/* $NetBSD: nslm7x.c,v 1.22 2005/04/29 02:02:52 xtraeme Exp $ */ /*- * Copyright (c) 2000 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Bill Squier. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the NetBSD * Foundation, Inc. and its contributors. * 4. Neither the name of The NetBSD Foundation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #include __KERNEL_RCSID(0, "$NetBSD: nslm7x.c,v 1.22 2005/04/29 02:02:52 xtraeme Exp $"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if defined(LMDEBUG) #define DPRINTF(x) printf x #else #define DPRINTF(x) #endif const struct envsys_range lm_ranges[] = { /* sc->sensors sub-intervals */ /* for each unit type */ { 7, 7, ENVSYS_STEMP }, { 8, 10, ENVSYS_SFANRPM }, { 1, 0, ENVSYS_SVOLTS_AC }, /* None */ { 0, 6, ENVSYS_SVOLTS_DC }, { 1, 0, ENVSYS_SOHMS }, /* None */ { 1, 0, ENVSYS_SWATTS }, /* None */ { 1, 0, ENVSYS_SAMPS } /* None */ }; static void setup_fan(struct lm_softc *, int, int); static void setup_temp(struct lm_softc *, int, int); static void wb_setup_volt(struct lm_softc *); int lm_match(struct lm_softc *); int wb_match(struct lm_softc *); int itec_match(struct lm_softc *); int def_match(struct lm_softc *); void lm_common_match(struct lm_softc *); static int lm_generic_banksel(struct lm_softc *, int); static void generic_stemp(struct lm_softc *, struct envsys_tre_data *); static void generic_svolt(struct lm_softc *, struct envsys_tre_data *, struct envsys_basic_info *); static void generic_fanrpm(struct lm_softc *, struct envsys_tre_data *); void lm_refresh_sensor_data(struct lm_softc *); static void wb_svolt(struct lm_softc *); static void wb_stemp(struct lm_softc *, struct envsys_tre_data *, int); static void wb781_fanrpm(struct lm_softc *, struct envsys_tre_data *); static void wb_fanrpm(struct lm_softc *, struct envsys_tre_data *); void wb781_refresh_sensor_data(struct lm_softc *); void wb782_refresh_sensor_data(struct lm_softc *); void wb697_refresh_sensor_data(struct lm_softc *); static void itec_svolt(struct lm_softc *, struct envsys_tre_data *, struct envsys_basic_info *); static void itec_stemp(struct lm_softc *, struct envsys_tre_data *); static void itec_fanrpm(struct lm_softc *, struct envsys_tre_data *); void itec_refresh_sensor_data(struct lm_softc *); int lm_gtredata(struct sysmon_envsys *, struct envsys_tre_data *); int generic_streinfo_fan(struct lm_softc *, struct envsys_basic_info *, int, struct envsys_basic_info *); int lm_streinfo(struct sysmon_envsys *, struct envsys_basic_info *); int wb781_streinfo(struct sysmon_envsys *, struct envsys_basic_info *); int wb782_streinfo(struct sysmon_envsys *, struct envsys_basic_info *); int itec_streinfo(struct sysmon_envsys *, struct envsys_basic_info *); struct lm_chip { int (*chip_match)(struct lm_softc *); }; struct lm_chip lm_chips[] = { { itec_match }, { wb_match }, { lm_match }, { def_match } /* Must be last */ }; int lm_generic_banksel(lmsc, bank) struct lm_softc *lmsc; int bank; { (*lmsc->lm_writereg)(lmsc, WB_BANKSEL, bank); return 0; } /* * bus independent probe */ int lm_probe(iot, ioh) bus_space_tag_t iot; bus_space_handle_t ioh; { u_int8_t cr; int rv; /* * Check for it8705f, before we do the chip reset. * In case of an it8705f this might reset all the fan control * parameters to defaults which would void all settings done by * the BOOTROM/BIOS. */ bus_space_write_1(iot, ioh, LMC_ADDR, ITEC_RES48); cr = bus_space_read_1(iot, ioh, LMC_DATA); if (cr == ITEC_RES48_DEFAULT) { bus_space_write_1(iot, ioh, LMC_ADDR, ITEC_RES52); cr = bus_space_read_1(iot, ioh, LMC_DATA); if (cr == ITEC_RES52_DEFAULT) return 1; } /* Check for some power-on defaults */ bus_space_write_1(iot, ioh, LMC_ADDR, LMD_CONFIG); /* Perform LM78 reset */ bus_space_write_1(iot, ioh, LMC_DATA, 0x80); /* XXX - Why do I have to reselect the register? */ bus_space_write_1(iot, ioh, LMC_ADDR, LMD_CONFIG); cr = bus_space_read_1(iot, ioh, LMC_DATA); /* XXX - spec says *only* 0x08! */ if ((cr == 0x08) || (cr == 0x01)) rv = 1; else rv = 0; DPRINTF(("lm: rv = %d, cr = %x\n", rv, cr)); return (rv); } /* * pre: lmsc contains valid busspace tag and handle */ void lm_attach(lmsc) struct lm_softc *lmsc; { u_int i; /* Install default bank selection routine, if none given. */ if (lmsc->lm_banksel == NULL) lmsc->lm_banksel = lm_generic_banksel; for (i = 0; i < sizeof(lm_chips) / sizeof(lm_chips[0]); i++) if (lm_chips[i].chip_match(lmsc)) break; /* Start the monitoring loop */ (*lmsc->lm_writereg)(lmsc, LMD_CONFIG, 0x01); /* Indicate we have never read the registers */ timerclear(&lmsc->lastread); /* Initialize sensors */ for (i = 0; i < lmsc->numsensors; ++i) { lmsc->sensors[i].sensor = lmsc->info[i].sensor = i; lmsc->sensors[i].validflags = (ENVSYS_FVALID|ENVSYS_FCURVALID); lmsc->info[i].validflags = ENVSYS_FVALID; lmsc->sensors[i].warnflags = ENVSYS_WARN_OK; } /* * Hook into the System Monitor. */ lmsc->sc_sysmon.sme_ranges = lm_ranges; lmsc->sc_sysmon.sme_sensor_info = lmsc->info; lmsc->sc_sysmon.sme_sensor_data = lmsc->sensors; lmsc->sc_sysmon.sme_cookie = lmsc; lmsc->sc_sysmon.sme_gtredata = lm_gtredata; /* sme_streinfo set in chip-specific attach */ lmsc->sc_sysmon.sme_nsensors = lmsc->numsensors; lmsc->sc_sysmon.sme_envsys_version = 1000; if (sysmon_envsys_register(&lmsc->sc_sysmon)) printf("%s: unable to register with sysmon\n", lmsc->sc_dev.dv_xname); } int lm_match(sc) struct lm_softc *sc; { int i; /* See if we have an LM78 or LM79 */ i = (*sc->lm_readreg)(sc, LMD_CHIPID) & LM_ID_MASK; switch(i) { case LM_ID_LM78: printf(": LM78\n"); break; case LM_ID_LM78J: printf(": LM78J\n"); break; case LM_ID_LM79: printf(": LM79\n"); break; case LM_ID_LM81: printf(": LM81\n"); break; default: return 0; } lm_common_match(sc); return 1; } int def_match(sc) struct lm_softc *sc; { int i; i = (*sc->lm_readreg)(sc, LMD_CHIPID) & LM_ID_MASK; printf(": Unknown chip (ID %d)\n", i); lm_common_match(sc); return 1; } void lm_common_match(sc) struct lm_softc *sc; { int i; sc->numsensors = LM_NUM_SENSORS; sc->refresh_sensor_data = lm_refresh_sensor_data; for (i = 0; i < 7; ++i) { sc->sensors[i].units = sc->info[i].units = ENVSYS_SVOLTS_DC; snprintf(sc->info[i].desc, sizeof(sc->info[i].desc), "IN %d", i); } /* default correction factors for resistors on higher voltage inputs */ sc->info[0].rfact = sc->info[1].rfact = sc->info[2].rfact = 10000; sc->info[3].rfact = (int)(( 90.9 / 60.4) * 10000); sc->info[4].rfact = (int)(( 38.0 / 10.0) * 10000); sc->info[5].rfact = (int)((210.0 / 60.4) * 10000); sc->info[6].rfact = (int)(( 90.9 / 60.4) * 10000); sc->sensors[7].units = ENVSYS_STEMP; strcpy(sc->info[7].desc, "Temp"); setup_fan(sc, 8, 3); sc->sc_sysmon.sme_streinfo = lm_streinfo; } int wb_match(sc) struct lm_softc *sc; { int i, j; (*sc->lm_writereg)(sc, WB_BANKSEL, WB_BANKSEL_HBAC); j = (*sc->lm_readreg)(sc, WB_VENDID) << 8; (*sc->lm_writereg)(sc, WB_BANKSEL, 0); j |= (*sc->lm_readreg)(sc, WB_VENDID); DPRINTF(("winbond vend id 0x%x\n", j)); if (j != WB_VENDID_WINBOND) return 0; /* read device ID */ (*sc->lm_banksel)(sc, 0); j = (*sc->lm_readreg)(sc, WB_BANK0_CHIPID); DPRINTF(("winbond chip id 0x%x\n", j)); switch(j) { case WB_CHIPID_83781: case WB_CHIPID_83781_2: printf(": W83781D\n"); for (i = 0; i < 7; ++i) { sc->sensors[i].units = sc->info[i].units = ENVSYS_SVOLTS_DC; snprintf(sc->info[i].desc, sizeof(sc->info[i].desc), "IN %d", i); } /* default correction factors for higher voltage inputs */ sc->info[0].rfact = sc->info[1].rfact = sc->info[2].rfact = 10000; sc->info[3].rfact = (int)(( 90.9 / 60.4) * 10000); sc->info[4].rfact = (int)(( 38.0 / 10.0) * 10000); sc->info[5].rfact = (int)((210.0 / 60.4) * 10000); sc->info[6].rfact = (int)(( 90.9 / 60.4) * 10000); setup_temp(sc, 7, 3); setup_fan(sc, 10, 3); sc->numsensors = WB83781_NUM_SENSORS; sc->refresh_sensor_data = wb781_refresh_sensor_data; sc->sc_sysmon.sme_streinfo = wb781_streinfo; return 1; case WB_CHIPID_83697: printf(": W83697HF\n"); wb_setup_volt(sc); setup_temp(sc, 9, 2); setup_fan(sc, 11, 3); sc->numsensors = WB83697_NUM_SENSORS; sc->refresh_sensor_data = wb697_refresh_sensor_data; sc->sc_sysmon.sme_streinfo = wb782_streinfo; return 1; case WB_CHIPID_83782: printf(": W83782D\n"); break; case WB_CHIPID_83627: printf(": W83627HF\n"); break; default: printf(": unknow winbond chip ID 0x%x\n", j); /* handle as a standart lm7x */ lm_common_match(sc); return 1; } /* common code for the W83782D and W83627HF */ wb_setup_volt(sc); setup_temp(sc, 9, 3); setup_fan(sc, 12, 3); sc->numsensors = WB_NUM_SENSORS; sc->refresh_sensor_data = wb782_refresh_sensor_data; sc->sc_sysmon.sme_streinfo = wb782_streinfo; return 1; } static void wb_setup_volt(sc) struct lm_softc *sc; { sc->sensors[0].units = sc->info[0].units = ENVSYS_SVOLTS_DC; snprintf(sc->info[0].desc, sizeof(sc->info[0].desc), "VCORE A"); sc->info[0].rfact = 10000; sc->sensors[1].units = sc->info[1].units = ENVSYS_SVOLTS_DC; snprintf(sc->info[1].desc, sizeof(sc->info[1].desc), "VCORE B"); sc->info[1].rfact = 10000; sc->sensors[2].units = sc->info[2].units = ENVSYS_SVOLTS_DC; snprintf(sc->info[2].desc, sizeof(sc->info[2].desc), "+3.3V"); sc->info[2].rfact = 10000; sc->sensors[3].units = sc->info[3].units = ENVSYS_SVOLTS_DC; snprintf(sc->info[3].desc, sizeof(sc->info[3].desc), "+5V"); sc->info[3].rfact = 16778; sc->sensors[4].units = sc->info[4].units = ENVSYS_SVOLTS_DC; snprintf(sc->info[4].desc, sizeof(sc->info[4].desc), "+12V"); sc->info[4].rfact = 38000; sc->sensors[5].units = sc->info[5].units = ENVSYS_SVOLTS_DC; snprintf(sc->info[5].desc, sizeof(sc->info[5].desc), "-12V"); sc->info[5].rfact = 10000; sc->sensors[6].units = sc->info[6].units = ENVSYS_SVOLTS_DC; snprintf(sc->info[6].desc, sizeof(sc->info[6].desc), "-5V"); sc->info[6].rfact = 10000; sc->sensors[7].units = sc->info[7].units = ENVSYS_SVOLTS_DC; snprintf(sc->info[7].desc, sizeof(sc->info[7].desc), "+5VSB"); sc->info[7].rfact = 15151; sc->sensors[8].units = sc->info[8].units = ENVSYS_SVOLTS_DC; snprintf(sc->info[8].desc, sizeof(sc->info[8].desc), "VBAT"); sc->info[8].rfact = 10000; } int itec_match(sc) struct lm_softc *sc; { int vendor, coreid; /* do the same thing as in lm_probe() */ if ((*sc->lm_readreg)(sc, ITEC_RES48) != ITEC_RES48_DEFAULT) return 0; if ((*sc->lm_readreg)(sc, ITEC_RES52) != ITEC_RES52_DEFAULT) return 0; /* We check for the core ID register (0x5B), which is available * only in the 8712F, if that fails, we check the vendor ID * register, available on 8705F and 8712F */ coreid = (*sc->lm_readreg)(sc, ITEC_COREID); if (coreid == ITEC_COREID_ITE) printf(": ITE8712F\n"); else { vendor = (*sc->lm_readreg)(sc, ITEC_VENDID); if (vendor == ITEC_VENDID_ITE) printf(": ITE8705F\n"); else printf(": unknown ITE87%02x compatible\n", vendor); } /* * XXX this is a litle bit lame... * All VIN inputs work exactly the same way, it depends of the * external wiring what voltages they monitor and which correction * factors are needed. We assume a pretty standard setup here */ wb_setup_volt(sc); strlcpy(sc->info[0].desc, "CPU", sizeof(sc->info[0].desc)); strlcpy(sc->info[1].desc, "AGP", sizeof(sc->info[1].desc)); strlcpy(sc->info[6].desc, "+2.5V", sizeof(sc->info[6].desc)); sc->info[5].rfact = 51100; sc->info[7].rfact = 16778; setup_temp(sc, 9, 3); setup_fan(sc, 12, 3); sc->numsensors = ITEC_NUM_SENSORS; sc->refresh_sensor_data = itec_refresh_sensor_data; sc->sc_sysmon.sme_streinfo = itec_streinfo; return 1; } static void setup_temp(sc, start, n) struct lm_softc *sc; int start, n; { int i; for (i = 0; i < n; i++) { sc->sensors[start + i].units = ENVSYS_STEMP; snprintf(sc->info[start + i].desc, sizeof(sc->info[start + i].desc), "Temp %d", i + 1); } } static void setup_fan(sc, start, n) struct lm_softc *sc; int start, n; { int i; for (i = 0; i < n; ++i) { sc->sensors[start + i].units = ENVSYS_SFANRPM; sc->info[start + i].units = ENVSYS_SFANRPM; snprintf(sc->info[start + i].desc, sizeof(sc->info[start + i].desc), "Fan %d", i + 1); } } int lm_gtredata(sme, tred) struct sysmon_envsys *sme; struct envsys_tre_data *tred; { static const struct timeval onepointfive = { 1, 500000 }; struct timeval t; struct lm_softc *sc = sme->sme_cookie; int i, s; /* read new values at most once every 1.5 seconds */ timeradd(&sc->lastread, &onepointfive, &t); s = splclock(); i = timercmp(&mono_time, &t, >); if (i) { sc->lastread.tv_sec = mono_time.tv_sec; sc->lastread.tv_usec = mono_time.tv_usec; } splx(s); if (i) sc->refresh_sensor_data(sc); *tred = sc->sensors[tred->sensor]; return 0; } int generic_streinfo_fan(sc, info, n, binfo) struct lm_softc *sc; struct envsys_basic_info *info; int n; struct envsys_basic_info *binfo; { u_int8_t sdata; int divisor; /* FAN1 and FAN2 can have divisors set, but not FAN3 */ if ((sc->info[binfo->sensor].units == ENVSYS_SFANRPM) && (n < 2)) { if (binfo->rpms == 0) { binfo->validflags = 0; return 0; } /* write back the nominal FAN speed */ info->rpms = binfo->rpms; /* 153 is the nominal FAN speed value */ divisor = 1350000 / (binfo->rpms * 153); /* ...but we need lg(divisor) */ if (divisor <= 1) divisor = 0; else if (divisor <= 2) divisor = 1; else if (divisor <= 4) divisor = 2; else divisor = 3; /* * FAN1 div is in bits <5:4>, FAN2 div is * in <7:6> */ sdata = (*sc->lm_readreg)(sc, LMD_VIDFAN); if ( n == 0 ) { /* FAN1 */ divisor <<= 4; sdata = (sdata & 0xCF) | divisor; } else { /* FAN2 */ divisor <<= 6; sdata = (sdata & 0x3F) | divisor; } (*sc->lm_writereg)(sc, LMD_VIDFAN, sdata); } return 0; } int lm_streinfo(sme, binfo) struct sysmon_envsys *sme; struct envsys_basic_info *binfo; { struct lm_softc *sc = sme->sme_cookie; if (sc->info[binfo->sensor].units == ENVSYS_SVOLTS_DC) sc->info[binfo->sensor].rfact = binfo->rfact; else { if (sc->info[binfo->sensor].units == ENVSYS_SFANRPM) { generic_streinfo_fan(sc, &sc->info[binfo->sensor], binfo->sensor - 8, binfo); } strlcpy(sc->info[binfo->sensor].desc, binfo->desc, sizeof(sc->info[binfo->sensor].desc)); binfo->validflags = ENVSYS_FVALID; } return 0; } int wb781_streinfo(sme, binfo) struct sysmon_envsys *sme; struct envsys_basic_info *binfo; { struct lm_softc *sc = sme->sme_cookie; int divisor; u_int8_t sdata; int i; if (sc->info[binfo->sensor].units == ENVSYS_SVOLTS_DC) sc->info[binfo->sensor].rfact = binfo->rfact; else { if (sc->info[binfo->sensor].units == ENVSYS_SFANRPM) { if (binfo->rpms == 0) { binfo->validflags = 0; return 0; } /* write back the nominal FAN speed */ sc->info[binfo->sensor].rpms = binfo->rpms; /* 153 is the nominal FAN speed value */ divisor = 1350000 / (binfo->rpms * 153); /* ...but we need lg(divisor) */ for (i = 0; i < 7; i++) { if (divisor <= (1 << i)) break; } divisor = i; if (binfo->sensor == 10 || binfo->sensor == 11) { /* * FAN1 div is in bits <5:4>, FAN2 div * is in <7:6> */ sdata = (*sc->lm_readreg)(sc, LMD_VIDFAN); if ( binfo->sensor == 10 ) { /* FAN1 */ sdata = (sdata & 0xCF) | ((divisor & 0x3) << 4); } else { /* FAN2 */ sdata = (sdata & 0x3F) | ((divisor & 0x3) << 6); } (*sc->lm_writereg)(sc, LMD_VIDFAN, sdata); } else { /* FAN3 is in WB_PIN <7:6> */ sdata = (*sc->lm_readreg)(sc, WB_PIN); sdata = (sdata & 0x3F) | ((divisor & 0x3) << 6); (*sc->lm_writereg)(sc, WB_PIN, sdata); } } strlcpy(sc->info[binfo->sensor].desc, binfo->desc, sizeof(sc->info[binfo->sensor].desc)); binfo->validflags = ENVSYS_FVALID; } return 0; } int wb782_streinfo(sme, binfo) struct sysmon_envsys *sme; struct envsys_basic_info *binfo; { struct lm_softc *sc = sme->sme_cookie; int divisor; u_int8_t sdata; int i; if (sc->info[binfo->sensor].units == ENVSYS_SVOLTS_DC) sc->info[binfo->sensor].rfact = binfo->rfact; else { if (sc->info[binfo->sensor].units == ENVSYS_SFANRPM) { if (binfo->rpms == 0) { binfo->validflags = 0; return 0; } /* write back the nominal FAN speed */ sc->info[binfo->sensor].rpms = binfo->rpms; /* 153 is the nominal FAN speed value */ divisor = 1350000 / (binfo->rpms * 153); /* ...but we need lg(divisor) */ for (i = 0; i < 7; i++) { if (divisor <= (1 << i)) break; } divisor = i; if (binfo->sensor == 12 || binfo->sensor == 13) { /* * FAN1 div is in bits <5:4>, FAN2 div * is in <7:6> */ sdata = (*sc->lm_readreg)(sc, LMD_VIDFAN); if ( binfo->sensor == 12 ) { /* FAN1 */ sdata = (sdata & 0xCF) | ((divisor & 0x3) << 4); } else { /* FAN2 */ sdata = (sdata & 0x3F) | ((divisor & 0x3) << 6); } (*sc->lm_writereg)(sc, LMD_VIDFAN, sdata); } else { /* FAN3 is in WB_PIN <7:6> */ sdata = (*sc->lm_readreg)(sc, WB_PIN); sdata = (sdata & 0x3F) | ((divisor & 0x3) << 6); (*sc->lm_writereg)(sc, WB_PIN, sdata); } /* Bit 2 of divisor is in WB_BANK0_FANBAT */ (*sc->lm_banksel)(sc, 0); sdata = (*sc->lm_readreg)(sc, WB_BANK0_FANBAT); sdata &= ~(0x20 << (binfo->sensor - 12)); sdata |= (divisor & 0x4) << (binfo->sensor - 9); (*sc->lm_writereg)(sc, WB_BANK0_FANBAT, sdata); } strlcpy(sc->info[binfo->sensor].desc, binfo->desc, sizeof(sc->info[binfo->sensor].desc)); binfo->validflags = ENVSYS_FVALID; } return 0; } int itec_streinfo(sme, binfo) struct sysmon_envsys *sme; struct envsys_basic_info *binfo; { struct lm_softc *sc = sme->sme_cookie; int divisor; u_int8_t sdata; int i; if (sc->info[binfo->sensor].units == ENVSYS_SVOLTS_DC) sc->info[binfo->sensor].rfact = binfo->rfact; else { if (sc->info[binfo->sensor].units == ENVSYS_SFANRPM) { if (binfo->rpms == 0) { binfo->validflags = 0; return 0; } /* write back the nominal FAN speed */ sc->info[binfo->sensor].rpms = binfo->rpms; /* 153 is the nominal FAN speed value */ divisor = 1350000 / (binfo->rpms * 153); /* ...but we need lg(divisor) */ for (i = 0; i < 7; i++) { if (divisor <= (1 << i)) break; } divisor = i; sdata = (*sc->lm_readreg)(sc, ITEC_FANDIV); /* * FAN1 div is in bits <0:2>, FAN2 is in <3:5> * FAN3 is in <6>, if set divisor is 8, else 2 */ if ( binfo->sensor == 10 ) { /* FAN1 */ sdata = (sdata & 0xf8) | divisor; } else if ( binfo->sensor == 11 ) { /* FAN2 */ sdata = (sdata & 0xc7) | divisor << 3; } else { /* FAN3 */ if (divisor>2) sdata = sdata & 0xbf; else sdata = sdata | 0x40; } (*sc->lm_writereg)(sc, ITEC_FANDIV, sdata); } strlcpy(sc->info[binfo->sensor].desc, binfo->desc, sizeof(sc->info[binfo->sensor].desc)); binfo->validflags = ENVSYS_FVALID; } return 0; } static void generic_stemp(sc, sensor) struct lm_softc *sc; struct envsys_tre_data *sensor; { int sdata = (*sc->lm_readreg)(sc, LMD_SENSORBASE + 7); DPRINTF(("sdata[temp] 0x%x\n", sdata)); /* temp is given in deg. C, we convert to uK */ sensor->cur.data_us = sdata * 1000000 + 273150000; } static void generic_svolt(sc, sensors, infos) struct lm_softc *sc; struct envsys_tre_data *sensors; struct envsys_basic_info *infos; { int i, sdata; for (i = 0; i < 7; i++) { sdata = (*sc->lm_readreg)(sc, LMD_SENSORBASE + i); DPRINTF(("sdata[volt%d] 0x%x\n", i, sdata)); /* voltage returned as (mV >> 4), we convert to uVDC */ sensors[i].cur.data_s = (sdata << 4); /* rfact is (factor * 10^4) */ sensors[i].cur.data_s *= infos[i].rfact; /* division by 10 gets us back to uVDC */ sensors[i].cur.data_s /= 10; /* these two are negative voltages */ if ( (i == 5) || (i == 6) ) sensors[i].cur.data_s *= -1; } } static void generic_fanrpm(sc, sensors) struct lm_softc *sc; struct envsys_tre_data *sensors; { int i, sdata, divisor; for (i = 0; i < 3; i++) { sdata = (*sc->lm_readreg)(sc, LMD_SENSORBASE + 8 + i); DPRINTF(("sdata[fan%d] 0x%x\n", i, sdata)); if (i == 2) divisor = 2; /* Fixed divisor for FAN3 */ else if (i == 1) /* Bits 7 & 6 of VID/FAN */ divisor = ((*sc->lm_readreg)(sc, LMD_VIDFAN) >> 6) & 0x3; else divisor = ((*sc->lm_readreg)(sc, LMD_VIDFAN) >> 4) & 0x3; if (sdata == 0xff || sdata == 0x00) { sensors[i].cur.data_us = 0; } else { sensors[i].cur.data_us = 1350000 / (sdata << divisor); } } } /* * pre: last read occurred >= 1.5 seconds ago * post: sensors[] current data are the latest from the chip */ void lm_refresh_sensor_data(sc) struct lm_softc *sc; { /* Refresh our stored data for every sensor */ generic_stemp(sc, &sc->sensors[7]); generic_svolt(sc, &sc->sensors[0], &sc->info[0]); generic_fanrpm(sc, &sc->sensors[8]); } static void wb_svolt(sc) struct lm_softc *sc; { int i, sdata; for (i = 0; i < 9; ++i) { if (i < 7) { sdata = (*sc->lm_readreg)(sc, LMD_SENSORBASE + i); } else { /* from bank5 */ (*sc->lm_banksel)(sc, 5); sdata = (*sc->lm_readreg)(sc, (i == 7) ? WB_BANK5_5VSB : WB_BANK5_VBAT); } DPRINTF(("sdata[volt%d] 0x%x\n", i, sdata)); /* voltage returned as (mV >> 4), we convert to uV */ sdata = sdata << 4; /* special case for negative voltages */ if (i == 5) { /* * -12Vdc, assume Winbond recommended values for * resistors */ sdata = ((sdata * 1000) - (3600 * 805)) / 195; } else if (i == 6) { /* * -5Vdc, assume Winbond recommended values for * resistors */ sdata = ((sdata * 1000) - (3600 * 682)) / 318; } /* rfact is (factor * 10^4) */ sc->sensors[i].cur.data_s = sdata * sc->info[i].rfact; /* division by 10 gets us back to uVDC */ sc->sensors[i].cur.data_s /= 10; } } static void wb_stemp(sc, sensors, n) struct lm_softc *sc; struct envsys_tre_data *sensors; int n; { int sdata; /* temperatures. Given in dC, we convert to uK */ sdata = (*sc->lm_readreg)(sc, LMD_SENSORBASE + 7); DPRINTF(("sdata[temp0] 0x%x\n", sdata)); sensors[0].cur.data_us = sdata * 1000000 + 273150000; /* from bank1 */ if ((*sc->lm_banksel)(sc, 1)) sensors[1].validflags &= ~ENVSYS_FCURVALID; else { sdata = (*sc->lm_readreg)(sc, WB_BANK1_T2H) << 1; sdata |= ((*sc->lm_readreg)(sc, WB_BANK1_T2L) & 0x80) >> 7; DPRINTF(("sdata[temp1] 0x%x\n", sdata)); sensors[1].cur.data_us = (sdata * 1000000) / 2 + 273150000; } if (n < 3) return; /* from bank2 */ if ((*sc->lm_banksel)(sc, 2)) sensors[2].validflags &= ~ENVSYS_FCURVALID; else { sdata = (*sc->lm_readreg)(sc, WB_BANK2_T3H) << 1; sdata |= ((*sc->lm_readreg)(sc, WB_BANK2_T3L) & 0x80) >> 7; DPRINTF(("sdata[temp2] 0x%x\n", sdata)); sensors[2].cur.data_us = (sdata * 1000000) / 2 + 273150000; } } static void wb781_fanrpm(sc, sensors) struct lm_softc *sc; struct envsys_tre_data *sensors; { int i, divisor, sdata; (*sc->lm_banksel)(sc, 0); for (i = 0; i < 3; i++) { sdata = (*sc->lm_readreg)(sc, LMD_SENSORBASE + i + 8); DPRINTF(("sdata[fan%d] 0x%x\n", i, sdata)); if (i == 0) divisor = ((*sc->lm_readreg)(sc, LMD_VIDFAN) >> 4) & 0x3; else if (i == 1) divisor = ((*sc->lm_readreg)(sc, LMD_VIDFAN) >> 6) & 0x3; else divisor = ((*sc->lm_readreg)(sc, WB_PIN) >> 6) & 0x3; DPRINTF(("sdata[%d] 0x%x div 0x%x\n", i, sdata, divisor)); if (sdata == 0xff || sdata == 0x00) { sensors[i].cur.data_us = 0; } else { sensors[i].cur.data_us = 1350000 / (sdata << divisor); } } } static void wb_fanrpm(sc, sensors) struct lm_softc *sc; struct envsys_tre_data *sensors; { int i, divisor, sdata; (*sc->lm_banksel)(sc, 0); for (i = 0; i < 3; i++) { sdata = (*sc->lm_readreg)(sc, LMD_SENSORBASE + i + 8); DPRINTF(("sdata[fan%d] 0x%x\n", i, sdata)); if (i == 0) divisor = ((*sc->lm_readreg)(sc, LMD_VIDFAN) >> 4) & 0x3; else if (i == 1) divisor = ((*sc->lm_readreg)(sc, LMD_VIDFAN) >> 6) & 0x3; else divisor = ((*sc->lm_readreg)(sc, WB_PIN) >> 6) & 0x3; divisor |= ((*sc->lm_readreg)(sc, WB_BANK0_FANBAT) >> (i + 3)) & 0x4; DPRINTF(("sdata[%d] 0x%x div 0x%x\n", i, sdata, divisor)); if (sdata == 0xff || sdata == 0x00) { sensors[i].cur.data_us = 0; } else { sensors[i].cur.data_us = 1350000 / (sdata << divisor); } } } void wb781_refresh_sensor_data(sc) struct lm_softc *sc; { /* Refresh our stored data for every sensor */ /* we need to reselect bank0 to access common registers */ (*sc->lm_banksel)(sc, 0); generic_svolt(sc, &sc->sensors[0], &sc->info[0]); (*sc->lm_banksel)(sc, 0); wb_stemp(sc, &sc->sensors[7], 3); (*sc->lm_banksel)(sc, 0); wb781_fanrpm(sc, &sc->sensors[10]); } void wb782_refresh_sensor_data(sc) struct lm_softc *sc; { /* Refresh our stored data for every sensor */ wb_svolt(sc); wb_stemp(sc, &sc->sensors[9], 3); wb_fanrpm(sc, &sc->sensors[12]); } void wb697_refresh_sensor_data(sc) struct lm_softc *sc; { /* Refresh our stored data for every sensor */ wb_svolt(sc); wb_stemp(sc, &sc->sensors[9], 2); wb_fanrpm(sc, &sc->sensors[11]); } static void itec_svolt(sc, sensors, infos) struct lm_softc *sc; struct envsys_tre_data *sensors; struct envsys_basic_info *infos; { int i, sdata; for (i = 0; i < 9; i++) { sdata = (*sc->lm_readreg)(sc, ITEC_VIN0 + i); DPRINTF(("sdata[volt%d] 0x%x\n", i, sdata)); /* voltage returned as (mV >> 4), we convert to uVDC */ sensors[i].cur.data_s = ( sdata << 4 ); /* rfact is (factor * 10^4) */ sensors[i].cur.data_s *= infos[i].rfact; /* * XXX We assume input 5 is wired the way iTE suggests to * monitor a negative voltage. I'd prefer using negative rfacts * for detecting those cases but since rfact is an u_int this * isn't possible. */ if (i == 5) sensors[i].cur.data_s -= (infos[i].rfact - 10000) * ITEC_VREF; /* division by 10 gets us back to uVDC */ sensors[i].cur.data_s /= 10; } } static void itec_stemp(sc, sensors) struct lm_softc *sc; struct envsys_tre_data *sensors; { int i, sdata; /* temperatures. Given in dC, we convert to uK */ for (i = 0; i < 3; i++) { sdata = (*sc->lm_readreg)(sc, ITEC_TEMP1 + i); DPRINTF(("sdata[temp%d] 0x%x\n",i, sdata)); sensors[i].cur.data_us = sdata * 1000000 + 273150000; } } static void itec_fanrpm(sc, sensors) struct lm_softc *sc; struct envsys_tre_data *sensors; { int i, fandiv, divisor, sdata; (*sc->lm_banksel)(sc, 0); fandiv = ((*sc->lm_readreg)(sc, ITEC_FANDIV)); for (i = 0; i < 3; i++) { sdata = (*sc->lm_readreg)(sc, ITEC_FAN1 + i); DPRINTF(("sdata[fan%d] 0x%x\n", i, sdata)); switch (i) { case 0: divisor = fandiv & 0x7; break; case 1: divisor = (fandiv >> 3) & 0x7; break; case 2: default: /* XXX */ divisor = (fandiv & 0x40) ? 3 : 1; break; } DPRINTF(("sdata[%d] 0x%x div 0x%x\n", i, sdata, divisor)); if (sdata == 0xff || sdata == 0x00) { sensors[i].cur.data_us = 0; } else { sensors[i].cur.data_us = 1350000 / (sdata << divisor); } } } void itec_refresh_sensor_data(sc) struct lm_softc *sc; { itec_svolt(sc, &sc->sensors[0], &sc->info[0]); itec_stemp(sc, &sc->sensors[9]); itec_fanrpm(sc, &sc->sensors[12]); }