/* $NetBSD: plcom.c,v 1.32 2011/04/24 16:26:55 rmind Exp $ */ /*- * Copyright (c) 2001 ARM Ltd * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The name of the company may not be used to endorse or promote * products derived from this software without specific prior written * permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * Copyright (c) 1998, 1999 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Charles M. Hannum. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * Copyright (c) 1991 The Regents of the University of California. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)com.c 7.5 (Berkeley) 5/16/91 */ /* * COM driver for the Prime Cell PL010 UART, which is similar to the 16C550, * but has a completely different programmer's model. * Derived from the NS16550AF com driver. */ #include __KERNEL_RCSID(0, "$NetBSD: plcom.c,v 1.32 2011/04/24 16:26:55 rmind Exp $"); #include "opt_plcom.h" #include "opt_ddb.h" #include "opt_kgdb.h" #include "opt_lockdebug.h" #include "opt_multiprocessor.h" #include "rnd.h" #if NRND > 0 && defined(RND_COM) #include #endif /* * Override cnmagic(9) macro before including . * We need to know if cn_check_magic triggered debugger, so set a flag. * Callers of cn_check_magic must declare int cn_trapped = 0; * XXX: this is *ugly*! */ #define cn_trap() \ do { \ console_debugger(); \ cn_trapped = 1; \ } while (/* CONSTCOND */ 0) #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static void plcom_enable_debugport (struct plcom_softc *); void plcom_config (struct plcom_softc *); void plcom_shutdown (struct plcom_softc *); int plcomspeed (long, long); static u_char cflag2lcr (tcflag_t); int plcomparam (struct tty *, struct termios *); void plcomstart (struct tty *); int plcomhwiflow (struct tty *, int); void plcom_loadchannelregs (struct plcom_softc *); void plcom_hwiflow (struct plcom_softc *); void plcom_break (struct plcom_softc *, int); void plcom_modem (struct plcom_softc *, int); void tiocm_to_plcom (struct plcom_softc *, u_long, int); int plcom_to_tiocm (struct plcom_softc *); void plcom_iflush (struct plcom_softc *); int plcom_common_getc (dev_t, bus_space_tag_t, bus_space_handle_t); void plcom_common_putc (dev_t, bus_space_tag_t, bus_space_handle_t, int); int plcominit (bus_space_tag_t, bus_addr_t, int, int, tcflag_t, bus_space_handle_t *); dev_type_open(plcomopen); dev_type_close(plcomclose); dev_type_read(plcomread); dev_type_write(plcomwrite); dev_type_ioctl(plcomioctl); dev_type_stop(plcomstop); dev_type_tty(plcomtty); dev_type_poll(plcompoll); int plcomcngetc (dev_t); void plcomcnputc (dev_t, int); void plcomcnpollc (dev_t, int); #define integrate static inline void plcomsoft (void *); integrate void plcom_rxsoft (struct plcom_softc *, struct tty *); integrate void plcom_txsoft (struct plcom_softc *, struct tty *); integrate void plcom_stsoft (struct plcom_softc *, struct tty *); integrate void plcom_schedrx (struct plcom_softc *); void plcomdiag (void *); extern struct cfdriver plcom_cd; const struct cdevsw plcom_cdevsw = { plcomopen, plcomclose, plcomread, plcomwrite, plcomioctl, plcomstop, plcomtty, plcompoll, nommap, ttykqfilter, D_TTY }; /* * Make this an option variable one can patch. * But be warned: this must be a power of 2! */ u_int plcom_rbuf_size = PLCOM_RING_SIZE; /* Stop input when 3/4 of the ring is full; restart when only 1/4 is full. */ u_int plcom_rbuf_hiwat = (PLCOM_RING_SIZE * 1) / 4; u_int plcom_rbuf_lowat = (PLCOM_RING_SIZE * 3) / 4; static int plcomconsunit = -1; static bus_space_tag_t plcomconstag; static bus_space_handle_t plcomconsioh; static int plcomconsattached; static int plcomconsrate; static tcflag_t plcomconscflag; static struct cnm_state plcom_cnm_state; static int ppscap = PPS_TSFMT_TSPEC | PPS_CAPTUREASSERT | PPS_CAPTURECLEAR | #ifdef PPS_SYNC PPS_HARDPPSONASSERT | PPS_HARDPPSONCLEAR | #endif /* PPS_SYNC */ PPS_OFFSETASSERT | PPS_OFFSETCLEAR; #ifdef KGDB #include static int plcom_kgdb_unit; static bus_space_tag_t plcom_kgdb_iot; static bus_space_handle_t plcom_kgdb_ioh; static int plcom_kgdb_attached; int plcom_kgdb_getc (void *); void plcom_kgdb_putc (void *, int); #endif /* KGDB */ #define PLCOMUNIT_MASK 0x7ffff #define PLCOMDIALOUT_MASK 0x80000 #define PLCOMUNIT(x) (minor(x) & PLCOMUNIT_MASK) #define PLCOMDIALOUT(x) (minor(x) & PLCOMDIALOUT_MASK) #define PLCOM_ISALIVE(sc) ((sc)->enabled != 0 && \ device_is_active(&(sc)->sc_dev)) #define BR BUS_SPACE_BARRIER_READ #define BW BUS_SPACE_BARRIER_WRITE #define PLCOM_BARRIER(t, h, f) bus_space_barrier((t), (h), 0, PLCOM_UART_SIZE, (f)) #define PLCOM_LOCK(sc) simple_lock(&(sc)->sc_lock) #define PLCOM_UNLOCK(sc) simple_unlock(&(sc)->sc_lock) int plcomspeed(long speed, long frequency) { #define divrnd(n, q) (((n)*2/(q)+1)/2) /* divide and round off */ int x, err; #if 0 if (speed == 0) return 0; #endif if (speed <= 0) return -1; x = divrnd(frequency / 16, speed); if (x <= 0) return -1; err = divrnd(((quad_t)frequency) * 1000 / 16, speed * x) - 1000; if (err < 0) err = -err; if (err > PLCOM_TOLERANCE) return -1; return x; #undef divrnd } #ifdef PLCOM_DEBUG int plcom_debug = 0; void plcomstatus (struct plcom_softc *, char *); void plcomstatus(struct plcom_softc *sc, char *str) { struct tty *tp = sc->sc_tty; printf("%s: %s %sclocal %sdcd %sts_carr_on %sdtr %stx_stopped\n", sc->sc_dev.dv_xname, str, ISSET(tp->t_cflag, CLOCAL) ? "+" : "-", ISSET(sc->sc_msr, MSR_DCD) ? "+" : "-", ISSET(tp->t_state, TS_CARR_ON) ? "+" : "-", ISSET(sc->sc_mcr, MCR_DTR) ? "+" : "-", sc->sc_tx_stopped ? "+" : "-"); printf("%s: %s %scrtscts %scts %sts_ttstop %srts %xrx_flags\n", sc->sc_dev.dv_xname, str, ISSET(tp->t_cflag, CRTSCTS) ? "+" : "-", ISSET(sc->sc_msr, MSR_CTS) ? "+" : "-", ISSET(tp->t_state, TS_TTSTOP) ? "+" : "-", ISSET(sc->sc_mcr, MCR_RTS) ? "+" : "-", sc->sc_rx_flags); } #endif int plcomprobe1(bus_space_tag_t iot, bus_space_handle_t ioh) { int data; /* Disable the UART. */ bus_space_write_1(iot, ioh, plcom_cr, 0); /* Make sure the FIFO is off. */ bus_space_write_1(iot, ioh, plcom_lcr, LCR_8BITS); /* Disable interrupts. */ bus_space_write_1(iot, ioh, plcom_iir, 0); /* Make sure we swallow anything in the receiving register. */ data = bus_space_read_1(iot, ioh, plcom_dr); if (bus_space_read_1(iot, ioh, plcom_lcr) != LCR_8BITS) return 0; data = bus_space_read_1(iot, ioh, plcom_fr) & (FR_RXFF | FR_RXFE); if (data != FR_RXFE) return 0; return 1; } static void plcom_enable_debugport(struct plcom_softc *sc) { int s; /* Turn on line break interrupt, set carrier. */ s = splserial(); PLCOM_LOCK(sc); sc->sc_cr = CR_RIE | CR_RTIE | CR_UARTEN; bus_space_write_1(sc->sc_iot, sc->sc_ioh, plcom_cr, sc->sc_cr); SET(sc->sc_mcr, MCR_DTR | MCR_RTS); /* XXX device_unit() abuse */ sc->sc_set_mcr(sc->sc_set_mcr_arg, device_unit(&sc->sc_dev), sc->sc_mcr); PLCOM_UNLOCK(sc); splx(s); } void plcom_attach_subr(struct plcom_softc *sc) { int unit = sc->sc_iounit; bus_space_tag_t iot = sc->sc_iot; bus_space_handle_t ioh = sc->sc_ioh; struct tty *tp; callout_init(&sc->sc_diag_callout, 0); simple_lock_init(&sc->sc_lock); /* Disable interrupts before configuring the device. */ sc->sc_cr = 0; if (plcomconstag && unit == plcomconsunit) { plcomconsattached = 1; plcomconstag = iot; plcomconsioh = ioh; /* Make sure the console is always "hardwired". */ delay(1000); /* wait for output to finish */ SET(sc->sc_hwflags, PLCOM_HW_CONSOLE); SET(sc->sc_swflags, TIOCFLAG_SOFTCAR); /* Must re-enable the console immediately, or we will hang when trying to print. */ sc->sc_cr = CR_UARTEN; } bus_space_write_1(iot, ioh, plcom_cr, sc->sc_cr); /* The PL010 has a 16-byte fifo, but the tx interrupt triggers when there is space for 8 more bytes. */ sc->sc_fifolen = 8; printf("\n"); if (ISSET(sc->sc_hwflags, PLCOM_HW_TXFIFO_DISABLE)) { sc->sc_fifolen = 1; printf("%s: txfifo disabled\n", sc->sc_dev.dv_xname); } if (sc->sc_fifolen > 1) SET(sc->sc_hwflags, PLCOM_HW_FIFO); tp = tty_alloc(); tp->t_oproc = plcomstart; tp->t_param = plcomparam; tp->t_hwiflow = plcomhwiflow; sc->sc_tty = tp; sc->sc_rbuf = malloc(plcom_rbuf_size << 1, M_DEVBUF, M_NOWAIT); sc->sc_rbput = sc->sc_rbget = sc->sc_rbuf; sc->sc_rbavail = plcom_rbuf_size; if (sc->sc_rbuf == NULL) { printf("%s: unable to allocate ring buffer\n", sc->sc_dev.dv_xname); return; } sc->sc_ebuf = sc->sc_rbuf + (plcom_rbuf_size << 1); tty_attach(tp); if (ISSET(sc->sc_hwflags, PLCOM_HW_CONSOLE)) { int maj; /* locate the major number */ maj = cdevsw_lookup_major(&plcom_cdevsw); cn_tab->cn_dev = makedev(maj, device_unit(&sc->sc_dev)); printf("%s: console\n", sc->sc_dev.dv_xname); } #ifdef KGDB /* * Allow kgdb to "take over" this port. If this is * the kgdb device, it has exclusive use. */ if (iot == plcom_kgdb_iot && unit == plcom_kgdb_unit) { plcom_kgdb_attached = 1; SET(sc->sc_hwflags, PLCOM_HW_KGDB); printf("%s: kgdb\n", sc->sc_dev.dv_xname); } #endif sc->sc_si = softint_establish(SOFTINT_SERIAL, plcomsoft, sc); #if NRND > 0 && defined(RND_COM) rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname, RND_TYPE_TTY, 0); #endif /* if there are no enable/disable functions, assume the device is always enabled */ if (!sc->enable) sc->enabled = 1; plcom_config(sc); SET(sc->sc_hwflags, PLCOM_HW_DEV_OK); } void plcom_config(struct plcom_softc *sc) { bus_space_tag_t iot = sc->sc_iot; bus_space_handle_t ioh = sc->sc_ioh; /* Disable interrupts before configuring the device. */ sc->sc_cr = 0; bus_space_write_1(iot, ioh, plcom_cr, sc->sc_cr); if (ISSET(sc->sc_hwflags, PLCOM_HW_CONSOLE|PLCOM_HW_KGDB)) plcom_enable_debugport(sc); } int plcom_detach(struct device *self, int flags) { struct plcom_softc *sc = (struct plcom_softc *)self; int maj, mn; if (sc->sc_hwflags & (PLCOM_HW_CONSOLE|PLCOM_HW_KGDB)) return EBUSY; if (sc->disable != NULL && sc->enabled != 0) { (*sc->disable)(sc); sc->enabled = 0; } /* locate the major number */ maj = cdevsw_lookup_major(&plcom_cdevsw); /* Nuke the vnodes for any open instances. */ mn = device_unit(self); vdevgone(maj, mn, mn, VCHR); mn |= PLCOMDIALOUT_MASK; vdevgone(maj, mn, mn, VCHR); /* Free the receive buffer. */ free(sc->sc_rbuf, M_DEVBUF); /* Detach and free the tty. */ tty_detach(sc->sc_tty); tty_free(sc->sc_tty); /* Unhook the soft interrupt handler. */ softint_disestablish(sc->sc_si); #if NRND > 0 && defined(RND_COM) /* Unhook the entropy source. */ rnd_detach_source(&sc->rnd_source); #endif return 0; } int plcom_activate(device_t self, enum devact act) { struct plcom_softc *sc = device_private(self); switch (act) { case DVACT_DEACTIVATE: sc->enabled = 0; return 0; default: return EOPNOTSUPP; } } void plcom_shutdown(struct plcom_softc *sc) { struct tty *tp = sc->sc_tty; int s; s = splserial(); PLCOM_LOCK(sc); /* If we were asserting flow control, then deassert it. */ SET(sc->sc_rx_flags, RX_IBUF_BLOCKED); plcom_hwiflow(sc); /* Clear any break condition set with TIOCSBRK. */ plcom_break(sc, 0); /* Turn off PPS capture on last close. */ mutex_spin_enter(&timecounter_lock); sc->sc_ppsmask = 0; sc->ppsparam.mode = 0; mutex_spin_exit(&timecounter_lock); /* * Hang up if necessary. Wait a bit, so the other side has time to * notice even if we immediately open the port again. * Avoid tsleeping above splhigh(). */ if (ISSET(tp->t_cflag, HUPCL)) { plcom_modem(sc, 0); PLCOM_UNLOCK(sc); splx(s); /* XXX tsleep will only timeout */ (void) tsleep(sc, TTIPRI, ttclos, hz); s = splserial(); PLCOM_LOCK(sc); } /* Turn off interrupts. */ if (ISSET(sc->sc_hwflags, PLCOM_HW_CONSOLE)) /* interrupt on break */ sc->sc_cr = CR_RIE | CR_RTIE | CR_UARTEN; else sc->sc_cr = 0; bus_space_write_1(sc->sc_iot, sc->sc_ioh, plcom_cr, sc->sc_cr); if (sc->disable) { #ifdef DIAGNOSTIC if (!sc->enabled) panic("plcom_shutdown: not enabled?"); #endif (*sc->disable)(sc); sc->enabled = 0; } PLCOM_UNLOCK(sc); splx(s); } int plcomopen(dev_t dev, int flag, int mode, struct lwp *l) { struct plcom_softc *sc; struct tty *tp; int s, s2; int error; sc = device_lookup_private(&plcom_cd, PLCOMUNIT(dev)); if (sc == NULL || !ISSET(sc->sc_hwflags, PLCOM_HW_DEV_OK) || sc->sc_rbuf == NULL) return ENXIO; if (!device_is_active(&sc->sc_dev)) return ENXIO; #ifdef KGDB /* * If this is the kgdb port, no other use is permitted. */ if (ISSET(sc->sc_hwflags, PLCOM_HW_KGDB)) return EBUSY; #endif tp = sc->sc_tty; if (kauth_authorize_device_tty(l->l_cred, KAUTH_DEVICE_TTY_OPEN, tp)) return (EBUSY); s = spltty(); /* * Do the following iff this is a first open. */ if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) { struct termios t; tp->t_dev = dev; s2 = splserial(); PLCOM_LOCK(sc); if (sc->enable) { if ((*sc->enable)(sc)) { PLCOM_UNLOCK(sc); splx(s2); splx(s); printf("%s: device enable failed\n", sc->sc_dev.dv_xname); return EIO; } sc->enabled = 1; plcom_config(sc); } /* Turn on interrupts. */ /* IER_ERXRDY | IER_ERLS | IER_EMSC; */ sc->sc_cr = CR_RIE | CR_RTIE | CR_MSIE | CR_UARTEN; bus_space_write_1(sc->sc_iot, sc->sc_ioh, plcom_cr, sc->sc_cr); /* Fetch the current modem control status, needed later. */ sc->sc_msr = bus_space_read_1(sc->sc_iot, sc->sc_ioh, plcom_fr); /* Clear PPS capture state on first open. */ mutex_spin_enter(&timecounter_lock); sc->sc_ppsmask = 0; sc->ppsparam.mode = 0; mutex_spin_exit(&timecounter_lock); PLCOM_UNLOCK(sc); splx(s2); /* * Initialize the termios status to the defaults. Add in the * sticky bits from TIOCSFLAGS. */ t.c_ispeed = 0; if (ISSET(sc->sc_hwflags, PLCOM_HW_CONSOLE)) { t.c_ospeed = plcomconsrate; t.c_cflag = plcomconscflag; } else { t.c_ospeed = TTYDEF_SPEED; t.c_cflag = TTYDEF_CFLAG; } if (ISSET(sc->sc_swflags, TIOCFLAG_CLOCAL)) SET(t.c_cflag, CLOCAL); if (ISSET(sc->sc_swflags, TIOCFLAG_CRTSCTS)) SET(t.c_cflag, CRTSCTS); if (ISSET(sc->sc_swflags, TIOCFLAG_MDMBUF)) SET(t.c_cflag, MDMBUF); /* Make sure plcomparam() will do something. */ tp->t_ospeed = 0; (void) plcomparam(tp, &t); tp->t_iflag = TTYDEF_IFLAG; tp->t_oflag = TTYDEF_OFLAG; tp->t_lflag = TTYDEF_LFLAG; ttychars(tp); ttsetwater(tp); s2 = splserial(); PLCOM_LOCK(sc); /* * Turn on DTR. We must always do this, even if carrier is not * present, because otherwise we'd have to use TIOCSDTR * immediately after setting CLOCAL, which applications do not * expect. We always assert DTR while the device is open * unless explicitly requested to deassert it. */ plcom_modem(sc, 1); /* Clear the input ring, and unblock. */ sc->sc_rbput = sc->sc_rbget = sc->sc_rbuf; sc->sc_rbavail = plcom_rbuf_size; plcom_iflush(sc); CLR(sc->sc_rx_flags, RX_ANY_BLOCK); plcom_hwiflow(sc); #ifdef PLCOM_DEBUG if (plcom_debug) plcomstatus(sc, "plcomopen "); #endif PLCOM_UNLOCK(sc); splx(s2); } splx(s); error = ttyopen(tp, PLCOMDIALOUT(dev), ISSET(flag, O_NONBLOCK)); if (error) goto bad; error = (*tp->t_linesw->l_open)(dev, tp); if (error) goto bad; return 0; bad: if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) { /* * We failed to open the device, and nobody else had it opened. * Clean up the state as appropriate. */ plcom_shutdown(sc); } return error; } int plcomclose(dev_t dev, int flag, int mode, struct lwp *l) { struct plcom_softc *sc = device_lookup_private(&plcom_cd, PLCOMUNIT(dev)); struct tty *tp = sc->sc_tty; /* XXX This is for cons.c. */ if (!ISSET(tp->t_state, TS_ISOPEN)) return 0; (*tp->t_linesw->l_close)(tp, flag); ttyclose(tp); if (PLCOM_ISALIVE(sc) == 0) return 0; if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) { /* * Although we got a last close, the device may still be in * use; e.g. if this was the dialout node, and there are still * processes waiting for carrier on the non-dialout node. */ plcom_shutdown(sc); } return 0; } int plcomread(dev_t dev, struct uio *uio, int flag) { struct plcom_softc *sc = device_lookup_private(&plcom_cd, PLCOMUNIT(dev)); struct tty *tp = sc->sc_tty; if (PLCOM_ISALIVE(sc) == 0) return EIO; return (*tp->t_linesw->l_read)(tp, uio, flag); } int plcomwrite(dev_t dev, struct uio *uio, int flag) { struct plcom_softc *sc = device_lookup_private(&plcom_cd, PLCOMUNIT(dev)); struct tty *tp = sc->sc_tty; if (PLCOM_ISALIVE(sc) == 0) return EIO; return (*tp->t_linesw->l_write)(tp, uio, flag); } int plcompoll(dev_t dev, int events, struct lwp *l) { struct plcom_softc *sc = device_lookup_private(&plcom_cd, PLCOMUNIT(dev)); struct tty *tp = sc->sc_tty; if (PLCOM_ISALIVE(sc) == 0) return EIO; return (*tp->t_linesw->l_poll)(tp, events, l); } struct tty * plcomtty(dev_t dev) { struct plcom_softc *sc = device_lookup_private(&plcom_cd, PLCOMUNIT(dev)); struct tty *tp = sc->sc_tty; return tp; } int plcomioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l) { struct plcom_softc *sc = device_lookup_private(&plcom_cd, PLCOMUNIT(dev)); struct tty *tp = sc->sc_tty; int error; int s; if (PLCOM_ISALIVE(sc) == 0) return EIO; error = (*tp->t_linesw->l_ioctl)(tp, cmd, data, flag, l); if (error != EPASSTHROUGH) return error; error = ttioctl(tp, cmd, data, flag, l); if (error != EPASSTHROUGH) return error; error = 0; s = splserial(); PLCOM_LOCK(sc); switch (cmd) { case TIOCSBRK: plcom_break(sc, 1); break; case TIOCCBRK: plcom_break(sc, 0); break; case TIOCSDTR: plcom_modem(sc, 1); break; case TIOCCDTR: plcom_modem(sc, 0); break; case TIOCGFLAGS: *(int *)data = sc->sc_swflags; break; case TIOCSFLAGS: error = kauth_authorize_device_tty(l->l_cred, KAUTH_DEVICE_TTY_PRIVSET, tp); if (error) break; sc->sc_swflags = *(int *)data; break; case TIOCMSET: case TIOCMBIS: case TIOCMBIC: tiocm_to_plcom(sc, cmd, *(int *)data); break; case TIOCMGET: *(int *)data = plcom_to_tiocm(sc); break; case PPS_IOC_CREATE: break; case PPS_IOC_DESTROY: break; case PPS_IOC_GETPARAMS: { pps_params_t *pp; pp = (pps_params_t *)data; mutex_spin_enter(&timecounter_lock); *pp = sc->ppsparam; mutex_spin_exit(&timecounter_lock); break; } case PPS_IOC_SETPARAMS: { pps_params_t *pp; int mode; pp = (pps_params_t *)data; mutex_spin_enter(&timecounter_lock); if (pp->mode & ~ppscap) { error = EINVAL; mutex_spin_exit(&timecounter_lock); break; } sc->ppsparam = *pp; /* * Compute msr masks from user-specified timestamp state. */ mode = sc->ppsparam.mode; #ifdef PPS_SYNC if (mode & PPS_HARDPPSONASSERT) { mode |= PPS_CAPTUREASSERT; /* XXX revoke any previous HARDPPS source */ } if (mode & PPS_HARDPPSONCLEAR) { mode |= PPS_CAPTURECLEAR; /* XXX revoke any previous HARDPPS source */ } #endif /* PPS_SYNC */ switch (mode & PPS_CAPTUREBOTH) { case 0: sc->sc_ppsmask = 0; break; case PPS_CAPTUREASSERT: sc->sc_ppsmask = MSR_DCD; sc->sc_ppsassert = MSR_DCD; sc->sc_ppsclear = -1; break; case PPS_CAPTURECLEAR: sc->sc_ppsmask = MSR_DCD; sc->sc_ppsassert = -1; sc->sc_ppsclear = 0; break; case PPS_CAPTUREBOTH: sc->sc_ppsmask = MSR_DCD; sc->sc_ppsassert = MSR_DCD; sc->sc_ppsclear = 0; break; default: error = EINVAL; break; } mutex_spin_exit(&timecounter_lock); break; } case PPS_IOC_GETCAP: *(int*)data = ppscap; break; case PPS_IOC_FETCH: { pps_info_t *pi; pi = (pps_info_t *)data; mutex_spin_enter(&timecounter_lock); *pi = sc->ppsinfo; mutex_spin_exit(&timecounter_lock); break; } case TIOCDCDTIMESTAMP: /* XXX old, overloaded API used by xntpd v3 */ /* * Some GPS clocks models use the falling rather than * rising edge as the on-the-second signal. * The old API has no way to specify PPS polarity. */ mutex_spin_enter(&timecounter_lock); sc->sc_ppsmask = MSR_DCD; #ifndef PPS_TRAILING_EDGE sc->sc_ppsassert = MSR_DCD; sc->sc_ppsclear = -1; TIMESPEC_TO_TIMEVAL((struct timeval *)data, &sc->ppsinfo.assert_timestamp); #else sc->sc_ppsassert = -1 sc->sc_ppsclear = 0; TIMESPEC_TO_TIMEVAL((struct timeval *)data, &sc->ppsinfo.clear_timestamp); #endif mutex_spin_exit(&timecounter_lock); break; default: error = EPASSTHROUGH; break; } PLCOM_UNLOCK(sc); splx(s); #ifdef PLCOM_DEBUG if (plcom_debug) plcomstatus(sc, "plcomioctl "); #endif return error; } integrate void plcom_schedrx(struct plcom_softc *sc) { sc->sc_rx_ready = 1; /* Wake up the poller. */ softint_schedule(sc->sc_si); } void plcom_break(struct plcom_softc *sc, int onoff) { if (onoff) SET(sc->sc_lcr, LCR_BRK); else CLR(sc->sc_lcr, LCR_BRK); if (!sc->sc_heldchange) { if (sc->sc_tx_busy) { sc->sc_heldtbc = sc->sc_tbc; sc->sc_tbc = 0; sc->sc_heldchange = 1; } else plcom_loadchannelregs(sc); } } void plcom_modem(struct plcom_softc *sc, int onoff) { if (sc->sc_mcr_dtr == 0) return; if (onoff) SET(sc->sc_mcr, sc->sc_mcr_dtr); else CLR(sc->sc_mcr, sc->sc_mcr_dtr); if (!sc->sc_heldchange) { if (sc->sc_tx_busy) { sc->sc_heldtbc = sc->sc_tbc; sc->sc_tbc = 0; sc->sc_heldchange = 1; } else plcom_loadchannelregs(sc); } } void tiocm_to_plcom(struct plcom_softc *sc, u_long how, int ttybits) { u_char plcombits; plcombits = 0; if (ISSET(ttybits, TIOCM_DTR)) SET(plcombits, MCR_DTR); if (ISSET(ttybits, TIOCM_RTS)) SET(plcombits, MCR_RTS); switch (how) { case TIOCMBIC: CLR(sc->sc_mcr, plcombits); break; case TIOCMBIS: SET(sc->sc_mcr, plcombits); break; case TIOCMSET: CLR(sc->sc_mcr, MCR_DTR | MCR_RTS); SET(sc->sc_mcr, plcombits); break; } if (!sc->sc_heldchange) { if (sc->sc_tx_busy) { sc->sc_heldtbc = sc->sc_tbc; sc->sc_tbc = 0; sc->sc_heldchange = 1; } else plcom_loadchannelregs(sc); } } int plcom_to_tiocm(struct plcom_softc *sc) { u_char plcombits; int ttybits = 0; plcombits = sc->sc_mcr; if (ISSET(plcombits, MCR_DTR)) SET(ttybits, TIOCM_DTR); if (ISSET(plcombits, MCR_RTS)) SET(ttybits, TIOCM_RTS); plcombits = sc->sc_msr; if (ISSET(plcombits, MSR_DCD)) SET(ttybits, TIOCM_CD); if (ISSET(plcombits, MSR_CTS)) SET(ttybits, TIOCM_CTS); if (ISSET(plcombits, MSR_DSR)) SET(ttybits, TIOCM_DSR); if (sc->sc_cr != 0) SET(ttybits, TIOCM_LE); return ttybits; } static u_char cflag2lcr(tcflag_t cflag) { u_char lcr = 0; switch (ISSET(cflag, CSIZE)) { case CS5: SET(lcr, LCR_5BITS); break; case CS6: SET(lcr, LCR_6BITS); break; case CS7: SET(lcr, LCR_7BITS); break; case CS8: SET(lcr, LCR_8BITS); break; } if (ISSET(cflag, PARENB)) { SET(lcr, LCR_PEN); if (!ISSET(cflag, PARODD)) SET(lcr, LCR_EPS); } if (ISSET(cflag, CSTOPB)) SET(lcr, LCR_STP2); return lcr; } int plcomparam(struct tty *tp, struct termios *t) { struct plcom_softc *sc = device_lookup_private(&plcom_cd, PLCOMUNIT(tp->t_dev)); int ospeed; u_char lcr; int s; if (PLCOM_ISALIVE(sc) == 0) return EIO; ospeed = plcomspeed(t->c_ospeed, sc->sc_frequency); /* Check requested parameters. */ if (ospeed < 0) return EINVAL; if (t->c_ispeed && t->c_ispeed != t->c_ospeed) return EINVAL; /* * For the console, always force CLOCAL and !HUPCL, so that the port * is always active. */ if (ISSET(sc->sc_swflags, TIOCFLAG_SOFTCAR) || ISSET(sc->sc_hwflags, PLCOM_HW_CONSOLE)) { SET(t->c_cflag, CLOCAL); CLR(t->c_cflag, HUPCL); } /* * If there were no changes, don't do anything. This avoids dropping * input and improves performance when all we did was frob things like * VMIN and VTIME. */ if (tp->t_ospeed == t->c_ospeed && tp->t_cflag == t->c_cflag) return 0; lcr = ISSET(sc->sc_lcr, LCR_BRK) | cflag2lcr(t->c_cflag); s = splserial(); PLCOM_LOCK(sc); sc->sc_lcr = lcr; /* * PL010 has a fixed-length FIFO trigger point. */ if (ISSET(sc->sc_hwflags, PLCOM_HW_FIFO)) sc->sc_fifo = 1; else sc->sc_fifo = 0; if (sc->sc_fifo) SET(sc->sc_lcr, LCR_FEN); /* * If we're not in a mode that assumes a connection is present, then * ignore carrier changes. */ if (ISSET(t->c_cflag, CLOCAL | MDMBUF)) sc->sc_msr_dcd = 0; else sc->sc_msr_dcd = MSR_DCD; /* * Set the flow control pins depending on the current flow control * mode. */ if (ISSET(t->c_cflag, CRTSCTS)) { sc->sc_mcr_dtr = MCR_DTR; sc->sc_mcr_rts = MCR_RTS; sc->sc_msr_cts = MSR_CTS; } else if (ISSET(t->c_cflag, MDMBUF)) { /* * For DTR/DCD flow control, make sure we don't toggle DTR for * carrier detection. */ sc->sc_mcr_dtr = 0; sc->sc_mcr_rts = MCR_DTR; sc->sc_msr_cts = MSR_DCD; } else { /* * If no flow control, then always set RTS. This will make * the other side happy if it mistakenly thinks we're doing * RTS/CTS flow control. */ sc->sc_mcr_dtr = MCR_DTR | MCR_RTS; sc->sc_mcr_rts = 0; sc->sc_msr_cts = 0; if (ISSET(sc->sc_mcr, MCR_DTR)) SET(sc->sc_mcr, MCR_RTS); else CLR(sc->sc_mcr, MCR_RTS); } sc->sc_msr_mask = sc->sc_msr_cts | sc->sc_msr_dcd; #if 0 if (ospeed == 0) CLR(sc->sc_mcr, sc->sc_mcr_dtr); else SET(sc->sc_mcr, sc->sc_mcr_dtr); #endif sc->sc_dlbl = ospeed; sc->sc_dlbh = ospeed >> 8; /* And copy to tty. */ tp->t_ispeed = 0; tp->t_ospeed = t->c_ospeed; tp->t_cflag = t->c_cflag; if (!sc->sc_heldchange) { if (sc->sc_tx_busy) { sc->sc_heldtbc = sc->sc_tbc; sc->sc_tbc = 0; sc->sc_heldchange = 1; } else plcom_loadchannelregs(sc); } if (!ISSET(t->c_cflag, CHWFLOW)) { /* Disable the high water mark. */ sc->sc_r_hiwat = 0; sc->sc_r_lowat = 0; if (ISSET(sc->sc_rx_flags, RX_TTY_OVERFLOWED)) { CLR(sc->sc_rx_flags, RX_TTY_OVERFLOWED); plcom_schedrx(sc); } if (ISSET(sc->sc_rx_flags, RX_TTY_BLOCKED|RX_IBUF_BLOCKED)) { CLR(sc->sc_rx_flags, RX_TTY_BLOCKED|RX_IBUF_BLOCKED); plcom_hwiflow(sc); } } else { sc->sc_r_hiwat = plcom_rbuf_hiwat; sc->sc_r_lowat = plcom_rbuf_lowat; } PLCOM_UNLOCK(sc); splx(s); /* * Update the tty layer's idea of the carrier bit, in case we changed * CLOCAL or MDMBUF. We don't hang up here; we only do that by * explicit request. */ (void) (*tp->t_linesw->l_modem)(tp, ISSET(sc->sc_msr, MSR_DCD)); #ifdef PLCOM_DEBUG if (plcom_debug) plcomstatus(sc, "plcomparam "); #endif if (!ISSET(t->c_cflag, CHWFLOW)) { if (sc->sc_tx_stopped) { sc->sc_tx_stopped = 0; plcomstart(tp); } } return 0; } void plcom_iflush(struct plcom_softc *sc) { bus_space_tag_t iot = sc->sc_iot; bus_space_handle_t ioh = sc->sc_ioh; #ifdef DIAGNOSTIC int reg; #endif int timo; #ifdef DIAGNOSTIC reg = 0xffff; #endif timo = 50000; /* flush any pending I/O */ while (! ISSET(bus_space_read_1(iot, ioh, plcom_fr), FR_RXFE) && --timo) #ifdef DIAGNOSTIC reg = #else (void) #endif bus_space_read_1(iot, ioh, plcom_dr); #ifdef DIAGNOSTIC if (!timo) printf("%s: plcom_iflush timeout %02x\n", sc->sc_dev.dv_xname, reg); #endif } void plcom_loadchannelregs(struct plcom_softc *sc) { bus_space_tag_t iot = sc->sc_iot; bus_space_handle_t ioh = sc->sc_ioh; /* XXXXX necessary? */ plcom_iflush(sc); bus_space_write_1(iot, ioh, plcom_cr, 0); bus_space_write_1(iot, ioh, plcom_dlbl, sc->sc_dlbl); bus_space_write_1(iot, ioh, plcom_dlbh, sc->sc_dlbh); bus_space_write_1(iot, ioh, plcom_lcr, sc->sc_lcr); /* XXX device_unit() abuse */ sc->sc_set_mcr(sc->sc_set_mcr_arg, device_unit(&sc->sc_dev), sc->sc_mcr_active = sc->sc_mcr); bus_space_write_1(iot, ioh, plcom_cr, sc->sc_cr); } int plcomhwiflow(struct tty *tp, int block) { struct plcom_softc *sc = device_lookup_private(&plcom_cd, PLCOMUNIT(tp->t_dev)); int s; if (PLCOM_ISALIVE(sc) == 0) return 0; if (sc->sc_mcr_rts == 0) return 0; s = splserial(); PLCOM_LOCK(sc); if (block) { if (!ISSET(sc->sc_rx_flags, RX_TTY_BLOCKED)) { SET(sc->sc_rx_flags, RX_TTY_BLOCKED); plcom_hwiflow(sc); } } else { if (ISSET(sc->sc_rx_flags, RX_TTY_OVERFLOWED)) { CLR(sc->sc_rx_flags, RX_TTY_OVERFLOWED); plcom_schedrx(sc); } if (ISSET(sc->sc_rx_flags, RX_TTY_BLOCKED)) { CLR(sc->sc_rx_flags, RX_TTY_BLOCKED); plcom_hwiflow(sc); } } PLCOM_UNLOCK(sc); splx(s); return 1; } /* * (un)block input via hw flowcontrol */ void plcom_hwiflow(struct plcom_softc *sc) { if (sc->sc_mcr_rts == 0) return; if (ISSET(sc->sc_rx_flags, RX_ANY_BLOCK)) { CLR(sc->sc_mcr, sc->sc_mcr_rts); CLR(sc->sc_mcr_active, sc->sc_mcr_rts); } else { SET(sc->sc_mcr, sc->sc_mcr_rts); SET(sc->sc_mcr_active, sc->sc_mcr_rts); } /* XXX device_unit() abuse */ sc->sc_set_mcr(sc->sc_set_mcr_arg, device_unit(&sc->sc_dev), sc->sc_mcr_active); } void plcomstart(struct tty *tp) { struct plcom_softc *sc = device_lookup_private(&plcom_cd, PLCOMUNIT(tp->t_dev)); bus_space_tag_t iot = sc->sc_iot; bus_space_handle_t ioh = sc->sc_ioh; int s; if (PLCOM_ISALIVE(sc) == 0) return; s = spltty(); if (ISSET(tp->t_state, TS_BUSY | TS_TIMEOUT | TS_TTSTOP)) goto out; if (sc->sc_tx_stopped) goto out; if (!ttypull(tp)) goto out; /* Grab the first contiguous region of buffer space. */ { u_char *tba; int tbc; tba = tp->t_outq.c_cf; tbc = ndqb(&tp->t_outq, 0); (void)splserial(); PLCOM_LOCK(sc); sc->sc_tba = tba; sc->sc_tbc = tbc; } SET(tp->t_state, TS_BUSY); sc->sc_tx_busy = 1; /* Enable transmit completion interrupts if necessary. */ if (!ISSET(sc->sc_cr, CR_TIE)) { SET(sc->sc_cr, CR_TIE); bus_space_write_1(iot, ioh, plcom_cr, sc->sc_cr); } /* Output the first chunk of the contiguous buffer. */ { int n; n = sc->sc_tbc; if (n > sc->sc_fifolen) n = sc->sc_fifolen; bus_space_write_multi_1(iot, ioh, plcom_dr, sc->sc_tba, n); sc->sc_tbc -= n; sc->sc_tba += n; } PLCOM_UNLOCK(sc); out: splx(s); return; } /* * Stop output on a line. */ void plcomstop(struct tty *tp, int flag) { struct plcom_softc *sc = device_lookup_private(&plcom_cd, PLCOMUNIT(tp->t_dev)); int s; s = splserial(); PLCOM_LOCK(sc); if (ISSET(tp->t_state, TS_BUSY)) { /* Stop transmitting at the next chunk. */ sc->sc_tbc = 0; sc->sc_heldtbc = 0; if (!ISSET(tp->t_state, TS_TTSTOP)) SET(tp->t_state, TS_FLUSH); } PLCOM_UNLOCK(sc); splx(s); } void plcomdiag(void *arg) { struct plcom_softc *sc = arg; int overflows, floods; int s; s = splserial(); PLCOM_LOCK(sc); overflows = sc->sc_overflows; sc->sc_overflows = 0; floods = sc->sc_floods; sc->sc_floods = 0; sc->sc_errors = 0; PLCOM_UNLOCK(sc); splx(s); log(LOG_WARNING, "%s: %d silo overflow%s, %d ibuf flood%s\n", sc->sc_dev.dv_xname, overflows, overflows == 1 ? "" : "s", floods, floods == 1 ? "" : "s"); } integrate void plcom_rxsoft(struct plcom_softc *sc, struct tty *tp) { int (*rint) (int, struct tty *) = tp->t_linesw->l_rint; u_char *get, *end; u_int cc, scc; u_char rsr; int code; int s; end = sc->sc_ebuf; get = sc->sc_rbget; scc = cc = plcom_rbuf_size - sc->sc_rbavail; if (cc == plcom_rbuf_size) { sc->sc_floods++; if (sc->sc_errors++ == 0) callout_reset(&sc->sc_diag_callout, 60 * hz, plcomdiag, sc); } while (cc) { code = get[0]; rsr = get[1]; if (ISSET(rsr, RSR_OE | RSR_BE | RSR_FE | RSR_PE)) { if (ISSET(rsr, RSR_OE)) { sc->sc_overflows++; if (sc->sc_errors++ == 0) callout_reset(&sc->sc_diag_callout, 60 * hz, plcomdiag, sc); } if (ISSET(rsr, RSR_BE | RSR_FE)) SET(code, TTY_FE); if (ISSET(rsr, RSR_PE)) SET(code, TTY_PE); } if ((*rint)(code, tp) == -1) { /* * The line discipline's buffer is out of space. */ if (!ISSET(sc->sc_rx_flags, RX_TTY_BLOCKED)) { /* * We're either not using flow control, or the * line discipline didn't tell us to block for * some reason. Either way, we have no way to * know when there's more space available, so * just drop the rest of the data. */ get += cc << 1; if (get >= end) get -= plcom_rbuf_size << 1; cc = 0; } else { /* * Don't schedule any more receive processing * until the line discipline tells us there's * space available (through plcomhwiflow()). * Leave the rest of the data in the input * buffer. */ SET(sc->sc_rx_flags, RX_TTY_OVERFLOWED); } break; } get += 2; if (get >= end) get = sc->sc_rbuf; cc--; } if (cc != scc) { sc->sc_rbget = get; s = splserial(); PLCOM_LOCK(sc); cc = sc->sc_rbavail += scc - cc; /* Buffers should be ok again, release possible block. */ if (cc >= sc->sc_r_lowat) { if (ISSET(sc->sc_rx_flags, RX_IBUF_OVERFLOWED)) { CLR(sc->sc_rx_flags, RX_IBUF_OVERFLOWED); SET(sc->sc_cr, CR_RIE | CR_RTIE); bus_space_write_1(sc->sc_iot, sc->sc_ioh, plcom_cr, sc->sc_cr); } if (ISSET(sc->sc_rx_flags, RX_IBUF_BLOCKED)) { CLR(sc->sc_rx_flags, RX_IBUF_BLOCKED); plcom_hwiflow(sc); } } PLCOM_UNLOCK(sc); splx(s); } } integrate void plcom_txsoft(struct plcom_softc *sc, struct tty *tp) { CLR(tp->t_state, TS_BUSY); if (ISSET(tp->t_state, TS_FLUSH)) CLR(tp->t_state, TS_FLUSH); else ndflush(&tp->t_outq, (int)(sc->sc_tba - tp->t_outq.c_cf)); (*tp->t_linesw->l_start)(tp); } integrate void plcom_stsoft(struct plcom_softc *sc, struct tty *tp) { u_char msr, delta; int s; s = splserial(); PLCOM_LOCK(sc); msr = sc->sc_msr; delta = sc->sc_msr_delta; sc->sc_msr_delta = 0; PLCOM_UNLOCK(sc); splx(s); if (ISSET(delta, sc->sc_msr_dcd)) { /* * Inform the tty layer that carrier detect changed. */ (void) (*tp->t_linesw->l_modem)(tp, ISSET(msr, MSR_DCD)); } if (ISSET(delta, sc->sc_msr_cts)) { /* Block or unblock output according to flow control. */ if (ISSET(msr, sc->sc_msr_cts)) { sc->sc_tx_stopped = 0; (*tp->t_linesw->l_start)(tp); } else { sc->sc_tx_stopped = 1; } } #ifdef PLCOM_DEBUG if (plcom_debug) plcomstatus(sc, "plcom_stsoft"); #endif } void plcomsoft(void *arg) { struct plcom_softc *sc = arg; struct tty *tp; if (PLCOM_ISALIVE(sc) == 0) return; tp = sc->sc_tty; if (sc->sc_rx_ready) { sc->sc_rx_ready = 0; plcom_rxsoft(sc, tp); } if (sc->sc_st_check) { sc->sc_st_check = 0; plcom_stsoft(sc, tp); } if (sc->sc_tx_done) { sc->sc_tx_done = 0; plcom_txsoft(sc, tp); } } int plcomintr(void *arg) { struct plcom_softc *sc = arg; bus_space_tag_t iot = sc->sc_iot; bus_space_handle_t ioh = sc->sc_ioh; u_char *put, *end; u_int cc; u_char rsr, iir; if (PLCOM_ISALIVE(sc) == 0) return 0; PLCOM_LOCK(sc); iir = bus_space_read_1(iot, ioh, plcom_iir); if (! ISSET(iir, IIR_IMASK)) { PLCOM_UNLOCK(sc); return 0; } end = sc->sc_ebuf; put = sc->sc_rbput; cc = sc->sc_rbavail; do { u_char msr, delta, fr; fr = bus_space_read_1(iot, ioh, plcom_fr); if (!ISSET(fr, FR_RXFE) && !ISSET(sc->sc_rx_flags, RX_IBUF_OVERFLOWED)) { while (cc > 0) { int cn_trapped = 0; put[0] = bus_space_read_1(iot, ioh, plcom_dr); rsr = bus_space_read_1(iot, ioh, plcom_rsr); /* Clear any error status. */ if (ISSET(rsr, (RSR_BE | RSR_OE | RSR_PE | RSR_FE))) bus_space_write_1(iot, ioh, plcom_ecr, 0); if (ISSET(rsr, RSR_BE)) { cn_trapped = 0; cn_check_magic(sc->sc_tty->t_dev, CNC_BREAK, plcom_cnm_state); if (cn_trapped) continue; #if defined(KGDB) if (ISSET(sc->sc_hwflags, PLCOM_HW_KGDB)) { kgdb_connect(1); continue; } #endif } put[1] = rsr; cn_trapped = 0; cn_check_magic(sc->sc_tty->t_dev, put[0], plcom_cnm_state); if (cn_trapped) { fr = bus_space_read_1(iot, ioh, plcom_fr); if (ISSET(fr, FR_RXFE)) break; continue; } put += 2; if (put >= end) put = sc->sc_rbuf; cc--; fr = bus_space_read_1(iot, ioh, plcom_fr); if (ISSET(fr, FR_RXFE)) break; } /* * Current string of incoming characters ended because * no more data was available or we ran out of space. * Schedule a receive event if any data was received. * If we're out of space, turn off receive interrupts. */ sc->sc_rbput = put; sc->sc_rbavail = cc; if (!ISSET(sc->sc_rx_flags, RX_TTY_OVERFLOWED)) sc->sc_rx_ready = 1; /* * See if we are in danger of overflowing a buffer. If * so, use hardware flow control to ease the pressure. */ if (!ISSET(sc->sc_rx_flags, RX_IBUF_BLOCKED) && cc < sc->sc_r_hiwat) { SET(sc->sc_rx_flags, RX_IBUF_BLOCKED); plcom_hwiflow(sc); } /* * If we're out of space, disable receive interrupts * until the queue has drained a bit. */ if (!cc) { SET(sc->sc_rx_flags, RX_IBUF_OVERFLOWED); CLR(sc->sc_cr, CR_RIE | CR_RTIE); bus_space_write_1(iot, ioh, plcom_cr, sc->sc_cr); } } else { if (ISSET(iir, IIR_RIS)) { bus_space_write_1(iot, ioh, plcom_cr, 0); delay(10); bus_space_write_1(iot, ioh, plcom_cr, sc->sc_cr); continue; } } msr = bus_space_read_1(iot, ioh, plcom_fr); delta = msr ^ sc->sc_msr; sc->sc_msr = msr; /* Clear any pending modem status interrupt. */ if (iir & IIR_MIS) bus_space_write_1(iot, ioh, plcom_icr, 0); /* * Pulse-per-second (PSS) signals on edge of DCD? * Process these even if line discipline is ignoring DCD. */ if (delta & sc->sc_ppsmask) { struct timeval tv; mutex_spin_enter(&timecounter_lock); if ((msr & sc->sc_ppsmask) == sc->sc_ppsassert) { /* XXX nanotime() */ microtime(&tv); TIMEVAL_TO_TIMESPEC(&tv, &sc->ppsinfo.assert_timestamp); if (sc->ppsparam.mode & PPS_OFFSETASSERT) { timespecadd(&sc->ppsinfo.assert_timestamp, &sc->ppsparam.assert_offset, &sc->ppsinfo.assert_timestamp); } #ifdef PPS_SYNC if (sc->ppsparam.mode & PPS_HARDPPSONASSERT) hardpps(&tv, tv.tv_usec); #endif sc->ppsinfo.assert_sequence++; sc->ppsinfo.current_mode = sc->ppsparam.mode; } else if ((msr & sc->sc_ppsmask) == sc->sc_ppsclear) { /* XXX nanotime() */ microtime(&tv); TIMEVAL_TO_TIMESPEC(&tv, &sc->ppsinfo.clear_timestamp); if (sc->ppsparam.mode & PPS_OFFSETCLEAR) { timespecadd(&sc->ppsinfo.clear_timestamp, &sc->ppsparam.clear_offset, &sc->ppsinfo.clear_timestamp); } #ifdef PPS_SYNC if (sc->ppsparam.mode & PPS_HARDPPSONCLEAR) hardpps(&tv, tv.tv_usec); #endif sc->ppsinfo.clear_sequence++; sc->ppsinfo.current_mode = sc->ppsparam.mode; } mutex_spin_exit(&timecounter_lock); } /* * Process normal status changes */ if (ISSET(delta, sc->sc_msr_mask)) { SET(sc->sc_msr_delta, delta); /* * Stop output immediately if we lose the output * flow control signal or carrier detect. */ if (ISSET(~msr, sc->sc_msr_mask)) { sc->sc_tbc = 0; sc->sc_heldtbc = 0; #ifdef PLCOM_DEBUG if (plcom_debug) plcomstatus(sc, "plcomintr "); #endif } sc->sc_st_check = 1; } /* * Done handling any receive interrupts. See if data * can be * transmitted as well. Schedule tx done * event if no data left * and tty was marked busy. */ if (ISSET(iir, IIR_TIS)) { /* * If we've delayed a parameter change, do it * now, and restart * output. */ if (sc->sc_heldchange) { plcom_loadchannelregs(sc); sc->sc_heldchange = 0; sc->sc_tbc = sc->sc_heldtbc; sc->sc_heldtbc = 0; } /* * Output the next chunk of the contiguous * buffer, if any. */ if (sc->sc_tbc > 0) { int n; n = sc->sc_tbc; if (n > sc->sc_fifolen) n = sc->sc_fifolen; bus_space_write_multi_1(iot, ioh, plcom_dr, sc->sc_tba, n); sc->sc_tbc -= n; sc->sc_tba += n; } else { /* * Disable transmit plcompletion * interrupts if necessary. */ if (ISSET(sc->sc_cr, CR_TIE)) { CLR(sc->sc_cr, CR_TIE); bus_space_write_1(iot, ioh, plcom_cr, sc->sc_cr); } if (sc->sc_tx_busy) { sc->sc_tx_busy = 0; sc->sc_tx_done = 1; } } } } while (ISSET((iir = bus_space_read_1(iot, ioh, plcom_iir)), IIR_IMASK)); PLCOM_UNLOCK(sc); /* Wake up the poller. */ softint_schedule(sc->sc_si); #if NRND > 0 && defined(RND_COM) rnd_add_uint32(&sc->rnd_source, iir | rsr); #endif return 1; } /* * The following functions are polled getc and putc routines, shared * by the console and kgdb glue. * * The read-ahead code is so that you can detect pending in-band * cn_magic in polled mode while doing output rather than having to * wait until the kernel decides it needs input. */ #define MAX_READAHEAD 20 static int plcom_readahead[MAX_READAHEAD]; static int plcom_readaheadcount = 0; int plcom_common_getc(dev_t dev, bus_space_tag_t iot, bus_space_handle_t ioh) { int s = splserial(); u_char stat, c; /* got a character from reading things earlier */ if (plcom_readaheadcount > 0) { int i; c = plcom_readahead[0]; for (i = 1; i < plcom_readaheadcount; i++) { plcom_readahead[i-1] = plcom_readahead[i]; } plcom_readaheadcount--; splx(s); return c; } /* block until a character becomes available */ while (ISSET(stat = bus_space_read_1(iot, ioh, plcom_fr), FR_RXFE)) ; c = bus_space_read_1(iot, ioh, plcom_dr); stat = bus_space_read_1(iot, ioh, plcom_iir); { int cn_trapped = 0; /* unused */ #ifdef DDB extern int db_active; if (!db_active) #endif cn_check_magic(dev, c, plcom_cnm_state); } splx(s); return c; } void plcom_common_putc(dev_t dev, bus_space_tag_t iot, bus_space_handle_t ioh, int c) { int s = splserial(); int timo; int cin, stat; if (plcom_readaheadcount < MAX_READAHEAD && !ISSET(stat = bus_space_read_1(iot, ioh, plcom_fr), FR_RXFE)) { int cn_trapped = 0; cin = bus_space_read_1(iot, ioh, plcom_dr); stat = bus_space_read_1(iot, ioh, plcom_iir); cn_check_magic(dev, cin, plcom_cnm_state); plcom_readahead[plcom_readaheadcount++] = cin; } /* wait for any pending transmission to finish */ timo = 150000; while (!ISSET(bus_space_read_1(iot, ioh, plcom_fr), FR_TXFE) && --timo) continue; bus_space_write_1(iot, ioh, plcom_dr, c); PLCOM_BARRIER(iot, ioh, BR | BW); /* wait for this transmission to complete */ timo = 1500000; while (!ISSET(bus_space_read_1(iot, ioh, plcom_fr), FR_TXFE) && --timo) continue; splx(s); } /* * Initialize UART for use as console or KGDB line. */ int plcominit(bus_space_tag_t iot, bus_addr_t iobase, int rate, int frequency, tcflag_t cflag, bus_space_handle_t *iohp) { bus_space_handle_t ioh; if (bus_space_map(iot, iobase, PLCOM_UART_SIZE, 0, &ioh)) return ENOMEM; /* ??? */ rate = plcomspeed(rate, frequency); bus_space_write_1(iot, ioh, plcom_cr, 0); bus_space_write_1(iot, ioh, plcom_dlbl, rate); bus_space_write_1(iot, ioh, plcom_dlbh, rate >> 8); bus_space_write_1(iot, ioh, plcom_lcr, cflag2lcr(cflag) | LCR_FEN); bus_space_write_1(iot, ioh, plcom_cr, CR_UARTEN); #if 0 /* Ought to do something like this, but we have no sc to dereference. */ /* XXX device_unit() abuse */ sc->sc_set_mcr(sc->sc_set_mcr_arg, device_unit(&sc->sc_dev), MCR_DTR | MCR_RTS); #endif *iohp = ioh; return 0; } /* * Following are all routines needed for PLCOM to act as console */ struct consdev plcomcons = { NULL, NULL, plcomcngetc, plcomcnputc, plcomcnpollc, NULL, NULL, NULL, NODEV, CN_NORMAL }; int plcomcnattach(bus_space_tag_t iot, bus_addr_t iobase, int rate, int frequency, tcflag_t cflag, int unit) { int res; res = plcominit(iot, iobase, rate, frequency, cflag, &plcomconsioh); if (res) return res; cn_tab = &plcomcons; cn_init_magic(&plcom_cnm_state); cn_set_magic("\047\001"); /* default magic is BREAK */ plcomconstag = iot; plcomconsunit = unit; plcomconsrate = rate; plcomconscflag = cflag; return 0; } void plcomcndetach(void) { bus_space_unmap(plcomconstag, plcomconsioh, PLCOM_UART_SIZE); plcomconstag = NULL; cn_tab = NULL; } int plcomcngetc(dev_t dev) { return plcom_common_getc(dev, plcomconstag, plcomconsioh); } /* * Console kernel output character routine. */ void plcomcnputc(dev_t dev, int c) { plcom_common_putc(dev, plcomconstag, plcomconsioh, c); } void plcomcnpollc(dev_t dev, int on) { } #ifdef KGDB int plcom_kgdb_attach(bus_space_tag_t iot, bus_addr_t iobase, int rate, int frequency, tcflag_t cflag, int unit) { int res; if (iot == plcomconstag && iobase == plcomconsunit) return EBUSY; /* cannot share with console */ res = plcominit(iot, iobase, rate, frequency, cflag, &plcom_kgdb_ioh); if (res) return res; kgdb_attach(plcom_kgdb_getc, plcom_kgdb_putc, NULL); kgdb_dev = 123; /* unneeded, only to satisfy some tests */ plcom_kgdb_iot = iot; plcom_kgdb_unit = unit; return 0; } /* ARGSUSED */ int plcom_kgdb_getc(void *arg) { return plcom_common_getc(NODEV, plcom_kgdb_iot, plcom_kgdb_ioh); } /* ARGSUSED */ void plcom_kgdb_putc(void *arg, int c) { plcom_common_putc(NODEV, plcom_kgdb_iot, plcom_kgdb_ioh, c); } #endif /* KGDB */ /* helper function to identify the plcom ports used by console or KGDB (and not yet autoconf attached) */ int plcom_is_console(bus_space_tag_t iot, int unit, bus_space_handle_t *ioh) { bus_space_handle_t help; if (!plcomconsattached && iot == plcomconstag && unit == plcomconsunit) help = plcomconsioh; #ifdef KGDB else if (!plcom_kgdb_attached && iot == plcom_kgdb_iot && unit == plcom_kgdb_unit) help = plcom_kgdb_ioh; #endif else return 0; if (ioh) *ioh = help; return 1; }