n\r"); #define WDWR(r,v) *((volatile uint32_t *)(IXP425_OST_WDOG_VBASE+(r))) = (v) /* Force a watchdog reset */ WDWR(IXP425_OST_WDOG_KEY, OST_WDOG_KEY_MAJICK); WDWR(IXP425_OST_WDOG_ENAB, OST_WDOG_ENAB_RST_ENA); WDWR(IXP425_OST_WDOG, 0x1000); WDWR(IXP425_OST_WDOG_ENAB, OST_WDOG_ENAB_RST_ENA | OST_WDOG_ENAB_CNT_ENA); delay(500000); /* ...and if that didn't work, just croak. */ printf("RESET FAILED!\n"); for (;;); } /* Static device mappings. */ static const struct pmap_devmap nslu2_devmap[] = { /* Physical/Virtual address for I/O space */ { IXP425_IO_VBASE, IXP425_IO_HWBASE, IXP425_IO_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE, }, /* Expansion Bus */ { IXP425_EXP_VBASE, IXP425_EXP_HWBASE, IXP425_EXP_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE, }, /* IXP425 PCI Configuration */ { IXP425_PCI_VBASE, IXP425_PCI_HWBASE, IXP425_PCI_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE, }, /* SDRAM Controller */ { IXP425_MCU_VBASE, IXP425_MCU_HWBASE, IXP425_MCU_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE, }, /* PCI Memory Space */ { IXP425_PCI_MEM_VBASE, IXP425_PCI_MEM_HWBASE, IXP425_PCI_MEM_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE, }, /* Flash memory */ { NSLU2_FLASH_VBASE, NSLU2_FLASH_HWBASE, NSLU2_FLASH_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE, }, { 0, 0, 0, 0, 0, } }; /* * u_int initarm(...) * * Initial entry point on startup. This gets called before main() is * entered. * It should be responsible for setting up everything that must be * in place when main is called. * This includes * Taking a copy of the boot configuration structure. * Initialising the physical console so characters can be printed. * Setting up page tables for the kernel * Relocating the kernel to the bottom of physical memory */ u_int initarm(void *arg) { extern vaddr_t xscale_cache_clean_addr; #ifdef DIAGNOSTIC extern vsize_t xscale_minidata_clean_size; #endif int loop; int loop1; u_int kerneldatasize; u_int l1pagetable; u_int freemempos; uint32_t reg; /* * Make sure the power-down GPIO pin is configured correctly, as * cpu_reboot() may be called early on (e.g. from within ddb(9)). */ /* Pin is active-high, so make sure it's driven low */ reg = GPRD(IXP425_GPIO_GPOUTR); reg &= ~(1u << GPIO_POWER_OFF); GPWR(IXP425_GPIO_GPOUTR, reg); /* Set as output */ reg = GPRD(IXP425_GPIO_GPOER); reg &= ~(1u << GPIO_POWER_OFF); GPWR(IXP425_GPIO_GPOER, reg); /* * Since we map v0xf0000000 == p0xc8000000, it's possible for * us to initialize the console now. */ consinit(); #ifdef VERBOSE_INIT_ARM /* Talk to the user */ printf("\nNetBSD/evbarm (Linksys NSLU2) booting ...\n"); #endif /* * Heads up ... Setup the CPU / MMU / TLB functions */ if (set_cpufuncs()) panic("cpu not recognized!"); /* XXX overwrite bootconfig to hardcoded values */ bootconfig.dramblocks = 1; bootconfig.dram[0].address = 0x10000000; bootconfig.dram[0].pages = ixp425_sdram_size() / PAGE_SIZE; kerneldatasize = (u_int32_t)&end - (u_int32_t)KERNEL_TEXT_BASE; #ifdef VERBOSE_INIT_ARM printf("kernsize=0x%x\n", kerneldatasize); #endif kerneldatasize = ((kerneldatasize - 1) & ~(PAGE_SIZE * 4 - 1)) + PAGE_SIZE * 8; /* * Set up the variables that define the availablilty of * physical memory. For now, we're going to set * physical_freestart to 0x10200000 (where the kernel * was loaded), and allocate the memory we need downwards. * If we get too close to the L1 table that we set up, we * will panic. We will update physical_freestart and * physical_freeend later to reflect what pmap_bootstrap() * wants to see. * * XXX pmap_bootstrap() needs an enema. */ physical_start = bootconfig.dram[0].address; physical_end = physical_start + (bootconfig.dram[0].pages * PAGE_SIZE); physical_freestart = physical_start + (KERNEL_TEXT_BASE - KERNEL_BASE) + kerneldatasize; physical_freeend = physical_end; physmem = (physical_end - physical_start) / PAGE_SIZE; /* Tell the user about the memory */ #ifdef VERBOSE_INIT_ARM printf("physmemory: %d pages at 0x%08lx -> 0x%08lx\n", physmem, physical_start, physical_end - 1); printf("Allocating page tables\n"); #endif free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE; freemempos = 0x10000000; #ifdef VERBOSE_INIT_ARM printf("physical_start = 0x%08lx, physical_end = 0x%08lx\n", physical_start, physical_end); #endif /* Define a macro to simplify memory allocation */ #define valloc_pages(var, np) \ alloc_pages((var).pv_pa, (np)); \ (var).pv_va = KERNEL_BASE + (var).pv_pa - physical_start; #if 0 #define alloc_pages(var, np) \ physical_freeend -= ((np) * PAGE_SIZE); \ if (physical_freeend < physical_freestart) \ panic("initarm: out of memory"); \ (var) = physical_freeend; \ free_pages -= (np); \ memset((char *)(var), 0, ((np) * PAGE_SIZE)); #else #define alloc_pages(var, np) \ (var) = freemempos; \ memset((char *)(var), 0, ((np) * PAGE_SIZE)); \ freemempos += (np) * PAGE_SIZE; #endif loop1 = 0; for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) { /* Are we 16KB aligned for an L1 ? */ if (((physical_freeend - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) == 0 && kernel_l1pt.pv_pa == 0) { valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE); } else { valloc_pages(kernel_pt_table[loop1], L2_TABLE_SIZE / PAGE_SIZE); ++loop1; } } /* This should never be able to happen but better confirm that. */ if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE-1)) != 0) panic("initarm: Failed to align the kernel page directory"); /* * Allocate a page for the system page. * This page will just contain the system vectors and can be * shared by all processes. */ alloc_pages(systempage.pv_pa, 1); /* Allocate stacks for all modes */ valloc_pages(irqstack, IRQ_STACK_SIZE); valloc_pages(abtstack, ABT_STACK_SIZE); valloc_pages(undstack, UND_STACK_SIZE); valloc_pages(kernelstack, UPAGES); /* Allocate enough pages for cleaning the Mini-Data cache. */ KASSERT(xscale_minidata_clean_size <= PAGE_SIZE); valloc_pages(minidataclean, 1); #ifdef VERBOSE_INIT_ARM printf("IRQ stack: p0x%08lx v0x%08lx\n", irqstack.pv_pa, irqstack.pv_va); printf("ABT stack: p0x%08lx v0x%08lx\n", abtstack.pv_pa, abtstack.pv_va); printf("UND stack: p0x%08lx v0x%08lx\n", undstack.pv_pa, undstack.pv_va); printf("SVC stack: p0x%08lx v0x%08lx\n", kernelstack.pv_pa, kernelstack.pv_va); #endif /* * XXX Defer this to later so that we can reclaim the memory * XXX used by the RedBoot page tables. */ alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / PAGE_SIZE); /* * Ok we have allocated physical pages for the primary kernel * page tables */ #ifdef VERBOSE_INIT_ARM printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa); #endif /* * Now we start construction of the L1 page table * We start by mapping the L2 page tables into the L1. * This means that we can replace L1 mappings later on if necessary */ l1pagetable = kernel_l1pt.pv_pa; /* Map the L2 pages tables in the L1 page table */ pmap_link_l2pt(l1pagetable, ARM_VECTORS_HIGH & ~(0x00400000 - 1), &kernel_pt_table[KERNEL_PT_SYS]); for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; loop++) pmap_link_l2pt(l1pagetable, KERNEL_BASE + loop * 0x00400000, &kernel_pt_table[KERNEL_PT_KERNEL + loop]); for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; loop++) pmap_link_l2pt(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000, &kernel_pt_table[KERNEL_PT_VMDATA + loop]); /* update the top of the kernel VM */ pmap_curmaxkvaddr = KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000); pmap_link_l2pt(l1pagetable, IXP425_IO_VBASE, &kernel_pt_table[KERNEL_PT_IO]); #ifdef VERBOSE_INIT_ARM printf("Mapping kernel\n"); #endif /* Now we fill in the L2 pagetable for the kernel static code/data */ { extern char etext[], _end[]; size_t textsize = (uintptr_t) etext - KERNEL_TEXT_BASE; size_t totalsize = (uintptr_t) _end - KERNEL_TEXT_BASE; u_int logical; textsize = (textsize + PGOFSET) & ~PGOFSET; totalsize = (totalsize + PGOFSET) & ~PGOFSET; logical = 0x00200000; /* offset of kernel in RAM */ logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical, physical_start + logical, textsize, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical, physical_start + logical, totalsize - textsize, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); } #ifdef VERBOSE_INIT_ARM printf("Constructing L2 page tables\n"); #endif /* Map the stack pages */ pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa, IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa, ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa, UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa, UPAGES * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa, L1_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE); for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) { pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va, kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE); } /* Map the Mini-Data cache clean area. */ xscale_setup_minidata(l1pagetable, minidataclean.pv_va, minidataclean.pv_pa); /* Map the vector page. */ pmap_map_entry(l1pagetable, ARM_VECTORS_HIGH, systempage.pv_pa, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); /* * Map the IXP425 registers */ pmap_devmap_bootstrap(l1pagetable, nslu2_devmap); /* * Give the XScale global cache clean code an appropriately * sized chunk of unmapped VA space starting at 0xff000000 * (our device mappings end before this address). */ xscale_cache_clean_addr = 0xff000000U; /* * Now we have the real page tables in place so we can switch to them. * Once this is done we will be running with the REAL kernel page * tables. */ /* * Update the physical_freestart/physical_freeend/free_pages * variables. */ { extern char _end[]; physical_freestart = physical_start + (((((uintptr_t) _end) + PGOFSET) & ~PGOFSET) - KERNEL_BASE); physical_freeend = physical_end; free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE; } /* Switch tables */ #ifdef VERBOSE_INIT_ARM printf("freestart = 0x%08lx, free_pages = %d (0x%x)\n", physical_freestart, free_pages, free_pages); printf("switching to new L1 page table @%#lx...", kernel_l1pt.pv_pa); #endif cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT); setttb(kernel_l1pt.pv_pa); cpu_tlb_flushID(); cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)); /* * Moved from cpu_startup() as data_abort_handler() references * this during uvm init */ proc0paddr = (struct user *)kernelstack.pv_va; lwp0.l_addr = proc0paddr; #ifdef VERBOSE_INIT_ARM printf("bootstrap done.\n"); #endif arm32_vector_init(ARM_VECTORS_HIGH, ARM_VEC_ALL); /* * Pages were allocated during the secondary bootstrap for the * stacks for different CPU modes. * We must now set the r13 registers in the different CPU modes to * point to these stacks. * Since the ARM stacks use STMFD etc. we must set r13 to the top end * of the stack memory. */ #ifdef VERBOSE_INIT_ARM printf("init subsystems: stacks "); #endif set_stackptr(PSR_IRQ32_MODE, irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE); set_stackptr(PSR_ABT32_MODE, abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE); set_stackptr(PSR_UND32_MODE, undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE); /* * Well we should set a data abort handler. * Once things get going this will change as we will need a proper * handler. * Until then we will use a handler that just panics but tells us * why. * Initialisation of the vectors will just panic on a data abort. * This just fills in a slightly better one. */ #ifdef VERBOSE_INIT_ARM printf("vectors "); #endif data_abort_handler_address = (u_int)data_abort_handler; prefetch_abort_handler_address = (u_int)prefetch_abort_handler; undefined_handler_address = (u_int)undefinedinstruction_bounce; /* Initialise the undefined instruction handlers */ #ifdef VERBOSE_INIT_ARM printf("undefined "); #endif undefined_init(); /* Load memory into UVM. */ #ifdef VERBOSE_INIT_ARM printf("page "); #endif uvm_setpagesize(); /* initialize PAGE_SIZE-dependent variables */ uvm_page_physload(atop(physical_freestart), atop(physical_freeend), atop(physical_freestart), atop(physical_freeend), VM_FREELIST_DEFAULT); /* Boot strap pmap telling it where the kernel page table is */ #ifdef VERBOSE_INIT_ARM printf("pmap "); #endif pmap_bootstrap(KERNEL_VM_BASE, KERNEL_VM_BASE + KERNEL_VM_SIZE); /* Setup the IRQ system */ #ifdef VERBOSE_INIT_ARM printf("irq "); #endif ixp425_intr_init(); #ifdef VERBOSE_INIT_ARM printf("\nAll initialize done!\nNow Starting NetBSD, Hear we go!\n"); #endif #ifdef BOOTHOWTO boothowto = BOOTHOWTO; #endif #if NKSYMS || defined(DDB) || defined(LKM) /* Firmware doesn't load symbols. */ ksyms_init(0, NULL, NULL); #endif #ifdef DDB db_machine_init(); if (boothowto & RB_KDB) Debugger(); #endif /* We return the new stack pointer address */ return(kernelstack.pv_va + USPACE_SVC_STACK_TOP); } /* * consinit */ void consinit(void) { static int consinit_called; static const bus_addr_t addrs[2] = { IXP425_UART0_HWBASE, IXP425_UART1_HWBASE }; if (consinit_called != 0) return; consinit_called = 1; pmap_devmap_register(nslu2_devmap); if (comcnattach(&ixp425_a4x_bs_tag, addrs[comcnunit], comcnspeed, IXP425_UART_FREQ, COM_TYPE_PXA2x0, comcnmode)) panic("can't init serial console (UART%d)", comcnunit); }