/* $NetBSD: fpu.c,v 1.2 1998/09/22 02:48:42 eeh Exp $ */ /* * Copyright (c) 1992, 1993 * The Regents of the University of California. All rights reserved. * * This software was developed by the Computer Systems Engineering group * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and * contributed to Berkeley. * * All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Lawrence Berkeley Laboratory. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)fpu.c 8.1 (Berkeley) 6/11/93 */ #include #include #include #include #include #include #include #include #include #include /* * fpu_execute returns the following error numbers (0 = no error): */ #define FPE 1 /* take a floating point exception */ #define NOTFPU 2 /* not an FPU instruction */ /* * Translate current exceptions into `first' exception. The * bits go the wrong way for ffs() (0x10 is most important, etc). * There are only 5, so do it the obvious way. */ #define X1(x) x #define X2(x) x,x #define X4(x) x,x,x,x #define X8(x) X4(x),X4(x) #define X16(x) X8(x),X8(x) static char cx_to_trapx[] = { X1(FSR_NX), X2(FSR_DZ), X4(FSR_UF), X8(FSR_OF), X16(FSR_NV) }; static u_char fpu_codes[] = { X1(FPE_FLTINEX_TRAP), X2(FPE_FLTDIV_TRAP), X4(FPE_FLTUND_TRAP), X8(FPE_FLTOVF_TRAP), X16(FPE_FLTOPERR_TRAP) }; /* * The FPU gave us an exception. Clean up the mess. Note that the * fp queue can only have FPops in it, never load/store FP registers * nor FBfcc instructions. Experiments with `crashme' prove that * unknown FPops do enter the queue, however. */ void fpu_cleanup(p, fs) register struct proc *p; register struct fpstate *fs; { register int i, fsr = fs->fs_fsr, error; union instr instr; struct fpemu fe; switch ((fsr >> FSR_FTT_SHIFT) & FSR_FTT_MASK) { case FSR_TT_NONE: panic("fpu_cleanup: No fault"); /* ??? */ break; case FSR_TT_IEEE: /* XXX missing trap address! */ if ((i = fsr & FSR_CX) == 0) panic("fpu ieee trap, but no exception"); trapsignal(p, SIGFPE, fpu_codes[i - 1]); break; /* XXX should return, but queue remains */ case FSR_TT_UNFIN: if (fs->fs_qsize == 0) { printf("fpu_cleanup: unfinished fpop"); /* The book sez reexecute or emulate. */ return; } break; case FSR_TT_UNIMP: if (fs->fs_qsize == 0) panic("fpu_cleanup: unimplemented fpop"); break; case FSR_TT_SEQ: panic("fpu sequence error"); /* NOTREACHED */ case FSR_TT_HWERR: log(LOG_ERR, "fpu hardware error (%s[%d])\n", p->p_comm, p->p_pid); uprintf("%s[%d]: fpu hardware error\n", p->p_comm, p->p_pid); trapsignal(p, SIGFPE, -1); /* ??? */ goto out; default: printf("fsr=%x\n", fsr); panic("fpu error"); } /* emulate the instructions left in the queue */ fe.fe_fpstate = fs; for (i = 0; i < fs->fs_qsize; i++) { instr.i_int = fs->fs_queue[i].fq_instr; if (instr.i_any.i_op != IOP_reg || (instr.i_op3.i_op3 != IOP3_FPop1 && instr.i_op3.i_op3 != IOP3_FPop2)) panic("bogus fpu queue"); error = fpu_execute(&fe, instr); switch (error) { case 0: continue; case FPE: trapsignal(p, SIGFPE, fpu_codes[(fs->fs_fsr & FSR_CX) - 1]); break; case NOTFPU: #ifdef DEBUG printf("fpu_cleanup: not an FPU error -- sending SIGILL\n", p); Debugger(); #endif trapsignal(p, SIGILL, 0); /* ??? code? */ break; default: panic("fpu_cleanup 3"); /* NOTREACHED */ } /* XXX should stop here, but queue remains */ } out: fs->fs_qsize = 0; } #ifdef notyet /* * If we have no FPU at all (are there any machines like this out * there!?) we have to emulate each instruction, and we need a pointer * to the trapframe so that we can step over them and do FBfcc's. * We know the `queue' is empty, though; we just want to emulate * the instruction at tf->tf_pc. */ fpu_emulate(p, tf, fs) struct proc *p; register struct trapframe *tf; register struct fpstate *fs; { do { fetch instr from pc decode if (integer instr) { /* * We do this here, rather than earlier, to avoid * losing even more badly than usual. */ if (p->p_addr->u_pcb.pcb_uw) { write_user_windows(); if (rwindow_save(p)) sigexit(p, SIGILL); } if (loadstore) { do_it; pc = npc, npc += 4 } else if (fbfcc) { do_annul_stuff; } else return; } else if (fpu instr) { fe.fe_fsr = fs->fs_fsr &= ~FSR_CX; error = fpu_execute(&fe, fs, instr); switch (error) { etc; } } else return; if (want to reschedule) return; } while (error == 0); } #endif /* * Execute an FPU instruction (one that runs entirely in the FPU; not * FBfcc or STF, for instance). On return, fe->fe_fs->fs_fsr will be * modified to reflect the setting the hardware would have left. * * Note that we do not catch all illegal opcodes, so you can, for instance, * multiply two integers this way. */ int fpu_execute(fe, instr) register struct fpemu *fe; union instr instr; { register struct fpn *fp; register int opf, rs1, rs2, rd, type, mask, fsr, cx, i, cond; register struct fpstate *fs; u_int space[4]; /* * `Decode' and execute instruction. Start with no exceptions. * The type of any i_opf opcode is in the bottom two bits, so we * squish them out here. */ opf = instr.i_opf.i_opf; type = opf & 3; mask = "\0\0\1\3"[type]; rs1 = instr.i_opf.i_rs1 & ~mask; rs2 = instr.i_opf.i_rs2 & ~mask; rd = instr.i_opf.i_rd & ~mask; #ifdef notdef if ((rs1 | rs2 | rd) & mask) return (BADREG); #endif fs = fe->fe_fpstate; fe->fe_fsr = fs->fs_fsr & ~FSR_CX; fe->fe_cx = 0; /* * Check to see if we're dealing with a fancy cmove and handle * it first. */ if (instr.i_op3.i_op3 == IOP3_FPop2 && (opf&0xff0) != (FCMP&0xff0)) { switch (opf >>= 2) { case FMVFC0 >> 2: cond = (fs->fs_fsr>>FSR_FCC_SHIFT)&FSR_FCC_MASK; if (instr.i_fmovcc.i_cond != cond) return(0); /* success */ rs1 = fs->fs_regs[rs2]; goto mov; case FMVFC1 >> 2: cond = (fs->fs_fsr>>FSR_FCC1_SHIFT)&FSR_FCC_MASK; if (instr.i_fmovcc.i_cond != cond) return(0); /* success */ rs1 = fs->fs_regs[rs2]; goto mov; case FMVFC2 >> 2: cond = (fs->fs_fsr>>FSR_FCC2_SHIFT)&FSR_FCC_MASK; if (instr.i_fmovcc.i_cond != cond) return(0); /* success */ rs1 = fs->fs_regs[rs2]; goto mov; case FMVFC3 >> 2: cond = (fs->fs_fsr>>FSR_FCC3_SHIFT)&FSR_FCC_MASK; if (instr.i_fmovcc.i_cond != cond) return(0); /* success */ rs1 = fs->fs_regs[rs2]; goto mov; case FMVIC >> 2: /* Presume we're curproc */ cond = (curproc->p_md.md_tf->tf_tstate>>TSTATE_CCR_SHIFT)&PSR_ICC; if (instr.i_fmovcc.i_cond != cond) return(0); /* success */ rs1 = fs->fs_regs[rs2]; goto mov; case FMVXC >> 2: /* Presume we're curproc */ cond = (curproc->p_md.md_tf->tf_tstate>>(TSTATE_CCR_SHIFT+XCC_SHIFT))&PSR_ICC; if (instr.i_fmovcc.i_cond != cond) return(0); /* success */ rs1 = fs->fs_regs[rs2]; goto mov; case FMVRZ >> 2: /* Presume we're curproc */ rs1 = instr.i_fmovr.i_rs1; if (rs1 != 0 && (int64_t)curproc->p_md.md_tf->tf_global[rs1] != 0) return (0); /* success */ rs1 = fs->fs_regs[rs2]; goto mov; case FMVRLEZ >> 2: /* Presume we're curproc */ rs1 = instr.i_fmovr.i_rs1; if (rs1 != 0 && (int64_t)curproc->p_md.md_tf->tf_global[rs1] > 0) return (0); /* success */ rs1 = fs->fs_regs[rs2]; goto mov; case FMVRLZ >> 2: /* Presume we're curproc */ rs1 = instr.i_fmovr.i_rs1; if (rs1 == 0 || (int64_t)curproc->p_md.md_tf->tf_global[rs1] >= 0) return (0); /* success */ rs1 = fs->fs_regs[rs2]; goto mov; case FMVRNZ >> 2: /* Presume we're curproc */ rs1 = instr.i_fmovr.i_rs1; if (rs1 == 0 || (int64_t)curproc->p_md.md_tf->tf_global[rs1] == 0) return (0); /* success */ rs1 = fs->fs_regs[rs2]; goto mov; case FMVRGZ >> 2: /* Presume we're curproc */ rs1 = instr.i_fmovr.i_rs1; if (rs1 == 0 || (int64_t)curproc->p_md.md_tf->tf_global[rs1] <= 0) return (0); /* success */ rs1 = fs->fs_regs[rs2]; goto mov; case FMVRGEZ >> 2: /* Presume we're curproc */ rs1 = instr.i_fmovr.i_rs1; if (rs1 != 0 && (int64_t)curproc->p_md.md_tf->tf_global[rs1] < 0) return (0); /* success */ rs1 = fs->fs_regs[rs2]; goto mov; case FCMP >> 2: fpu_explode(fe, &fe->fe_f1, type, rs1); fpu_explode(fe, &fe->fe_f2, type, rs2); fpu_compare(fe, 0); goto cmpdone; case FCMPE >> 2: fpu_explode(fe, &fe->fe_f1, type, rs1); fpu_explode(fe, &fe->fe_f2, type, rs2); fpu_compare(fe, 1); cmpdone: /* * The only possible exception here is NV; catch it * early and get out, as there is no result register. */ cx = fe->fe_cx; fsr = fe->fe_fsr | (cx << FSR_CX_SHIFT); if (cx != 0) { if (fsr & (FSR_NV << FSR_TEM_SHIFT)) { fs->fs_fsr = (fsr & ~FSR_FTT) | (FSR_TT_IEEE << FSR_FTT_SHIFT); return (FPE); } fsr |= FSR_NV << FSR_AX_SHIFT; } fs->fs_fsr = fsr; return (0); default: return (NOTFPU); } } switch (opf >>= 2) { default: return (NOTFPU); case FMOV >> 2: /* these should all be pretty obvious */ rs1 = fs->fs_regs[rs2]; goto mov; case FNEG >> 2: rs1 = fs->fs_regs[rs2] ^ (1 << 31); goto mov; case FABS >> 2: rs1 = fs->fs_regs[rs2] & ~(1 << 31); mov: i = 1<fs_regs[rd++] = rs1; while (--i) fs->fs_regs[rd++] = fs->fs_regs[++rs2]; fs->fs_fsr = fe->fe_fsr; return (0); /* success */ case FSQRT >> 2: fpu_explode(fe, &fe->fe_f1, type, rs2); fp = fpu_sqrt(fe); break; case FADD >> 2: fpu_explode(fe, &fe->fe_f1, type, rs1); fpu_explode(fe, &fe->fe_f2, type, rs2); fp = fpu_add(fe); break; case FSUB >> 2: fpu_explode(fe, &fe->fe_f1, type, rs1); fpu_explode(fe, &fe->fe_f2, type, rs2); fp = fpu_sub(fe); break; case FMUL >> 2: fpu_explode(fe, &fe->fe_f1, type, rs1); fpu_explode(fe, &fe->fe_f2, type, rs2); fp = fpu_mul(fe); break; case FDIV >> 2: fpu_explode(fe, &fe->fe_f1, type, rs1); fpu_explode(fe, &fe->fe_f2, type, rs2); fp = fpu_div(fe); break; case FSMULD >> 2: case FDMULX >> 2: if (type == FTYPE_EXT) return (NOTFPU); fpu_explode(fe, &fe->fe_f1, type, rs1); fpu_explode(fe, &fe->fe_f2, type, rs2); type++; /* single to double, or double to quad */ fp = fpu_mul(fe); break; case FXTOS >> 2: case FXTOD >> 2: case FXTOQ >> 2: type = FTYPE_LNG; fpu_explode(fe, fp = &fe->fe_f1, type, rs2); type = opf & 3; /* sneaky; depends on instruction encoding */ break; case FTOS >> 2: case FTOD >> 2: case FTOQ >> 2: case FTOI >> 2: fpu_explode(fe, fp = &fe->fe_f1, type, rs2); type = opf & 3; /* sneaky; depends on instruction encoding */ break; case FTOX >> 2: fpu_explode(fe, fp = &fe->fe_f1, type, rs2); type = FTYPE_LNG; } /* * ALU operation is complete. Collapse the result and then check * for exceptions. If we got any, and they are enabled, do not * alter the destination register, just stop with an exception. * Otherwise set new current exceptions and accrue. */ fpu_implode(fe, fp, type, space); cx = fe->fe_cx; fsr = fe->fe_fsr; if (cx != 0) { mask = (fsr >> FSR_TEM_SHIFT) & FSR_TEM_MASK; if (cx & mask) { /* not accrued??? */ fs->fs_fsr = (fsr & ~FSR_FTT) | (FSR_TT_IEEE << FSR_FTT_SHIFT) | (cx_to_trapx[(cx & mask) - 1] << FSR_CX_SHIFT); return (FPE); } fsr |= (cx << FSR_CX_SHIFT) | (cx << FSR_AX_SHIFT); } fs->fs_fsr = fsr; fs->fs_regs[rd] = space[0]; if (type >= FTYPE_DBL || type == FTYPE_LNG) { fs->fs_regs[rd + 1] = space[1]; if (type > FTYPE_DBL) { fs->fs_regs[rd + 2] = space[2]; fs->fs_regs[rd + 3] = space[3]; } } return (0); /* success */ }