/* $NetBSD: sdtemp.c,v 1.32 2016/08/03 03:35:24 msaitoh Exp $ */ /* * Copyright (c) 2009 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Paul Goyette. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #include __KERNEL_RCSID(0, "$NetBSD: sdtemp.c,v 1.32 2016/08/03 03:35:24 msaitoh Exp $"); #include #include #include #include #include #include #include #include #include #include struct sdtemp_softc { device_t sc_dev; i2c_tag_t sc_tag; int sc_address; struct sysmon_envsys *sc_sme; envsys_data_t *sc_sensor; sysmon_envsys_lim_t sc_deflims; uint32_t sc_defprops; int sc_resolution; uint16_t sc_mfgid; uint16_t sc_devid; uint16_t sc_devid_masked; uint16_t sc_capability; }; static int sdtemp_match(device_t, cfdata_t, void *); static void sdtemp_attach(device_t, device_t, void *); static int sdtemp_detach(device_t, int); CFATTACH_DECL_NEW(sdtemp, sizeof(struct sdtemp_softc), sdtemp_match, sdtemp_attach, sdtemp_detach, NULL); static void sdtemp_refresh(struct sysmon_envsys *, envsys_data_t *); static void sdtemp_get_limits(struct sysmon_envsys *, envsys_data_t *, sysmon_envsys_lim_t *, uint32_t *); static void sdtemp_set_limits(struct sysmon_envsys *, envsys_data_t *, sysmon_envsys_lim_t *, uint32_t *); #ifdef NOT_YET static int sdtemp_read_8(struct sdtemp_softc *, uint8_t, uint8_t *); static int sdtemp_write_8(struct sdtemp_softc *, uint8_t, uint8_t); #endif /* NOT YET */ static int sdtemp_read_16(struct sdtemp_softc *, uint8_t, uint16_t *); static int sdtemp_write_16(struct sdtemp_softc *, uint8_t, uint16_t); static uint32_t sdtemp_decode_temp(struct sdtemp_softc *, uint16_t); static bool sdtemp_pmf_suspend(device_t, const pmf_qual_t *); static bool sdtemp_pmf_resume(device_t, const pmf_qual_t *); /* Device dependent config functions */ static void sdtemp_config_mcp(struct sdtemp_softc *); static void sdtemp_config_idt(struct sdtemp_softc *); struct sdtemp_dev_entry { const uint16_t sdtemp_mfg_id; const uint16_t sdtemp_devrev; const uint16_t sdtemp_mask; void (*sdtemp_config)(struct sdtemp_softc *); const char *sdtemp_desc; }; /* Convert sysmon_envsys uKelvin value to simple degC */ #define __UK2C(uk) (((uk) - 273150000) / 1000000) /* List of devices known to conform to JEDEC JC42.4 */ #define CMCP sdtemp_config_mcp #define CIDT sdtemp_config_idt static const struct sdtemp_dev_entry sdtemp_dev_table[] = { { AT_MANUFACTURER_ID, AT_30TS00_DEVICE_ID, AT_30TS00_MASK, NULL, "Atmel AT30TS00" }, { AT2_MANUFACTURER_ID, AT2_30TSE004_DEVICE_ID, AT2_30TSE004_MASK, NULL, "Atmel AT30TSE004" }, { GT_MANUFACTURER_ID, GT_30TS00_DEVICE_ID, GT_30TS00_MASK, NULL, "Giantec GT30TS00" }, { GT2_MANUFACTURER_ID, GT2_34TS02_DEVICE_ID, GT2_34TS02_MASK, NULL, "Giantec GT34TS02" }, { MAXIM_MANUFACTURER_ID, MAX_6604_DEVICE_ID, MAX_6604_MASK, NULL, "Maxim MAX6604" }, { MCP_MANUFACTURER_ID, MCP_9804_DEVICE_ID, MCP_9804_MASK, CMCP, "Microchip Tech MCP9804" }, { MCP_MANUFACTURER_ID, MCP_9805_DEVICE_ID, MCP_9805_MASK, NULL, "Microchip Tech MCP9805/MCP9843" }, { MCP_MANUFACTURER_ID, MCP_98242_DEVICE_ID, MCP_98242_MASK, CMCP, "Microchip Tech MCP98242" }, { MCP_MANUFACTURER_ID, MCP_98243_DEVICE_ID, MCP_98243_MASK, CMCP, "Microchip Tech MCP98243" }, { MCP_MANUFACTURER_ID, MCP_98244_DEVICE_ID, MCP_98244_MASK, CMCP, "Microchip Tech MCP98244" }, { ADT_MANUFACTURER_ID, ADT_7408_DEVICE_ID, ADT_7408_MASK, NULL, "Analog Devices ADT7408" }, { NXP_MANUFACTURER_ID, NXP_SE98_DEVICE_ID, NXP_SE98_MASK, NULL, "NXP Semiconductors SE97B/SE98" }, { NXP_MANUFACTURER_ID, NXP_SE97_DEVICE_ID, NXP_SE97_MASK, NULL, "NXP Semiconductors SE97" }, { STTS_MANUFACTURER_ID, STTS_424E_DEVICE_ID, STTS_424E_MASK, NULL, "STmicroelectronics STTS424E" }, { STTS_MANUFACTURER_ID, STTS_424_DEVICE_ID, STTS_424_MASK, NULL, "STmicroelectronics STTS424" }, { STTS_MANUFACTURER_ID, STTS_2002_DEVICE_ID, STTS_2002_MASK, NULL, "STmicroelectronics STTS2002" }, { STTS_MANUFACTURER_ID, STTS_2004_DEVICE_ID, STTS_2004_MASK, NULL, "STmicroelectronics STTS2004" }, { STTS_MANUFACTURER_ID, STTS_3000_DEVICE_ID, STTS_3000_MASK, NULL, "STmicroelectronics STTS3000" }, { CAT_MANUFACTURER_ID, CAT_34TS02_DEVICE_ID, CAT_34TS02_MASK, NULL, "Catalyst CAT34TS02/CAT6095" }, { CAT_MANUFACTURER_ID, CAT_34TS02C_DEVICE_ID, CAT_34TS02C_MASK, NULL, "Catalyst CAT34TS02C" }, { CAT_MANUFACTURER_ID, CAT_34TS04_DEVICE_ID, CAT_34TS04_MASK, NULL, "Catalyst CAT34TS04" }, { IDT_MANUFACTURER_ID, IDT_TSE2004GB2_DEVICE_ID,IDT_TSE2004GB2_MASK, NULL, "Integrated Device Technology TSE2004GB2" }, { IDT_MANUFACTURER_ID, IDT_TS3000B3_DEVICE_ID, IDT_TS3000B3_MASK, CIDT, "Integrated Device Technology TS3000B3/TSE2002B3" }, { IDT_MANUFACTURER_ID, IDT_TS3000GB0_DEVICE_ID, IDT_TS3000GB0_MASK, CIDT, "Integrated Device Technology TS3000GB0" }, { IDT_MANUFACTURER_ID, IDT_TS3000GB2_DEVICE_ID, IDT_TS3000GB2_MASK, CIDT, "Integrated Device Technology TS3000GB2" }, { IDT_MANUFACTURER_ID, IDT_TS3001GB2_DEVICE_ID, IDT_TS3001GB2_MASK, CIDT, "Integrated Device Technology TS3001GB2" }, /* * Don't change the location of the following two entries. Device specific * entry must be located at above. */ { 0, TSE2004AV_ID, TSE2004AV_MASK, NULL, "TSE2004av compliant device (generic driver)" }, { 0, 0, 0, NULL, "Unknown" } }; #undef CMCP #undef CIDT static const char *temp_resl[] = { "0.5C", "0.25C", "0.125C", "0.0625C" }; static int sdtemp_lookup(uint16_t mfg, uint16_t devrev) { int i; for (i = 0; sdtemp_dev_table[i].sdtemp_mfg_id; i++) { if (mfg != sdtemp_dev_table[i].sdtemp_mfg_id) continue; if ((devrev & sdtemp_dev_table[i].sdtemp_mask) == sdtemp_dev_table[i].sdtemp_devrev) break; } /* Check TSE2004av */ if ((sdtemp_dev_table[i].sdtemp_mfg_id == 0) && (SDTEMP_IS_TSE2004AV(devrev) == 0)) i++; /* Unknown */ return i; } static int sdtemp_match(device_t parent, cfdata_t cf, void *aux) { struct i2c_attach_args *ia = aux; uint16_t mfgid, devid, cap; struct sdtemp_softc sc; int i, error; sc.sc_tag = ia->ia_tag; sc.sc_address = ia->ia_addr; if ((ia->ia_addr & SDTEMP_ADDRMASK) != SDTEMP_ADDR) return 0; /* Verify that we can read the manufacturer ID, Device ID and the capability */ iic_acquire_bus(sc.sc_tag, 0); error = sdtemp_read_16(&sc, SDTEMP_REG_MFG_ID, &mfgid) | sdtemp_read_16(&sc, SDTEMP_REG_DEV_REV, &devid) | sdtemp_read_16(&sc, SDTEMP_REG_CAPABILITY, &cap); iic_release_bus(sc.sc_tag, 0); if (error) return 0; i = sdtemp_lookup(mfgid, devid); if ((sdtemp_dev_table[i].sdtemp_mfg_id == 0) && (sdtemp_dev_table[i].sdtemp_devrev == 0)) { aprint_debug("sdtemp: No match for mfg 0x%04x dev 0x%02x " "rev 0x%02x at address 0x%02x\n", mfgid, devid >> 8, devid & 0xff, sc.sc_address); return 0; } /* * Check by SDTEMP_IS_TSE2004AV() might not be enough, so check the alarm * capability, too. */ if ((cap & SDTEMP_CAP_HAS_ALARM) == 0) return 0; return 1; } static void sdtemp_attach(device_t parent, device_t self, void *aux) { struct sdtemp_softc *sc = device_private(self); struct i2c_attach_args *ia = aux; uint16_t mfgid, devid; int i, error; sc->sc_tag = ia->ia_tag; sc->sc_address = ia->ia_addr; sc->sc_dev = self; iic_acquire_bus(sc->sc_tag, 0); if ((error = sdtemp_read_16(sc, SDTEMP_REG_MFG_ID, &mfgid)) != 0 || (error = sdtemp_read_16(sc, SDTEMP_REG_DEV_REV, &devid)) != 0) { iic_release_bus(sc->sc_tag, 0); aprint_error(": attach error %d\n", error); return; } sc->sc_mfgid = mfgid; sc->sc_devid = devid; i = sdtemp_lookup(mfgid, devid); sc->sc_devid_masked = devid & sdtemp_dev_table[i].sdtemp_mask; aprint_naive(": Temp Sensor\n"); aprint_normal(": %s Temp Sensor\n", sdtemp_dev_table[i].sdtemp_desc); if (sdtemp_dev_table[i].sdtemp_mfg_id == 0) { if (SDTEMP_IS_TSE2004AV(devid)) aprint_normal_dev(self, "TSE2004av compliant. " "Manufacturer ID 0x%04hx, Device revision 0x%02x\n", mfgid, devid & TSE2004AV_REV); else { aprint_error_dev(self, "mfg 0x%04x dev 0x%02x rev 0x%02x at addr 0x%02x\n", mfgid, devid >> 8, devid & 0xff, ia->ia_addr); iic_release_bus(sc->sc_tag, 0); aprint_error_dev(self, "It should no happen. " "Why attach() found me?\n"); return; } } error = sdtemp_read_16(sc, SDTEMP_REG_CAPABILITY, &sc->sc_capability); aprint_debug_dev(self, "capability reg = %04x\n", sc->sc_capability); sc->sc_resolution = __SHIFTOUT(sc->sc_capability, SDTEMP_CAP_RESOLUTION); /* * Call device dependent function here. Currently, it's used for * the resolution. * * IDT's devices and some Microchip's devices have the resolution * register in the vendor specific registers area. The devices' * resolution bits in the capability register are not the maximum * resolution but the current vaule of the setting. */ if (sdtemp_dev_table[i].sdtemp_config != NULL) sdtemp_dev_table[i].sdtemp_config(sc); aprint_normal_dev(self, "%s accuracy", (sc->sc_capability & SDTEMP_CAP_ACCURACY_1C) ? "high" : "default"); if ((sc->sc_capability & SDTEMP_CAP_WIDER_RANGE) != 0) aprint_normal(", wider range"); aprint_normal(", %s resolution", temp_resl[sc->sc_resolution]); if ((sc->sc_capability & SDTEMP_CAP_VHV) != 0) aprint_debug(", high voltage standoff"); aprint_debug(", %s timeout", (sc->sc_capability & SDTEMP_CAP_TMOUT) ? "25-35ms" : "10-60ms"); if ((sc->sc_capability & SDTEMP_CAP_EVSD) != 0) aprint_normal(", event with shutdown"); aprint_normal("\n"); /* * Alarm capability is required; if not present, this is likely * not a real sdtemp device. */ if (error != 0 || (sc->sc_capability & SDTEMP_CAP_HAS_ALARM) == 0) { iic_release_bus(sc->sc_tag, 0); aprint_error_dev(self, "required alarm capability not present!\n"); return; } /* Set the configuration to defaults. */ error = sdtemp_write_16(sc, SDTEMP_REG_CONFIG, 0); if (error != 0) { iic_release_bus(sc->sc_tag, 0); aprint_error_dev(self, "error %d writing config register\n", error); return; } iic_release_bus(sc->sc_tag, 0); /* Hook us into the sysmon_envsys subsystem */ sc->sc_sme = sysmon_envsys_create(); sc->sc_sme->sme_name = device_xname(self); sc->sc_sme->sme_cookie = sc; sc->sc_sme->sme_refresh = sdtemp_refresh; sc->sc_sme->sme_get_limits = sdtemp_get_limits; sc->sc_sme->sme_set_limits = sdtemp_set_limits; sc->sc_sensor = kmem_zalloc(sizeof(envsys_data_t), KM_NOSLEEP); if (!sc->sc_sensor) { aprint_error_dev(self, "unable to allocate sc_sensor\n"); goto bad2; } /* Initialize sensor data. */ sc->sc_sensor->units = ENVSYS_STEMP; sc->sc_sensor->state = ENVSYS_SINVALID; sc->sc_sensor->flags |= ENVSYS_FMONLIMITS; (void)strlcpy(sc->sc_sensor->desc, device_xname(self), sizeof(sc->sc_sensor->desc)); snprintf(sc->sc_sensor->desc, sizeof(sc->sc_sensor->desc), "DIMM %d temperature", sc->sc_address - SDTEMP_ADDR); /* Now attach the sensor */ if (sysmon_envsys_sensor_attach(sc->sc_sme, sc->sc_sensor)) { aprint_error_dev(self, "unable to attach sensor\n"); goto bad; } /* Register the device */ error = sysmon_envsys_register(sc->sc_sme); if (error) { aprint_error_dev(self, "error %d registering with sysmon\n", error); goto bad; } if (!pmf_device_register(self, sdtemp_pmf_suspend, sdtemp_pmf_resume)) aprint_error_dev(self, "couldn't establish power handler\n"); /* Retrieve and display hardware monitor limits */ sdtemp_get_limits(sc->sc_sme, sc->sc_sensor, &sc->sc_deflims, &sc->sc_defprops); aprint_normal_dev(self, "Hardware limits: "); i = 0; if (sc->sc_defprops & PROP_WARNMIN) { aprint_normal("low %dC", __UK2C(sc->sc_deflims.sel_warnmin)); i++; } if (sc->sc_defprops & PROP_WARNMAX) { aprint_normal("%shigh %dC ", (i)?", ":"", __UK2C(sc->sc_deflims.sel_warnmax)); i++; } if (sc->sc_defprops & PROP_CRITMAX) { aprint_normal("%scritical %dC ", (i)?", ":"", __UK2C(sc->sc_deflims.sel_critmax)); i++; } aprint_normal("%s\n", (i)?"":"none set"); return; bad: kmem_free(sc->sc_sensor, sizeof(envsys_data_t)); bad2: sysmon_envsys_destroy(sc->sc_sme); } static int sdtemp_detach(device_t self, int flags) { struct sdtemp_softc *sc = device_private(self); pmf_device_deregister(self); if (sc->sc_sme) sysmon_envsys_unregister(sc->sc_sme); if (sc->sc_sensor) kmem_free(sc->sc_sensor, sizeof(envsys_data_t)); return 0; } /* Retrieve current limits from device, and encode in uKelvins */ static void sdtemp_get_limits(struct sysmon_envsys *sme, envsys_data_t *edata, sysmon_envsys_lim_t *limits, uint32_t *props) { struct sdtemp_softc *sc = sme->sme_cookie; uint16_t lim; *props = 0; iic_acquire_bus(sc->sc_tag, 0); if (sdtemp_read_16(sc, SDTEMP_REG_LOWER_LIM, &lim) == 0 && lim != 0) { limits->sel_warnmin = sdtemp_decode_temp(sc, lim); *props |= PROP_WARNMIN; } if (sdtemp_read_16(sc, SDTEMP_REG_UPPER_LIM, &lim) == 0 && lim != 0) { limits->sel_warnmax = sdtemp_decode_temp(sc, lim); *props |= PROP_WARNMAX; } if (sdtemp_read_16(sc, SDTEMP_REG_CRIT_LIM, &lim) == 0 && lim != 0) { limits->sel_critmax = sdtemp_decode_temp(sc, lim); *props |= PROP_CRITMAX; } iic_release_bus(sc->sc_tag, 0); if (*props != 0) *props |= PROP_DRIVER_LIMITS; } /* Send current limit values to the device */ static void sdtemp_set_limits(struct sysmon_envsys *sme, envsys_data_t *edata, sysmon_envsys_lim_t *limits, uint32_t *props) { uint16_t val; struct sdtemp_softc *sc = sme->sme_cookie; if (limits == NULL) { limits = &sc->sc_deflims; props = &sc->sc_defprops; } iic_acquire_bus(sc->sc_tag, 0); if (*props & PROP_WARNMIN) { val = __UK2C(limits->sel_warnmin); (void)sdtemp_write_16(sc, SDTEMP_REG_LOWER_LIM, (val << 4) & SDTEMP_TEMP_MASK); } if (*props & PROP_WARNMAX) { val = __UK2C(limits->sel_warnmax); (void)sdtemp_write_16(sc, SDTEMP_REG_UPPER_LIM, (val << 4) & SDTEMP_TEMP_MASK); } if (*props & PROP_CRITMAX) { val = __UK2C(limits->sel_critmax); (void)sdtemp_write_16(sc, SDTEMP_REG_CRIT_LIM, (val << 4) & SDTEMP_TEMP_MASK); } iic_release_bus(sc->sc_tag, 0); /* * If at least one limit is set that we can handle, and no * limits are set that we cannot handle, tell sysmon that * the driver will take care of monitoring the limits! */ if (*props & (PROP_CRITMIN | PROP_BATTCAP | PROP_BATTWARN)) *props &= ~PROP_DRIVER_LIMITS; else if (*props & PROP_LIMITS) *props |= PROP_DRIVER_LIMITS; else *props &= ~PROP_DRIVER_LIMITS; } #ifdef NOT_YET /* All registers on these sensors are 16-bits */ /* Read a 8-bit value from a register */ static int sdtemp_read_8(struct sdtemp_softc *sc, uint8_t reg, uint8_t *valp) { int error; error = iic_exec(sc->sc_tag, I2C_OP_READ_WITH_STOP, sc->sc_address, ®, 1, valp, sizeof(*valp), 0); return error; } static int sdtemp_write_8(struct sdtemp_softc *sc, uint8_t reg, uint8_t val) { return iic_exec(sc->sc_tag, I2C_OP_WRITE_WITH_STOP, sc->sc_address, ®, 1, &val, sizeof(val), 0); } #endif /* NOT_YET */ /* Read a 16-bit value from a register */ static int sdtemp_read_16(struct sdtemp_softc *sc, uint8_t reg, uint16_t *valp) { int error; error = iic_exec(sc->sc_tag, I2C_OP_READ_WITH_STOP, sc->sc_address, ®, 1, valp, sizeof(*valp), 0); if (error) return error; *valp = be16toh(*valp); return 0; } static int sdtemp_write_16(struct sdtemp_softc *sc, uint8_t reg, uint16_t val) { uint16_t temp; temp = htobe16(val); return iic_exec(sc->sc_tag, I2C_OP_WRITE_WITH_STOP, sc->sc_address, ®, 1, &temp, sizeof(temp), 0); } static uint32_t sdtemp_decode_temp(struct sdtemp_softc *sc, uint16_t temp) { uint32_t val; int32_t stemp; /* Get only the temperature bits */ temp &= SDTEMP_TEMP_MASK; /* If necessary, extend the sign bit */ if ((sc->sc_capability & SDTEMP_CAP_WIDER_RANGE) && (temp & SDTEMP_TEMP_NEGATIVE)) temp |= SDTEMP_TEMP_SIGN_EXT; /* Mask off only bits valid within current resolution */ temp &= ~(0x7 >> sc->sc_resolution); /* Treat as signed and extend to 32-bits */ stemp = (int16_t)temp; /* Now convert from 0.0625 (1/16) deg C increments to microKelvins */ val = (stemp * 62500) + 273150000; return val; } static void sdtemp_refresh(struct sysmon_envsys *sme, envsys_data_t *edata) { struct sdtemp_softc *sc = sme->sme_cookie; uint16_t val; int error; iic_acquire_bus(sc->sc_tag, 0); error = sdtemp_read_16(sc, SDTEMP_REG_AMBIENT_TEMP, &val); iic_release_bus(sc->sc_tag, 0); if (error) { edata->state = ENVSYS_SINVALID; return; } edata->value_cur = sdtemp_decode_temp(sc, val); /* Now check for limits */ if ((edata->upropset & PROP_DRIVER_LIMITS) == 0) edata->state = ENVSYS_SVALID; else if ((val & SDTEMP_ABOVE_CRIT) && (edata->upropset & PROP_CRITMAX)) edata->state = ENVSYS_SCRITOVER; else if ((val & SDTEMP_ABOVE_UPPER) && (edata->upropset & PROP_WARNMAX)) edata->state = ENVSYS_SWARNOVER; else if ((val & SDTEMP_BELOW_LOWER) && (edata->upropset & PROP_WARNMIN)) edata->state = ENVSYS_SWARNUNDER; else edata->state = ENVSYS_SVALID; } /* * power management functions * * We go into "shutdown" mode at suspend time, and return to normal * mode upon resume. This reduces power consumption by disabling * the A/D converter. */ static bool sdtemp_pmf_suspend(device_t dev, const pmf_qual_t *qual) { struct sdtemp_softc *sc = device_private(dev); int error; uint16_t config; iic_acquire_bus(sc->sc_tag, 0); error = sdtemp_read_16(sc, SDTEMP_REG_CONFIG, &config); if (error == 0) { config |= SDTEMP_CONFIG_SHUTDOWN_MODE; error = sdtemp_write_16(sc, SDTEMP_REG_CONFIG, config); } iic_release_bus(sc->sc_tag, 0); return (error == 0); } static bool sdtemp_pmf_resume(device_t dev, const pmf_qual_t *qual) { struct sdtemp_softc *sc = device_private(dev); int error; uint16_t config; iic_acquire_bus(sc->sc_tag, 0); error = sdtemp_read_16(sc, SDTEMP_REG_CONFIG, &config); if (error == 0) { config &= ~SDTEMP_CONFIG_SHUTDOWN_MODE; error = sdtemp_write_16(sc, SDTEMP_REG_CONFIG, config); } iic_release_bus(sc->sc_tag, 0); return (error == 0); } /* Device dependent config functions */ static void sdtemp_config_mcp(struct sdtemp_softc *sc) { int rv; uint8_t resolreg; /* Note that MCP9805 has no resolution register */ switch (sc->sc_devid_masked) { case MCP_9804_DEVICE_ID: case MCP_98242_DEVICE_ID: case MCP_98243_DEVICE_ID: resolreg = SDTEMP_REG_MCP_RESOLUTION_9804; break; case MCP_98244_DEVICE_ID: resolreg = SDTEMP_REG_MCP_RESOLUTION_98244; break; default: aprint_error("%s: %s: unknown device ID (%04hx)\n", device_xname(sc->sc_dev), __func__, sc->sc_devid_masked); return; } /* * Set resolution to the max. * * Even if it fails, the resolution will be the default. It's not a * fatal error. */ rv = sdtemp_write_16(sc, resolreg, SDTEMP_CAP_RESOLUTION_MAX); if (rv == 0) sc->sc_resolution = SDTEMP_CAP_RESOLUTION_MAX; else aprint_error("%s: error %d writing resolution register\n", device_xname(sc->sc_dev), rv); } static void sdtemp_config_idt(struct sdtemp_softc *sc) { int rv; /* * Set resolution to the max. * * Even if it fails, the resolution will be the default. It's not a * fatal error. */ rv = sdtemp_write_16(sc, SDTEMP_REG_IDT_RESOLUTION, __SHIFTIN(SDTEMP_CAP_RESOLUTION_MAX, SDTEMP_CAP_RESOLUTION)); if (rv == 0) sc->sc_resolution = SDTEMP_CAP_RESOLUTION_MAX; else aprint_error("%s: error %d writing resolution register\n", device_xname(sc->sc_dev), rv); } MODULE(MODULE_CLASS_DRIVER, sdtemp, "i2cexec,sysmon_envsys"); #ifdef _MODULE #include "ioconf.c" #endif static int sdtemp_modcmd(modcmd_t cmd, void *opaque) { int error = 0; switch (cmd) { case MODULE_CMD_INIT: #ifdef _MODULE error = config_init_component(cfdriver_ioconf_sdtemp, cfattach_ioconf_sdtemp, cfdata_ioconf_sdtemp); #endif return error; case MODULE_CMD_FINI: #ifdef _MODULE error = config_fini_component(cfdriver_ioconf_sdtemp, cfattach_ioconf_sdtemp, cfdata_ioconf_sdtemp); #endif return error; default: return ENOTTY; } }