/* $NetBSD: rc7500_machdep.c,v 1.17 1998/08/29 03:17:28 mark Exp $ */ /* * Copyright (c) 1994-1998 Mark Brinicombe. * Copyright (c) 1994 Brini. * All rights reserved. * * This code is derived from software written for Brini by Mark Brinicombe * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Brini. * 4. The name of the company nor the name of the author may be used to * endorse or promote products derived from this software without specific * prior written permission. * * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * RiscBSD kernel project * * machdep.c * * Machine dependant functions for kernel setup * * This file needs a lot of work. * * Created : 17/09/94 */ #include "opt_ddb.h" #include "opt_pmap_debug.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "ipkdb.h" #ifdef RC7500 #include #endif /* * Address to call from cpu_reset() to reset the machine. * This is machine architecture dependant as it varies depending * on where the ROM appears when you turn the MMU off. */ u_int cpu_reset_address = 0; /* Define various stack sizes in pages */ #define FIQ_STACK_SIZE 1 #define IRQ_STACK_SIZE 1 #define ABT_STACK_SIZE 1 #if NIPKDB > 0 #define UND_STACK_SIZE 2 #else #define UND_STACK_SIZE 1 #endif BootConfig bootconfig; /* Boot config storage */ videomemory_t videomemory; /* Video memory descriptor */ vm_offset_t physical_start; vm_offset_t physical_freestart; vm_offset_t physical_freeend; vm_offset_t physical_end; int physical_memoryblock; u_int free_pages; int physmem = 0; #ifndef PMAP_STATIC_L1S int max_processes = 64; #endif /* !PMAP_STATIC_L1S */ u_int memory_disc_size; /* Memory disc size */ u_int videodram_size; /* Amount of DRAM to reserve for video */ vm_offset_t videodram_start; vm_offset_t physical_pt_start; vm_offset_t virtual_pt_end; /* Physical and virtual addresses for some global pages */ pv_addr_t systempage; pv_addr_t irqstack; pv_addr_t undstack; pv_addr_t abtstack; pv_addr_t kernelstack; #ifdef RC7500 pv_addr_t fiqstack; #endif char *boot_args; vm_offset_t msgbufphys; extern u_int data_abort_handler_address; extern u_int prefetch_abort_handler_address; extern u_int undefined_handler_address; #ifdef PMAP_DEBUG extern int pmap_debug_level; #endif /* PMAP_DEBUG */ #define KERNEL_PT_VMEM 0 /* Page table for mapping video memory */ #define KERNEL_PT_SYS 1 /* Page table for mapping proc0 zero page */ #define KERNEL_PT_KERNEL 2 /* Page table for mapping kernel */ #define KERNEL_PT_VMDATA 3 /* Page tables for mapping kernel VM */ #define KERNEL_PT_VMDATA_NUM (KERNEL_VM_SIZE >> (PDSHIFT + 2)) #define NUM_KERNEL_PTS (KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM) pt_entry_t kernel_pt_table[NUM_KERNEL_PTS]; struct user *proc0paddr; extern int cold; /* Prototypes */ void physconputchar __P((char)); void physcon_display_base __P((u_int addr)); extern void consinit __P((void)); void map_section __P((vm_offset_t pt, vm_offset_t va, vm_offset_t pa, int cacheable)); void map_pagetable __P((vm_offset_t pt, vm_offset_t va, vm_offset_t pa)); void map_entry __P((vm_offset_t pt, vm_offset_t va, vm_offset_t pa)); void map_entry_nc __P((vm_offset_t pt, vm_offset_t va, vm_offset_t pa)); void map_entry_ro __P((vm_offset_t pt, vm_offset_t va, vm_offset_t pa)); void pmap_bootstrap __P((vm_offset_t kernel_l1pt, pv_addr_t kernel_ptpt)); caddr_t allocsys __P((caddr_t v)); void data_abort_handler __P((trapframe_t *frame)); void prefetch_abort_handler __P((trapframe_t *frame)); void undefinedinstruction_bounce __P((trapframe_t *frame)); void zero_page_readonly __P((void)); void zero_page_readwrite __P((void)); static void process_kernel_args __P((void)); extern void dump_spl_masks __P((void)); extern pt_entry_t *pmap_pte __P((pmap_t pmap, vm_offset_t va)); extern void db_machine_init __P((void)); extern void console_flush __P((void)); extern void vidcconsole_reinit __P((void)); extern int vidcconsole_blank __P((struct vconsole *vc, int type)); extern void parse_mi_bootargs __P((char *args)); void parse_rc7500_bootargs __P((char *args)); extern void dumpsys __P((void)); /* * void boot(int howto, char *bootstr) * * Reboots the system * * Deal with any syncing, unmounting, dumping and shutdown hooks, * then reset the CPU. */ /* NOTE: These variables will be removed, well some of them */ extern u_int spl_mask; extern u_int current_mask; extern u_int arm700bugcount; void cpu_reboot(howto, bootstr) int howto; char *bootstr; { #ifdef DIAGNOSTIC printf("boot: howto=%08x curproc=%p\n", howto, curproc); printf("ipl_bio=%08x ipl_net=%08x ipl_tty=%08x ipl_imp=%08x\n", irqmasks[IPL_BIO], irqmasks[IPL_NET], irqmasks[IPL_TTY], irqmasks[IPL_IMP]); printf("ipl_audio=%08x ipl_clock=%08x ipl_none=%08x\n", irqmasks[IPL_AUDIO], irqmasks[IPL_CLOCK], irqmasks[IPL_NONE]); dump_spl_masks(); /* Did we encounter the ARM700 bug we discovered ? */ if (arm700bugcount > 0) printf("ARM700 PREFETCH/SWI bug count = %d\n", arm700bugcount); #endif /* * If we are still cold then hit the air brakes * and crash to earth fast */ if (cold) { doshutdownhooks(); printf("Halted while still in the ICE age.\n"); printf("The operating system has halted.\n"); printf("Please press any key to reboot.\n\n"); cngetc(); printf("rebooting...\n"); cpu_reset(); /*NOTREACHED*/ } /* Disable console buffering */ cnpollc(1); /* * If RB_NOSYNC was not specified sync the discs. * Note: Unless cold is set to 1 here, syslogd will die during the unmount. * It looks like syslogd is getting woken up only to find that it cannot * page part of the binary in as the filesystem has been unmounted. */ if (!(howto & RB_NOSYNC)) bootsync(); /* Say NO to interrupts */ splhigh(); /* Do a dump if requested. */ if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP) dumpsys(); /* * Auto reboot overload protection * * This code stops the kernel entering an endless loop of reboot * - panic cycles. This will have the effect of stopping further * reboots after it has rebooted 8 times after panics. A clean * halt or reboot will reset the counter. */ /* * Have we done 8 reboots in a row ? If so halt rather than reboot * since 8 panics in a row without 1 clean halt means something is * seriously wrong. */ if (cmos_read(RTC_ADDR_REBOOTCNT) > 8) howto |= RB_HALT; /* * If we are rebooting on a panic then up the reboot count * otherwise reset. * This will thus be reset if the kernel changes the boot action from * reboot to halt due to too any reboots. */ if (((howto & RB_HALT) == 0) && panicstr) cmos_write(RTC_ADDR_REBOOTCNT, cmos_read(RTC_ADDR_REBOOTCNT) + 1); else cmos_write(RTC_ADDR_REBOOTCNT, 0); /* * If we need a RiscBSD reboot, request it buy setting a bit in * the CMOS RAM. This can be detected by the RiscBSD boot loader * during a RISCOS boot. No other way to do this as RISCOS is in ROM. */ if ((howto & RB_HALT) == 0) cmos_write(RTC_ADDR_BOOTOPTS, cmos_read(RTC_ADDR_BOOTOPTS) | 0x02); /* Run any shutdown hooks */ doshutdownhooks(); /* Make sure IRQ's are disabled */ IRQdisable; if (howto & RB_HALT) { printf("The operating system has halted.\n"); printf("Please press any key to reboot.\n\n"); cngetc(); } printf("rebooting...\n"); cpu_reset(); /*NOTREACHED*/ } char bootstring[64]; char bootargs[32]; void setleds(); u_int initarm(prom_id) struct prom_id *prom_id; { int loop; int loop1; u_int logical; u_int kerneldatasize; u_int l1pagetable; u_int l2pagetable; u_int vdrambase; u_int reserv_mem; extern char page0[], page0_end[]; /* struct exec *kernexec = (struct exec *)KERNEL_TEXT_BASE;*/ pv_addr_t kernel_l1pt; pv_addr_t kernel_ptpt; /* * Heads up ... Setup the CPU / MMU / TLB functions */ set_cpufuncs(); /* * XXXX - FIX ME */ /* cpu_cache = 0x03;*/ boothowto = 0; #ifndef MEMORY_DISK_SIZE #define MEMORY_DISK_SIZE 0 #endif memory_disc_size = MEMORY_DISK_SIZE * 1024; #ifdef MEMORY_DISK_HOOKS boot_args = "root=/dev/md0a"; #else if (strcmp(prom_id->bootdev, "fd") == 0) { boot_args = "root=/dev/fd0a"; } else { strcpy(bootstring, "root=/dev/"); strcat(bootstring, prom_id->bootdev); if (((prom_id->bootdevnum >> B_UNITSHIFT) & B_UNITMASK) == 0) strcat(bootstring, "0a"); else strcat(bootstring, "1a"); boot_args = bootstring; } #endif strcpy(bootargs, prom_id->bootargs); process_kernel_args(); IRQdisable; /* * The old version of ROM did not set kstart field which * will be 0. The ROM reserve 32K bytes of memory at * low memory location. I need to fix this!!! */ if (prom_id->kstart == 0 || !(prom_id->kstart & 0x10000000)) reserv_mem = 0x8000; else reserv_mem = prom_id->kstart - prom_id->physmem_start; bootconfig.kernvirtualbase = KERNEL_BASE; bootconfig.kernphysicalbase = 0x10000000 + reserv_mem; bootconfig.kernsize = (prom_id->ksize + NBPG - 1) & PG_FRAME; bootconfig.display_start = 0x10000000 + prom_id->video_start; bootconfig.display_size = prom_id->video_size; bootconfig.width = prom_id->display_width - 1; bootconfig.height = prom_id->display_height - 1; bootconfig.bitsperpixel = 3; /* it's actually 8 */ bootconfig.dram[0].address = prom_id->physmem_start; bootconfig.dram[0].pages = prom_id->ramsize / NBPG; bootconfig.dramblocks = 1; bootconfig.pagesize = 4096; bootconfig.drampages = prom_id->ramsize / NBPG; strcpy(&bootconfig.kernelname[0], prom_id->bootfile); bootconfig.framerate = 0; /* videodram_size = 0x100000; */ videomemory.vidm_pbase = prom_id->physmem_end - videodram_size; vdrambase = videomemory.vidm_pbase; bootconfig.display_start = VMEM_VBASE; /* * Note: The video memory is not part of the managed memory. * Exclude these memory off the available DRAM. */ bootconfig.dram[0].pages -= videodram_size / NBPG; bootconfig.drampages -= videodram_size / NBPG; #ifdef PROM_DEBUG /* * Initialise the prom console */ init_prom_interface(); /* Talk to the user */ printf("initarm...\n"); printf("Kernel loaded from file %s\n", bootconfig.kernelname); #endif /* Check to make sure the page size is correct */ if (NBPG != bootconfig.pagesize) panic("Page size is not %d bytes\n", NBPG); /* * Ok now we have the hard bit. * We have the kernel allocated up high. The rest of the memory map is * available. We are still running on RISC OS page tables. * * We need to construct new page tables move the kernel in physical * memory and switch to them. * * The booter will have left us 6 pages at the top of memory. * Two of these are used as L2 page tables and the other 4 form the L1 * page table. */ /* * Ok we must construct own own page table tables. * Once we have these we can reorganise the memory as required */ /* * We better check to make sure the booter has set up the scratch * area for us correctly. We use this area to create temporary * pagetables while we reorganise the memory map. */ /* * Update the videomemory structure to reflect the mapping changes */ videomemory.vidm_vbase = VMEM_VBASE; videomemory.vidm_pbase = vdrambase; videomemory.vidm_type = VIDEOMEM_TYPE_DRAM; videomemory.vidm_size = videodram_size; kerneldatasize = bootconfig.kernsize + bootconfig.argsize; /* * Ok we have finished the primary boot strap. All this has done is to * allow us to access all the physical memory from known virtual * location. We also now know that all the used pages are at the top * of the physical memory and where they are in the virtual memory map. * * This should be the stage we are at at the end of the bootstrap when * we have a two stage booter. * * The secondary bootstrap has the responcibility to sort locating the * kernel to the correct address and for creating the kernel page * tables. It must also set up various memory pointers that are used * by pmap etc. */ #ifdef PROM_DEBUG printf("initarm: Secondary bootstrap ... "); #endif /* * Set up the variables that define the availablilty of physcial * memory */ physical_start = bootconfig.dram[0].address; physical_freestart = physical_start + reserv_mem; physical_end = bootconfig.dram[bootconfig.dramblocks - 1].address + bootconfig.dram[bootconfig.dramblocks - 1].pages * NBPG; physical_freeend = physical_end; physical_memoryblock = 0; free_pages = bootconfig.drampages - reserv_mem / NBPG; bootconfig.dram[0].address += reserv_mem; bootconfig.dram[0].pages -= reserv_mem / NBPG; for (loop = 0; loop < bootconfig.dramblocks; ++loop) physmem += bootconfig.dram[loop].pages; #ifdef PROM_DEBUG printf("physical_start=%lx, physical_freestart=%lx, physical_end=%x," " physical_freeend=%lx, free_pages=%x\n", physical_start, physical_freestart, physical_end, physical_freeend, free_pages); #endif /* * Reserve some pages at the top of the memory for later use * * This area is not currently used but could be used for the allocation * of L1 page tables for each process. * The size of this memory would be determined by the maximum number of * processes. * * For the moment we just reserve a few pages just to make sure the * system copes. */ #if 0 /* * Note: The DRAM video memory is already excluded from * the free physical memory. */ physical_freeend -= videodram_size; free_pages -= (videodram_size / NBPG); videodram_start = physical_freeend; #endif #ifdef PROM_DEBUG printf("physical_start=%lx, physical_freestart=%lx, physical_end=%lx," " physical_freeend=%lx, free_pages=%x\n", physical_start, physical_freestart, physical_end, physical_freeend, free_pages); #endif /* Right We have the bottom meg of memory mapped to 0x00000000 * so was can get at it. The kernel will ocupy the start of it. * After the kernel/args we allocate some the the fixed page tables * we need to get the system going. * We allocate one page directory and 8 page tables and store the * physical addresses in the kernel_pt_table array. * Must remember that neither the page L1 or L2 page tables are the same * size as a page ! * * Ok the next bit of physical allocate may look complex but it is * simple really. I have done it like this so that no memory gets wasted * during the allocate of various pages and tables that are all different * sizes. * The start address will be page aligned. * We allocate the kernel page directory on the first free 16KB boundry * we find. * We allocate the kernel page tables on the first 1KB boundry we find. * We allocate 9 PT's. This means that in the process we * KNOW that we will encounter at least 1 16KB boundry. * * Eventually if the top end of the memory gets used for process L1 page * tables the kernel L1 page table may be moved up there. */ #ifdef VERBOSE_INIT_ARM printf("Allocating page tables\n"); #endif /* Update the address of the first free page of physical memory */ physical_freestart = physical_start + kerneldatasize + reserv_mem; free_pages -= (physical_freestart - physical_start) / NBPG; /* Define a macro to simplify memory allocation */ #define valloc_pages(var, np) \ alloc_pages((var).physical, (np)); \ (var).virtual = KERNEL_BASE + (var).physical - physical_start; #define alloc_pages(var, np) \ (var) = physical_freestart; \ physical_freestart += ((np) * NBPG); \ free_pages -= (np); \ bzero((char *)(var) - physical_start, ((np) * NBPG)); loop1 = 0; kernel_l1pt.physical = 0; for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) { /* Are we 16KB aligned for an L1 ? */ if ((physical_freestart & (PD_SIZE - 1)) == 0 && kernel_l1pt.physical == 0) { valloc_pages(kernel_l1pt, PD_SIZE / NBPG); } else { alloc_pages(kernel_pt_table[loop1], PT_SIZE / NBPG); ++loop1; } } #ifdef PROM_DEBUG /* A bit of debugging info */ for (loop = 0; loop < 10; ++loop) printf("%d - P%08x\n", loop, kernel_pt_table[loop]); #endif #ifdef DIAGNOSTIC /* This should never be able to happen but better confirm that. */ if (!kernel_l1pt.physical || (kernel_l1pt.physical & (PD_SIZE-1)) != 0) panic("initarm: Failed to align the kernel page directory\n"); #endif #ifdef PROM_DEBUG printf("physical_fs=%08lx next_phys=%08lx\n", physical_freestart, pmap_next_phys_page(physical_freestart - NBPG)); #endif /* * Allocate a page for the system page mapped to V0x00000000 * This page will just contain the system vectors and can be * shared by all processes. */ alloc_pages(systempage.physical, 1); #ifdef PROM_DEBUG printf("(0)physical_fs=%08lx next_phys=%08lx\n", physical_freestart, pmap_next_phys_page(physical_freestart - NBPG)); #endif /* Allocate a page for the page table to map kernel page tables*/ valloc_pages(kernel_ptpt, PT_SIZE / NBPG); /* Allocate stacks for all modes */ valloc_pages(fiqstack, FIQ_STACK_SIZE); valloc_pages(irqstack, IRQ_STACK_SIZE); valloc_pages(abtstack, ABT_STACK_SIZE); valloc_pages(undstack, UND_STACK_SIZE); valloc_pages(kernelstack, UPAGES); #ifdef VERBOSE_INIT_ARM printf("IRQ stack: p0x%08lx v0x%08lx\n", irqstack.physical, irqstack.virtual); printf("ABT stack: p0x%08lx v0x%08lx\n", abtstack.physical, abtstack.virtual); printf("UND stack: p0x%08lx v0x%08lx\n", undstack.physical, undstack.virtual); printf("SVC stack: p0x%08lx v0x%08lx\n", kernelstack.physical, kernelstack.virtual); #endif #ifdef PROM_DEBUG printf("(1)physical_fs=%08lx next_phys=%08lx\n", physical_freestart, (pmap_next_phys_page(physical_freestart - NBPG)); #endif alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / NBPG); #ifdef PROM_DEBUG printf("physical_fs=%08lx next_phys=%08lx\n", physical_freestart, pmap_next_phys_page(physical_freestart - NBPG)); #endif /* * Ok we have allocated physical pages for the primary kernel * page tables */ #ifdef VERBOSE_INIT_ARM printf("Mapping kernel\n"); #endif /* Now we fill in the L2 pagetable for the kernel code/data */ l2pagetable = kernel_pt_table[KERNEL_PT_KERNEL] - physical_start; #if 0 if (N_GETMAGIC(kernexec[0]) == ZMAGIC) { #ifdef PROM_DEBUG printf("[ktext read-only] "); printf("[%08x %08x %08x] \n", kerneldatasize, kernexec->a_text, (kernexec->a_text+kernexec->a_data+kernexec->a_bss)); #if 0 printf("physical start=%08lx physical freestart=%08lx\n", physical_start, physical_freestart); #endif #endif for (logical = 0; logical < 0x00/*kernexec->a_text*/; logical += NBPG) map_entry_ro(l2pagetable, logical, physical_start + reserv_mem + logical); for (; logical < kerneldatasize; logical += NBPG) map_entry(l2pagetable, logical, physical_start + reserv_mem + logical); } else #endif for (logical = 0; logical < kerneldatasize; logical += NBPG) map_entry(l2pagetable, logical, physical_start + reserv_mem + logical); #ifdef VERBOSE_INIT_ARM printf("Constructing page tables\n"); #endif /* Map the stack pages */ map_entry(l2pagetable, fiqstack.physical - physical_start, fiqstack.physical); map_entry(l2pagetable, irqstack.physical - physical_start, irqstack.physical); map_entry(l2pagetable, abtstack.physical - physical_start, abtstack.physical); for (loop = 0; loop < UND_STACK_SIZE; ++loop) map_entry(l2pagetable, undstack.physical - physical_start + NBPG * loop, undstack.physical + NBPG * loop); for (loop = 0; loop < UPAGES; ++loop) map_entry(l2pagetable, kernelstack.physical - physical_start + NBPG * loop, kernelstack.physical + NBPG * loop); for (loop = 0; loop < (PD_SIZE / NBPG); ++loop) map_entry_nc(l2pagetable, kernel_l1pt.physical - physical_start + NBPG * loop, kernel_l1pt.physical + NBPG * loop); /* Map the page table that maps the kernel pages */ map_entry_nc(l2pagetable, kernel_ptpt.physical - physical_start, kernel_ptpt.physical); /* Now we fill in the L2 pagetable for the VRAM */ /* * Current architectures mean that the VRAM is always in 1 continuous * bank. * This means that we can just map the 2 meg that the VRAM would occupy. * In theory we don't need a page table for VRAM, we could section map * it but we would need the page tables if DRAM was in use. */ l2pagetable = kernel_pt_table[KERNEL_PT_VMEM] - physical_start; for (logical = 0; logical < videodram_size; logical += NBPG) { map_entry(l2pagetable, logical, vdrambase + logical); map_entry(l2pagetable, logical + videodram_size, vdrambase + logical); } /* * Map entries in the page table used to map PTE's * Basically every kernel page table gets mapped here */ /* The -2 is slightly bogus, it should be -log2(sizeof(pt_entry_t)) */ l2pagetable = kernel_ptpt.physical - physical_start; map_entry(l2pagetable, (KERNEL_BASE >> (PGSHIFT-2)), kernel_pt_table[KERNEL_PT_KERNEL]); map_entry(l2pagetable, (PROCESS_PAGE_TBLS_BASE >> (PGSHIFT-2)), kernel_ptpt.physical); map_entry(l2pagetable, (VMEM_VBASE >> (PGSHIFT-2)), kernel_pt_table[KERNEL_PT_VMEM]); map_entry(l2pagetable, (0x00000000 >> (PGSHIFT-2)), kernel_pt_table[KERNEL_PT_SYS]); for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; ++loop) { map_entry_nc(l2pagetable, ((KERNEL_VM_BASE + (loop * 0x00400000)) >> (PGSHIFT-2)), kernel_pt_table[KERNEL_PT_VMDATA + loop]); } /* * Map the system page in the kernel page table for the bottom 1Meg * of the virtual memory map. */ l2pagetable = kernel_pt_table[KERNEL_PT_SYS] - physical_start; map_entry(l2pagetable, 0x0000000, systempage.physical); /* Now we construct the L1 pagetable */ l1pagetable = kernel_l1pt.physical - physical_start; /* Map the VIDC20, IOMD, COMBO and podules */ /* Map the VIDC20 */ map_section(l1pagetable, VIDC_BASE, VIDC_HW_BASE, 0); /* Map the IOMD (and SLOW and MEDIUM simple podules) */ map_section(l1pagetable, IOMD_BASE, IOMD_HW_BASE, 0); /* Map the COMBO (and module space) */ map_section(l1pagetable, IO_BASE, IO_HW_BASE, 0); /* Map the L2 pages tables in the L1 page table */ map_pagetable(l1pagetable, 0x00000000, kernel_pt_table[KERNEL_PT_SYS]); map_pagetable(l1pagetable, KERNEL_BASE, kernel_pt_table[KERNEL_PT_KERNEL]); for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; ++loop) map_pagetable(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000, kernel_pt_table[KERNEL_PT_VMDATA + loop]); map_pagetable(l1pagetable, PROCESS_PAGE_TBLS_BASE, kernel_ptpt.physical); map_pagetable(l1pagetable, VMEM_VBASE, kernel_pt_table[KERNEL_PT_VMEM]); #ifdef PROM_DEBUG /* Bit more debugging info */ printf("page tables look like this ...\n"); printf("V0x00000000 - %08x\n", ReadWord(l1pagetable + 0x0000)); printf("V0x03200000 - %08x\n", ReadWord(l1pagetable + 0x00c8)); printf("V0x03500000 - %08x\n", ReadWord(l1pagetable + 0x00d4)); printf("V0xf0000000 - %08x\n", ReadWord(l1pagetable + 0x3c00)); printf("V0xf1000000 - %08x\n", ReadWord(l1pagetable + 0x3c40)); printf("V0xf2000000 - %08x\n", ReadWord(l1pagetable + 0x3c80)); printf("V0xf3000000 - %08x\n", ReadWord(l1pagetable + 0x3cc0)); printf("V0xf3300000 - %08x\n", ReadWord(l1pagetable + 0x3ccc)); printf("V0xf4000000 - %08x\n", ReadWord(l1pagetable + 0x3d00)); printf("V0xf6000000 - %08x\n", ReadWord(l1pagetable + 0x3d80)); printf("V0xefc00000 - %08x\n", ReadWord(l1pagetable + 0x3bf8)); printf("V0xef800000 - %08x\n", ReadWord(l1pagetable + 0x3bfc)); promcngetc(); #endif /* * Now we have the real page tables in place so we can switch to them. * Once this is done we will be running with the REAL kernel page tables. */ /* * The last thing we must do is copy the kernel down to the new memory. * This copies all our kernel data structures and variables as well * which is why it is left to the last moment. */ #if 0 bcopy((char *)KERNEL_TEXT_BASE, (char *)0x00000000, kerneldatasize); #endif cpu_domains(DOMAIN_CLIENT); /* * When we get here, the ROM is still running, we need to * turn all the interrupts off before switching TTB. */ irq_init(); IRQdisable; setleds(LEDOFF); /* turns off LEDs */ /* Switch tables */ #ifdef VERBOSE_INIT_ARM printf("switching to new L1 page table\n"); #endif setttb(kernel_l1pt.physical); /* * We must now clean the cache again.... * Cleaning may be done by reading new data to displace any * dirty data in the cache. This will have happened in setttb() * but since we are boot strapping the addresses used for the read * may have just been remapped and thus the cache could be out * of sync. A re-clean after the switch will cure this. * After booting there are no gross reloations of the kernel thus * this problem wil not occur after initarm(). */ cpu_cache_cleanID(); setleds(LEDALL); consinit(); setleds(LEDOFF); /* Right set up the vectors at the bottom of page 0 */ bcopy(page0, (char *)0x00000000, page0_end - page0); /* We have modified a text page so sync the icache */ cpu_cache_syncI_rng(0, page0_end - page0); /* * Pages were allocated during the secondary bootstrap for the * stacks for different CPU modes. * We must now set the r13 registers in the different CPU modes to * point to these stacks. * Since the ARM stacks use STMFD etc. we must set r13 to the top end * of the stack memory. */ printf("init subsystems: stacks "); set_stackptr(PSR_FIQ32_MODE, fiqstack.virtual + FIQ_STACK_SIZE * NBPG); set_stackptr(PSR_IRQ32_MODE, irqstack.virtual + IRQ_STACK_SIZE * NBPG); set_stackptr(PSR_ABT32_MODE, abtstack.virtual + ABT_STACK_SIZE * NBPG); set_stackptr(PSR_UND32_MODE, undstack.virtual + UND_STACK_SIZE * NBPG); /* * Well we should set a data abort handler. * Once things get going this will change as we will need a proper handler. * Until then we will use a handler that just panics but tells us * why. * Initialisation of the vectors will just panic on a data abort. * This just fills in a slighly better one. */ printf("vectors "); data_abort_handler_address = (u_int)data_abort_handler; prefetch_abort_handler_address = (u_int)prefetch_abort_handler; undefined_handler_address = (u_int)undefinedinstruction_bounce; #if 0 /* Diagnostic stuff. while writing the boot code */ for (loop = 0x0; loop < 0x1000; ++loop) { if (ReadWord(PAGE_DIRS_BASE + loop * 4) != 0) printf("Pagetable for V%08x = %08x\n", loop << 20, ReadWord(0xf2000000 + loop * 4)); } for (loop = 0x0; loop < 0x400; ++loop) { if (ReadWord(kernel_pt_table[KERNEL_PT_PTE] + loop * 4) != 0) printf("Pagetable for V%08x P%08x = %08x\n", loop << 22, kernel_pt_table[KERNEL_PT_PTE]+loop*4, ReadWord(kernel_pt_table[KERNEL_PT_PTE]+loop * 4)); } #endif /* At last ! * We now have the kernel in physical memory from the bottom upwards. * Kernel page tables are physically above this. * The kernel is mapped to 0xf0000000 * The kernel data PTs will handle the mapping of 0xf1000000-0xf1ffffff * 2Meg of VRAM is mapped to 0xf4000000 * The page tables are mapped to 0xefc00000 * The IOMD is mapped to 0xf6000000 * The VIDC is mapped to 0xf6100000 */ /* Initialise the undefined instruction handlers */ printf("undefined "); undefined_init(); console_flush(); /* Boot strap pmap telling it where the kernel page table is */ printf("pmap "); pmap_bootstrap(kernel_l1pt.virtual, kernel_ptpt); console_flush(); /* Setup the IRQ system */ printf("irq "); console_flush(); irq_init(); printf("done.\n"); #if NIPKDB > 0 /* Initialise ipkdb */ ipkdb_init(); if (boothowto & RB_KDB) ipkdb_connect(0); #endif #ifdef DDB printf("ddb: "); db_machine_init(); { extern int end; extern int *esym; ddb_init(*(int *)&end, ((int *)&end) + 1, esym); } if (boothowto & RB_KDB) Debugger(); #endif /* We return the new stack pointer address */ return(kernelstack.virtual + USPACE_SVC_STACK_TOP); } static void process_kernel_args(void) { parse_mi_bootargs(bootargs); parse_rc7500_bootargs(bootargs); } void parse_rc7500_bootargs(args) char *args; { int integer; videodram_size = 0x100000; if (get_bootconf_option(args, "m", BOOTOPT_TYPE_INT, &integer)) { if (integer >= 2 || integer <= 4) videodram_size *= integer; } } void setleds(led) int led; { outb(LEDPORT, ~led & 0xff); } /* End of rc7500_machdep.c */