/* $NetBSD: sdmmc_mem.c,v 1.2 2009/05/24 12:59:54 nonaka Exp $ */ /* $OpenBSD: sdmmc_mem.c,v 1.10 2009/01/09 10:55:22 jsg Exp $ */ /* * Copyright (c) 2006 Uwe Stuehler * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ /*- * Copyright (c) 2007-2009 NONAKA Kimihiro * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* Routines for SD/MMC memory cards. */ #include __KERNEL_RCSID(0, "$NetBSD: sdmmc_mem.c,v 1.2 2009/05/24 12:59:54 nonaka Exp $"); #include #include #include #include #include #include #include #include #include #ifdef SDMMC_DEBUG #define DPRINTF(s) do { printf s; } while (/*CONSTCOND*/0) #else #define DPRINTF(s) do {} while (/*CONSTCOND*/0) #endif static int sdmmc_mem_send_op_cond(struct sdmmc_softc *, uint32_t, uint32_t *); static int sdmmc_mem_send_if_cond(struct sdmmc_softc *, uint32_t, uint32_t *); static int sdmmc_mem_set_blocklen(struct sdmmc_softc *, struct sdmmc_function *); #ifdef SDMMC_DUMP_CSD static void sdmmc_print_csd(sdmmc_response, struct sdmmc_csd *); #endif static int sdmmc_mem_read_block_subr(struct sdmmc_function *, uint32_t, u_char *, size_t); static int sdmmc_mem_write_block_subr(struct sdmmc_function *, uint32_t, u_char *, size_t); /* * Initialize SD/MMC memory cards and memory in SDIO "combo" cards. */ int sdmmc_mem_enable(struct sdmmc_softc *sc) { uint32_t host_ocr; uint32_t card_ocr; int error; SDMMC_LOCK(sc); /* Set host mode to SD "combo" card or SD memory-only. */ SET(sc->sc_flags, SMF_SD_MODE|SMF_MEM_MODE); /* Reset memory (*must* do that before CMD55 or CMD1). */ sdmmc_go_idle_state(sc); /* * Read the SD/MMC memory OCR value by issuing CMD55 followed * by ACMD41 to read the OCR value from memory-only SD cards. * MMC cards will not respond to CMD55 or ACMD41 and this is * how we distinguish them from SD cards. */ mmc_mode: error = sdmmc_mem_send_op_cond(sc, 0, &card_ocr); if (error) { if (ISSET(sc->sc_flags, SMF_SD_MODE) && !ISSET(sc->sc_flags, SMF_IO_MODE)) { /* Not a SD card, switch to MMC mode. */ DPRINTF(("%s: switch to MMC mode\n", SDMMCDEVNAME(sc))); CLR(sc->sc_flags, SMF_SD_MODE); goto mmc_mode; } if (!ISSET(sc->sc_flags, SMF_SD_MODE)) { DPRINTF(("%s: couldn't read memory OCR\n", SDMMCDEVNAME(sc))); goto out; } else { /* Not a "combo" card. */ CLR(sc->sc_flags, SMF_MEM_MODE); error = 0; goto out; } } /* Set the lowest voltage supported by the card and host. */ host_ocr = sdmmc_chip_host_ocr(sc->sc_sct, sc->sc_sch); error = sdmmc_set_bus_power(sc, host_ocr, card_ocr); if (error) { DPRINTF(("%s: couldn't supply voltage requested by card\n", SDMMCDEVNAME(sc))); goto out; } /* Tell the card(s) to enter the idle state (again). */ sdmmc_go_idle_state(sc); error = sdmmc_mem_send_if_cond(sc, 0x1aa, &card_ocr); if (error == 0 && card_ocr == 0x1aa) SET(host_ocr, MMC_OCR_HCS); /* Send the new OCR value until all cards are ready. */ error = sdmmc_mem_send_op_cond(sc, host_ocr, NULL); if (error) { DPRINTF(("%s: couldn't send memory OCR\n", SDMMCDEVNAME(sc))); goto out; } out: SDMMC_UNLOCK(sc); return error; } /* * Read the CSD and CID from all cards and assign each card a unique * relative card address (RCA). CMD2 is ignored by SDIO-only cards. */ void sdmmc_mem_scan(struct sdmmc_softc *sc) { struct sdmmc_command cmd; struct sdmmc_function *sf; uint16_t next_rca; int error; int retry; SDMMC_LOCK(sc); /* * CMD2 is a broadcast command understood by SD cards and MMC * cards. All cards begin to respond to the command, but back * off if another card drives the CMD line to a different level. * Only one card will get its entire response through. That * card remains silent once it has been assigned a RCA. */ for (retry = 0; retry < 100; retry++) { memset(&cmd, 0, sizeof cmd); cmd.c_opcode = MMC_ALL_SEND_CID; cmd.c_flags = SCF_CMD_BCR | SCF_RSP_R2; error = sdmmc_mmc_command(sc, &cmd); if (error == ETIMEDOUT) { /* No more cards there. */ break; } else if (error) { DPRINTF(("%s: couldn't read CID\n", SDMMCDEVNAME(sc))); break; } /* In MMC mode, find the next available RCA. */ next_rca = 1; if (!ISSET(sc->sc_flags, SMF_SD_MODE)) { SIMPLEQ_FOREACH(sf, &sc->sf_head, sf_list) next_rca++; } /* Allocate a sdmmc_function structure. */ sf = sdmmc_function_alloc(sc); sf->rca = next_rca; /* * Remember the CID returned in the CMD2 response for * later decoding. */ memcpy(sf->raw_cid, cmd.c_resp, sizeof(sf->raw_cid)); /* * Silence the card by assigning it a unique RCA, or * querying it for its RCA in the case of SD. */ if (sdmmc_set_relative_addr(sc, sf) != 0) { aprint_error_dev(sc->sc_dev, "couldn't set mem RCA\n"); sdmmc_function_free(sf); break; } #if 0 /* Verify that the RCA has been set by selecting the card. */ if (sdmmc_select_card(sc, sf) != 0) { printf("%s: can't select mem RCA %d (verify)\n", SDMMCDEVNAME(sc), sf->rca); sdmmc_function_free(sf); break; } /* Deselect. */ (void)sdmmc_select_card(sc, NULL); #endif /* * If this is a memory-only card, the card responding * first becomes an alias for SDIO function 0. */ if (sc->sc_fn0 == NULL) sc->sc_fn0 = sf; SIMPLEQ_INSERT_TAIL(&sc->sf_head, sf, sf_list); } /* * All cards are either inactive or awaiting further commands. * Read the CSDs and decode the raw CID for each card. */ SIMPLEQ_FOREACH(sf, &sc->sf_head, sf_list) { memset(&cmd, 0, sizeof cmd); cmd.c_opcode = MMC_SEND_CSD; cmd.c_arg = MMC_ARG_RCA(sf->rca); cmd.c_flags = SCF_CMD_AC | SCF_RSP_R2; if (sdmmc_mmc_command(sc, &cmd) != 0) { SET(sf->flags, SFF_ERROR); continue; } if (sdmmc_decode_csd(sc, cmd.c_resp, sf) != 0 || sdmmc_decode_cid(sc, sf->raw_cid, sf) != 0) { SET(sf->flags, SFF_ERROR); continue; } #ifdef SDMMC_DEBUG printf("%s: CID: ", SDMMCDEVNAME(sc)); sdmmc_print_cid(&sf->cid); #endif } SDMMC_UNLOCK(sc); } int sdmmc_decode_csd(struct sdmmc_softc *sc, sdmmc_response resp, struct sdmmc_function *sf) { /* TRAN_SPEED(2:0): transfer rate exponent */ static const int speed_exponent[8] = { 100 * 1, /* 100 Kbits/s */ 1 * 1000, /* 1 Mbits/s */ 10 * 1000, /* 10 Mbits/s */ 100 * 1000, /* 100 Mbits/s */ 0, 0, 0, 0, }; /* TRAN_SPEED(6:3): time mantissa */ static const int speed_mantissa[16] = { 0, 10, 12, 13, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 70, 80, }; struct sdmmc_csd *csd = &sf->csd; int e, m; if (ISSET(sc->sc_flags, SMF_SD_MODE)) { /* * CSD version 1.0 corresponds to SD system * specification version 1.0 - 1.10. (SanDisk, 3.5.3) */ csd->csdver = SD_CSD_CSDVER(resp); switch (csd->csdver) { case SD_CSD_CSDVER_2_0: DPRINTF(("%s: SD Ver.2.0\n", SDMMCDEVNAME(sc))); SET(sf->flags, SFF_SDHC); csd->capacity = SD_CSD_V2_CAPACITY(resp); csd->read_bl_len = SD_CSD_V2_BL_LEN; break; case SD_CSD_CSDVER_1_0: DPRINTF(("%s: SD Ver.1.0\n", SDMMCDEVNAME(sc))); csd->capacity = SD_CSD_CAPACITY(resp); csd->read_bl_len = SD_CSD_READ_BL_LEN(resp); break; default: aprint_error_dev(sc->sc_dev, "unknown SD CSD structure version 0x%x\n", csd->csdver); return 1; } csd->mmcver = SD_CSD_MMCVER(resp); csd->write_bl_len = SD_CSD_WRITE_BL_LEN(resp); csd->r2w_factor = SD_CSD_R2W_FACTOR(resp); e = SD_CSD_SPEED_EXP(resp); m = SD_CSD_SPEED_MANT(resp); csd->tran_speed = speed_exponent[e] * speed_mantissa[m] / 10; } else { csd->csdver = MMC_CSD_CSDVER(resp); if (csd->csdver != MMC_CSD_CSDVER_1_0 && csd->csdver != MMC_CSD_CSDVER_2_0) { aprint_error_dev(sc->sc_dev, "unknown MMC CSD structure version 0x%x\n", csd->csdver); return 1; } csd->mmcver = MMC_CSD_MMCVER(resp); csd->capacity = MMC_CSD_CAPACITY(resp); csd->read_bl_len = MMC_CSD_READ_BL_LEN(resp); csd->write_bl_len = MMC_CSD_WRITE_BL_LEN(resp); csd->r2w_factor = MMC_CSD_R2W_FACTOR(resp); e = MMC_CSD_TRAN_SPEED_EXP(resp); m = MMC_CSD_TRAN_SPEED_MANT(resp); csd->tran_speed = speed_exponent[e] * speed_mantissa[m] / 10; } csd->sector_size = MIN((1 << csd->read_bl_len), sdmmc_chip_host_maxblklen(sc->sc_sct, sc->sc_sch)); if (csd->sector_size < (1 << csd->read_bl_len)) csd->capacity *= (1 << csd->read_bl_len) / csd->sector_size; csd->sector_size_sb = ffs(csd->sector_size) - 1; if (sc->sc_busclk > csd->tran_speed) sc->sc_busclk = csd->tran_speed; #ifdef SDMMC_DUMP_CSD sdmmc_print_csd(resp, csd); #endif return 0; } int sdmmc_decode_cid(struct sdmmc_softc *sc, sdmmc_response resp, struct sdmmc_function *sf) { struct sdmmc_cid *cid = &sf->cid; if (ISSET(sc->sc_flags, SMF_SD_MODE)) { cid->mid = SD_CID_MID(resp); cid->oid = SD_CID_OID(resp); SD_CID_PNM_CPY(resp, cid->pnm); cid->rev = SD_CID_REV(resp); cid->psn = SD_CID_PSN(resp); cid->mdt = SD_CID_MDT(resp); } else { switch(sf->csd.mmcver) { case MMC_CSD_MMCVER_1_0: case MMC_CSD_MMCVER_1_4: cid->mid = MMC_CID_MID_V1(resp); MMC_CID_PNM_V1_CPY(resp, cid->pnm); cid->rev = MMC_CID_REV_V1(resp); cid->psn = MMC_CID_PSN_V1(resp); cid->mdt = MMC_CID_MDT_V1(resp); break; case MMC_CSD_MMCVER_2_0: case MMC_CSD_MMCVER_3_1: case MMC_CSD_MMCVER_4_0: cid->mid = MMC_CID_MID_V2(resp); cid->oid = MMC_CID_OID_V2(resp); MMC_CID_PNM_V2_CPY(resp, cid->pnm); cid->psn = MMC_CID_PSN_V2(resp); break; default: aprint_error_dev(sc->sc_dev, "unknown MMC version %d\n", sf->csd.mmcver); return 1; } } return 0; } void sdmmc_print_cid(struct sdmmc_cid *cid) { printf("mid=0x%02x oid=0x%04x pnm=\"%s\" rev=0x%02x psn=0x%08x" " mdt=%03x\n", cid->mid, cid->oid, cid->pnm, cid->rev, cid->psn, cid->mdt); } #ifdef SDMMC_DUMP_CSD static void sdmmc_print_csd(sdmmc_response resp, struct sdmmc_csd *csd) { printf("csdver = %d\n", csd->csdver); printf("mmcver = %d\n", csd->mmcver); printf("capacity = %08x\n", csd->capacity); printf("read_bl_len = %d\n", csd->read_bl_len); printf("write_cl_len = %d\n", csd->write_bl_len); printf("r2w_factor = %d\n", csd->r2w_factor); printf("tran_speed = %d\n", csd->tran_speed); printf("sector_size = %d\n", csd->sector_size); } #endif /* * Initialize a SD/MMC memory card. */ int sdmmc_mem_init(struct sdmmc_softc *sc, struct sdmmc_function *sf) { int error; SDMMC_LOCK(sc); error = sdmmc_select_card(sc, sf); if (error) goto out; if (!ISSET(sf->flags, SFF_SDHC)) { error = sdmmc_mem_set_blocklen(sc, sf); if (error) goto out; } out: SDMMC_UNLOCK(sc); return error; } /* * Get or set the card's memory OCR value (SD or MMC). */ static int sdmmc_mem_send_op_cond(struct sdmmc_softc *sc, uint32_t ocr, uint32_t *ocrp) { struct sdmmc_command cmd; int error; int retry; /* Don't lock */ /* * If we change the OCR value, retry the command until the OCR * we receive in response has the "CARD BUSY" bit set, meaning * that all cards are ready for identification. */ for (retry = 0; retry < 100; retry++) { memset(&cmd, 0, sizeof(cmd)); cmd.c_arg = ocr; cmd.c_flags = SCF_CMD_BCR | SCF_RSP_R3; if (ISSET(sc->sc_flags, SMF_SD_MODE)) { cmd.c_opcode = SD_APP_OP_COND; error = sdmmc_app_command(sc, &cmd); } else { cmd.c_opcode = MMC_SEND_OP_COND; error = sdmmc_mmc_command(sc, &cmd); } if (error) break; if (ISSET(MMC_R3(cmd.c_resp), MMC_OCR_MEM_READY) || ocr == 0) break; error = ETIMEDOUT; sdmmc_delay(10000); } if (error == 0 && ocrp != NULL) *ocrp = MMC_R3(cmd.c_resp); return error; } static int sdmmc_mem_send_if_cond(struct sdmmc_softc *sc, uint32_t ocr, uint32_t *ocrp) { struct sdmmc_command cmd; int error; /* Don't lock */ memset(&cmd, 0, sizeof(cmd)); cmd.c_arg = ocr; cmd.c_flags = SCF_CMD_BCR | SCF_RSP_R7; cmd.c_opcode = SD_SEND_IF_COND; error = sdmmc_mmc_command(sc, &cmd); if (error == 0 && ocrp != NULL) *ocrp = MMC_R7(cmd.c_resp); return error; } /* * Set the read block length appropriately for this card, according to * the card CSD register value. */ static int sdmmc_mem_set_blocklen(struct sdmmc_softc *sc, struct sdmmc_function *sf) { struct sdmmc_command cmd; int error; /* Don't lock */ memset(&cmd, 0, sizeof(cmd)); cmd.c_opcode = MMC_SET_BLOCKLEN; cmd.c_arg = sf->csd.sector_size; cmd.c_flags = SCF_CMD_AC | SCF_RSP_R1; error = sdmmc_mmc_command(sc, &cmd); DPRINTF(("%s: sdmmc_mem_set_blocklen: read_bl_len=%d sector_size=%d\n", SDMMCDEVNAME(sc), 1 << sf->csd.read_bl_len, sf->csd.sector_size)); return error; } static int sdmmc_mem_read_block_subr(struct sdmmc_function *sf, uint32_t blkno, u_char *data, size_t datalen) { struct sdmmc_softc *sc = sf->sc; struct sdmmc_command cmd; int error; error = sdmmc_select_card(sc, sf); if (error) goto out; memset(&cmd, 0, sizeof(cmd)); cmd.c_data = data; cmd.c_datalen = datalen; cmd.c_blklen = sf->csd.sector_size; cmd.c_opcode = (cmd.c_datalen / cmd.c_blklen) > 1 ? MMC_READ_BLOCK_MULTIPLE : MMC_READ_BLOCK_SINGLE; cmd.c_arg = blkno; if (!ISSET(sf->flags, SFF_SDHC)) cmd.c_arg <<= sf->csd.sector_size_sb; cmd.c_flags = SCF_CMD_ADTC | SCF_CMD_READ | SCF_RSP_R1; if (ISSET(sc->sc_caps, SMC_CAPS_DMA)) cmd.c_dmamap = sc->sc_dmap; error = sdmmc_mmc_command(sc, &cmd); if (error) goto out; if (!ISSET(sc->sc_caps, SMC_CAPS_AUTO_STOP)) { if (cmd.c_opcode == MMC_READ_BLOCK_MULTIPLE) { memset(&cmd, 0, sizeof cmd); cmd.c_opcode = MMC_STOP_TRANSMISSION; cmd.c_arg = MMC_ARG_RCA(sf->rca); cmd.c_flags = SCF_CMD_AC | SCF_RSP_R1B; error = sdmmc_mmc_command(sc, &cmd); if (error) goto out; } } do { memset(&cmd, 0, sizeof(cmd)); cmd.c_opcode = MMC_SEND_STATUS; cmd.c_arg = MMC_ARG_RCA(sf->rca); cmd.c_flags = SCF_CMD_AC | SCF_RSP_R1; error = sdmmc_mmc_command(sc, &cmd); if (error) break; /* XXX time out */ } while (!ISSET(MMC_R1(cmd.c_resp), MMC_R1_READY_FOR_DATA)); out: return error; } int sdmmc_mem_read_block(struct sdmmc_function *sf, uint32_t blkno, u_char *data, size_t datalen) { struct sdmmc_softc *sc = sf->sc; int error; SDMMC_LOCK(sc); if (!ISSET(sc->sc_caps, SMC_CAPS_DMA)) { error = sdmmc_mem_read_block_subr(sf, blkno, data, datalen); goto out; } /* DMA transfer */ error = bus_dmamap_load(sc->sc_dmat, sc->sc_dmap, data, datalen, NULL, BUS_DMA_NOWAIT|BUS_DMA_STREAMING|BUS_DMA_READ); if (error) goto out; bus_dmamap_sync(sc->sc_dmat, sc->sc_dmap, 0, datalen, BUS_DMASYNC_PREREAD); error = sdmmc_mem_read_block_subr(sf, blkno, data, datalen); if (error) goto unload; bus_dmamap_sync(sc->sc_dmat, sc->sc_dmap, 0, datalen, BUS_DMASYNC_POSTREAD); unload: bus_dmamap_unload(sc->sc_dmat, sc->sc_dmap); out: SDMMC_UNLOCK(sc); return error; } static int sdmmc_mem_write_block_subr(struct sdmmc_function *sf, uint32_t blkno, u_char *data, size_t datalen) { struct sdmmc_softc *sc = sf->sc; struct sdmmc_command cmd; int error; error = sdmmc_select_card(sc, sf); if (error) goto out; memset(&cmd, 0, sizeof(cmd)); cmd.c_data = data; cmd.c_datalen = datalen; cmd.c_blklen = sf->csd.sector_size; cmd.c_opcode = (cmd.c_datalen / cmd.c_blklen) > 1 ? MMC_WRITE_BLOCK_MULTIPLE : MMC_WRITE_BLOCK_SINGLE; cmd.c_arg = blkno; if (!ISSET(sf->flags, SFF_SDHC)) cmd.c_arg <<= sf->csd.sector_size_sb; cmd.c_flags = SCF_CMD_ADTC | SCF_RSP_R1; if (ISSET(sc->sc_caps, SMC_CAPS_DMA)) cmd.c_dmamap = sc->sc_dmap; error = sdmmc_mmc_command(sc, &cmd); if (error) goto out; if (!ISSET(sc->sc_caps, SMC_CAPS_AUTO_STOP)) { if (cmd.c_opcode == MMC_WRITE_BLOCK_MULTIPLE) { memset(&cmd, 0, sizeof(cmd)); cmd.c_opcode = MMC_STOP_TRANSMISSION; cmd.c_flags = SCF_CMD_AC | SCF_RSP_R1B; error = sdmmc_mmc_command(sc, &cmd); if (error) goto out; } } do { memset(&cmd, 0, sizeof(cmd)); cmd.c_opcode = MMC_SEND_STATUS; cmd.c_arg = MMC_ARG_RCA(sf->rca); cmd.c_flags = SCF_CMD_AC | SCF_RSP_R1; error = sdmmc_mmc_command(sc, &cmd); if (error) break; /* XXX time out */ } while (!ISSET(MMC_R1(cmd.c_resp), MMC_R1_READY_FOR_DATA)); out: return error; } int sdmmc_mem_write_block(struct sdmmc_function *sf, uint32_t blkno, u_char *data, size_t datalen) { struct sdmmc_softc *sc = sf->sc; int error; SDMMC_LOCK(sc); if (sdmmc_chip_write_protect(sc->sc_sct, sc->sc_sch)) { aprint_normal_dev(sc->sc_dev, "write-protected\n"); error = EIO; goto out; } if (!ISSET(sc->sc_caps, SMC_CAPS_DMA)) { error = sdmmc_mem_write_block_subr(sf, blkno, data, datalen); goto out; } /* DMA transfer */ error = bus_dmamap_load(sc->sc_dmat, sc->sc_dmap, data, datalen, NULL, BUS_DMA_NOWAIT|BUS_DMA_STREAMING|BUS_DMA_WRITE); if (error) goto out; bus_dmamap_sync(sc->sc_dmat, sc->sc_dmap, 0, datalen, BUS_DMASYNC_PREWRITE); error = sdmmc_mem_write_block_subr(sf, blkno, data, datalen); if (error) goto unload; bus_dmamap_sync(sc->sc_dmat, sc->sc_dmap, 0, datalen, BUS_DMASYNC_POSTWRITE); unload: bus_dmamap_unload(sc->sc_dmat, sc->sc_dmap); out: SDMMC_UNLOCK(sc); return error; }