/* * Copyright (c) 1992, 1993 * The Regents of the University of California. All rights reserved. * * This software was developed by the Computer Systems Engineering group * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and * contributed to Berkeley. * * All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Lawrence Berkeley Laboratory. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)pcb.h 8.1 (Berkeley) 6/11/93 * * from: Header: pcb.h,v 1.6 92/11/26 02:04:39 torek Exp * $Id: pcb.h,v 1.2 1994/05/19 08:23:36 deraadt Exp $ */ #include #ifdef notyet #define PCB_MAXWIN 32 /* architectural limit */ #else #define PCB_MAXWIN 8 /* worried about u area sizes ... */ #endif /* * SPARC Process Control Block. * * pcb_uw is positive if there are any user windows that are * are currently in the CPU windows rather than on the user * stack. Whenever we are running in the kernel with traps * enabled, we decrement pcb_uw for each ``push'' of a CPU * register window into the stack, and we increment it for * each ``pull'' from the stack into the CPU. (If traps are * disabled, or if we are in user mode, pcb_uw is junk.) * * To ease computing pcb_uw on traps from user mode, we keep track * of the log base 2 of the single bit that is set in %wim. * * If an overflow occurs while the associated user stack pages * are invalid (paged out), we have to store the registers * in a page that is locked in core while the process runs, * i.e., right here in the pcb. We also need the stack pointer * for the last such window (but only the last, as the others * are in each window) and the count of windows saved. We * cheat by having a whole window structure for that one %sp. * Thus, to save window pcb_rw[i] to memory, we write it at * pcb_rw[i + 1].rw_in[6]. * * pcb_nsaved has three `kinds' of values. If 0, it means no * registers are in the PCB (though if pcb_uw is positive, * there may be the next time you look). If positive, it means * there are no user registers in the CPU, but there are some * saved in pcb_rw[]. As a special case, traps that needed * assistance to pull user registers from the stack also store * the registers in pcb_rw[], and set pcb_nsaved to -1. This * special state is normally short-term: it can only last until the * trap returns, and it can never persist across entry to user code. */ struct pcb { int pcb_sp; /* sp (%o6) when switch() was called */ int pcb_pc; /* pc (%o7) when switch() was called */ int pcb_psr; /* %psr when switch() was called */ caddr_t pcb_onfault; /* for copyin/out */ int pcb_uw; /* user windows inside CPU */ int pcb_wim; /* log2(%wim) */ int pcb_nsaved; /* number of windows saved in pcb */ #ifdef notdef int pcb_winof; /* number of window overflow traps */ int pcb_winuf; /* number of window underflow traps */ #endif int pcb_pad; /* pad to doubleword boundary */ /* the following MUST be aligned on a doubleword boundary */ struct rwindow pcb_rw[PCB_MAXWIN]; /* saved windows */ }; /* * The pcb is augmented with machine-dependent additional data for * core dumps. Note that the trapframe here is a copy of the one * from the top of the kernel stack (included here so that the kernel * stack itself need not be dumped). */ struct md_coredump { struct trapframe md_tf; struct fpstate md_fpstate; }; #ifdef KERNEL extern struct pcb *cpcb; #endif /* KERNEL */