/* $NetBSD: pmap.c,v 1.46 2002/06/26 01:10:20 matt Exp $ */ /*- * Copyright (c) 2001 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Matt Thomas of Allegro Networks, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the NetBSD * Foundation, Inc. and its contributors. * 4. Neither the name of The NetBSD Foundation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * Copyright (C) 1995, 1996 Wolfgang Solfrank. * Copyright (C) 1995, 1996 TooLs GmbH. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by TooLs GmbH. * 4. The name of TooLs GmbH may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include #include #include #if __NetBSD_Version__ < 105010000 #include #include #define splvm() splimp() #endif #include #include #include #include #if __NetBSD_Version__ > 105010000 #include #else #include #endif /*#define PMAPCHECK*/ #if defined(DEBUG) || defined(PMAPCHECK) #define STATIC #else #define STATIC static #endif struct pteg { pte_t pt[8]; }; typedef struct pteg pteg_t; volatile pteg_t *pmap_pteg_table; unsigned int pmap_pteg_cnt; unsigned int pmap_pteg_mask; paddr_t pmap_memlimit = -NBPG; /* there is no limit */ struct pmap kernel_pmap_; unsigned int pmap_pages_stolen; u_long pmap_pte_valid; u_long pmap_pte_overflow; u_long pmap_pte_replacements; u_long pmap_pvo_entries; u_long pmap_pvo_enter_calls; u_long pmap_pvo_remove_calls; #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK) u_long pmap_pvo_enter_depth; u_long pmap_pvo_remove_depth; #endif u_int64_t pmap_pte_spills = 0; struct pvo_entry *pmap_pvo_syncicache; struct pvo_entry *pmap_pvo_zeropage; struct pvo_entry *pmap_pvo_copypage_src; struct pvo_entry *pmap_pvo_copypage_dst; vaddr_t pmap_rkva_start = VM_MIN_KERNEL_ADDRESS; unsigned int pmap_rkva_count = 4; int physmem; #ifndef MSGBUFADDR extern paddr_t msgbuf_paddr; #endif static struct mem_region *mem, *avail; static u_int mem_cnt, avail_cnt; #ifdef __HAVE_PMAP_PHYSSEG /* * This is a cache of referenced/modified bits. * Bits herein are shifted by ATTRSHFT. */ #define ATTR_SHFT 4 struct pmap_physseg pmap_physseg; #endif /* * The following structure is exactly 32 bytes long (one cacheline). */ struct pvo_entry { LIST_ENTRY(pvo_entry) pvo_vlink; /* Link to common virt page */ LIST_ENTRY(pvo_entry) pvo_olink; /* Link to overflow entry */ struct pte pvo_pte; /* Prebuilt PTE */ pmap_t pvo_pmap; /* ptr to owning pmap */ vaddr_t pvo_vaddr; /* VA of entry */ #define PVO_PTEGIDX_MASK 0x0007 /* which PTEG slot */ #define PVO_PTEGIDX_VALID 0x0008 /* slot is valid */ #define PVO_WIRED 0x0010 /* PVO entry is wired */ #define PVO_MANAGED 0x0020 /* PVO e. for managed page */ #define PVO_EXECUTABLE 0x0040 /* PVO e. for executable page */ }; #define PVO_VADDR(pvo) ((pvo)->pvo_vaddr & ~ADDR_POFF) #define PVO_ISEXECUTABLE(pvo) ((pvo)->pvo_vaddr & PVO_EXECUTABLE) #define PVO_PTEGIDX_GET(pvo) ((pvo)->pvo_vaddr & PVO_PTEGIDX_MASK) #define PVO_PTEGIDX_ISSET(pvo) ((pvo)->pvo_vaddr & PVO_PTEGIDX_VALID) #define PVO_PTEGIDX_CLR(pvo) \ ((void)((pvo)->pvo_vaddr &= ~(PVO_PTEGIDX_VALID|PVO_PTEGIDX_MASK))) #define PVO_PTEGIDX_SET(pvo,i) \ ((void)((pvo)->pvo_vaddr |= (i)|PVO_PTEGIDX_VALID)) struct pvo_head *pmap_pvo_table; /* pvo entries by ptegroup index */ struct pvo_head pmap_pvo_kunmanaged = LIST_HEAD_INITIALIZER(pmap_pvo_kunmanaged); /* list of unmanaged pages */ struct pvo_head pmap_pvo_unmanaged = LIST_HEAD_INITIALIZER(pmap_pvo_unmanaged); /* list of unmanaged pages */ struct pool pmap_pool; /* pool for pmap structures */ struct pool pmap_upvo_pool; /* pool for pvo entries for unmanaged pages */ struct pool pmap_mpvo_pool; /* pool for pvo entries for managed pages */ /* * We keep a cache of unmanaged pages to be used for pvo entries for * unmanaged pages. */ struct pvo_page { SIMPLEQ_ENTRY(pvo_page) pvop_link; }; SIMPLEQ_HEAD(pvop_head, pvo_page); struct pvop_head pmap_upvop_head = SIMPLEQ_HEAD_INITIALIZER(pmap_upvop_head); struct pvop_head pmap_mpvop_head = SIMPLEQ_HEAD_INITIALIZER(pmap_mpvop_head); u_long pmap_upvop_free; u_long pmap_upvop_maxfree; u_long pmap_mpvop_free; u_long pmap_mpvop_maxfree; STATIC void *pmap_pool_ualloc(struct pool *, int); STATIC void *pmap_pool_malloc(struct pool *, int); STATIC void pmap_pool_ufree(struct pool *, void *); STATIC void pmap_pool_mfree(struct pool *, void *); static struct pool_allocator pmap_pool_mallocator = { pmap_pool_malloc, pmap_pool_mfree, 0, }; static struct pool_allocator pmap_pool_uallocator = { pmap_pool_ualloc, pmap_pool_ufree, 0, }; #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB) void pmap_pte_print(volatile pte_t *pt); #endif #ifdef DDB void pmap_pteg_check(void); void pmap_pteg_dist(void); void pmap_print_pte(pmap_t, vaddr_t); void pmap_print_mmuregs(void); #endif #if defined(DEBUG) || defined(PMAPCHECK) #ifdef PMAPCHECK int pmapcheck = 1; #else int pmapcheck = 0; #endif void pmap_pvo_verify(void); STATIC void pmap_pvo_check(const struct pvo_entry *); #define PMAP_PVO_CHECK(pvo) \ do { \ if (pmapcheck) \ pmap_pvo_check(pvo); \ } while (0) #else #define PMAP_PVO_CHECK(pvo) do { } while (/*CONSTCOND*/0) #endif STATIC int pmap_pte_insert(int, pte_t *); STATIC int pmap_pvo_enter(pmap_t, struct pool *, struct pvo_head *, vaddr_t, paddr_t, u_int, int); STATIC void pmap_pvo_remove(struct pvo_entry *, int); STATIC struct pvo_entry *pmap_pvo_find_va(pmap_t, vaddr_t, int *); STATIC volatile pte_t *pmap_pvo_to_pte(const struct pvo_entry *, int); STATIC struct pvo_entry *pmap_rkva_alloc(int); STATIC void pmap_pa_map(struct pvo_entry *, paddr_t, pte_t *, int *); STATIC void pmap_pa_unmap(struct pvo_entry *, pte_t *, int *); STATIC void tlbia(void); STATIC void pmap_syncicache(paddr_t, psize_t); STATIC void pmap_release (pmap_t); STATIC void *pmap_boot_find_memory(psize_t, psize_t, int); #define VSID_NBPW (sizeof(uint32_t) * 8) static uint32_t pmap_vsid_bitmap[NPMAPS / VSID_NBPW]; static int pmap_initialized; #if defined(DEBUG) #define PMAPDEBUG_BOOT 0x0001 #define PMAPDEBUG_PTE 0x0002 #define PMAPDEBUG_PAMAP 0x0004 #define PMAPDEBUG_SYNCICACHE 0x0008 #define PMAPDEBUG_PVOENTER 0x0010 #define PMAPDEBUG_PVOREMOVE 0x0020 #define PMAPDEBUG_ACTIVATE 0x0100 #define PMAPDEBUG_CREATE 0x0200 #define PMAPDEBUG_ENTER 0x1000 #define PMAPDEBUG_KENTER 0x2000 #define PMAPDEBUG_KREMOVE 0x4000 #define PMAPDEBUG_REMOVE 0x8000 unsigned int pmapdebug = 0; # define DPRINTF(x) printf x # define DPRINTFN(n, x) if (pmapdebug & PMAPDEBUG_ ## n) printf x #else # define DPRINTF(x) # define DPRINTFN(n, x) #endif #define TLBIE(va) __asm __volatile("tlbie %0" :: "r"(va)) #define TLBSYNC() __asm __volatile("tlbsync") #define SYNC() __asm __volatile("sync") #define EIEIO() __asm __volatile("eieio") #define MFMSR() mfmsr() #define MTMSR(psl) __asm __volatile("mtmsr %0" :: "r"(psl)) #define MFPVR() mfpvr() #define MFSRIN(va) mfsrin(va) #define MFTB() mftb() static __inline u_int32_t mfmsr(void) { u_int psl; __asm __volatile("mfmsr %0" : "=r"(psl) : ); return psl; } static __inline u_int mftb(void) { u_int tb; __asm __volatile("mftb %0" : "=r"(tb) : ); return tb; } static __inline u_int mfpvr(void) { u_int pvr; __asm __volatile("mfspr %0,%1" : "=r"(pvr) : "n"(SPR_PVR)); return pvr; } static __inline sr_t mfsrin(vaddr_t va) { sr_t sr; __asm __volatile ("mfsrin %0,%1" : "=r"(sr) : "r"(va)); return sr; } static __inline u_int32_t pmap_interrupts_off(void) { u_int32_t msr = MFMSR(); if (msr & PSL_EE) MTMSR(msr & ~PSL_EE); return msr; } static void pmap_interrupts_restore(u_int32_t msr) { if (msr & PSL_EE) MTMSR(msr); } /* * These small routines may have to be replaced, * if/when we support processors other that the 604. */ void tlbia(void) { caddr_t i; SYNC(); /* * Why not use "tlbia"? Because not all processors implement it. * * This needs to be a per-cpu callback to do the appropriate thing * for the CPU. XXX */ for (i = 0; i < (caddr_t)0x00040000; i += 0x00001000) { TLBIE(i); EIEIO(); } TLBSYNC(); SYNC(); } static __inline int va_to_sr(sr_t *sr, vaddr_t va) { return sr[(uintptr_t)va >> ADDR_SR_SHFT]; } static __inline int va_to_pteg(sr_t sr, vaddr_t addr) { int hash; hash = (sr & SR_VSID) ^ (((u_int)addr & ADDR_PIDX) >> ADDR_PIDX_SHFT); return hash & pmap_pteg_mask; } #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB) /* * Given a PTE in the page table, calculate the VADDR that hashes to it. * The only bit of magic is that the top 4 bits of the address doesn't * technically exist in the PTE. But we know we reserved 4 bits of the * VSID for it so that's how we get it. */ static vaddr_t pmap_pte_to_va(volatile const pte_t *pt) { vaddr_t va; uintptr_t ptaddr = (uintptr_t) pt; if (pt->pte_hi & PTE_HID) ptaddr ^= (pmap_pteg_mask << 6); /* PPC Bits 10-19 */ va = ((pt->pte_hi >> PTE_VSID_SHFT) ^ (ptaddr >> 6)) & 0x3ff; va <<= ADDR_PIDX_SHFT; /* PPC Bits 4-9 */ va |= (pt->pte_hi & PTE_API) << ADDR_API_SHFT; /* PPC Bits 0-3 */ va |= VSID_TO_SR(pt->pte_hi >> PTE_VSID_SHFT) << ADDR_SR_SHFT; return va; } #endif static __inline struct pvo_head * pa_to_pvoh(paddr_t pa, struct vm_page **pg_p) { #ifdef __HAVE_VM_PAGE_MD struct vm_page *pg; pg = PHYS_TO_VM_PAGE(pa); if (pg_p != NULL) *pg_p = pg; if (pg == NULL) return &pmap_pvo_unmanaged; return &pg->mdpage.mdpg_pvoh; #endif #ifdef __HAVE_PMAP_PHYSSEG int bank, pg; bank = vm_physseg_find(atop(pa), &pg); if (pg_p != NULL) *pg_p = pg; if (bank == -1) return &pmap_pvo_unmanaged; return &vm_physmem[bank].pmseg.pvoh[pg]; #endif } static __inline struct pvo_head * vm_page_to_pvoh(struct vm_page *pg) { #ifdef __HAVE_VM_PAGE_MD return &pg->mdpage.mdpg_pvoh; #endif #ifdef __HAVE_PMAP_PHYSSEG return pa_to_pvoh(VM_PAGE_TO_PHYS(pg), NULL); #endif } #ifdef __HAVE_PMAP_PHYSSEG static __inline char * pa_to_attr(paddr_t pa) { int bank, pg; bank = vm_physseg_find(atop(pa), &pg); if (bank == -1) return NULL; return &vm_physmem[bank].pmseg.attrs[pg]; } #endif static __inline void pmap_attr_clear(struct vm_page *pg, int ptebit) { #ifdef __HAVE_PMAP_PHYSSEG *pa_to_attr(VM_PAGE_TO_PHYS(pg)) &= ~(ptebit >> ATTR_SHFT); #endif #ifdef __HAVE_VM_PAGE_MD pg->mdpage.mdpg_attrs &= ~ptebit; #endif } static __inline int pmap_attr_fetch(struct vm_page *pg) { #ifdef __HAVE_PMAP_PHYSSEG return *pa_to_attr(VM_PAGE_TO_PHYS(pg)) << ATTR_SHFT; #endif #ifdef __HAVE_VM_PAGE_MD return pg->mdpage.mdpg_attrs; #endif } static __inline void pmap_attr_save(struct vm_page *pg, int ptebit) { #ifdef __HAVE_PMAP_PHYSSEG *pa_to_attr(VM_PAGE_TO_PHYS(pg)) |= (ptebit >> ATTR_SHFT); #endif #ifdef __HAVE_VM_PAGE_MD pg->mdpage.mdpg_attrs |= ptebit; #endif } static __inline int pmap_pte_compare(const volatile pte_t *pt, const pte_t *pvo_pt) { if (pt->pte_hi == pvo_pt->pte_hi #if 0 && ((pt->pte_lo ^ pvo_pt->pte_lo) & ~(PTE_REF|PTE_CHG)) == 0 #endif ) return 1; return 0; } static __inline int pmap_pte_match(volatile pte_t *pt, sr_t sr, vaddr_t va, int which) { return (pt->pte_hi & ~PTE_VALID) == ( ((sr & SR_VSID) << PTE_VSID_SHFT) | ((va >> ADDR_API_SHFT) & PTE_API) | which); } static __inline void pmap_pte_create(pte_t *pt, sr_t sr, vaddr_t va, u_int pte_lo) { /* * Construct the PTE. Default to IMB initially. Valid bit * only gets set when the real pte is set in memory. * * Note: Don't set the valid bit for correct operation of tlb update. */ pt->pte_hi = ((sr & SR_VSID) << PTE_VSID_SHFT) | (((va & ADDR_PIDX) >> ADDR_API_SHFT) & PTE_API); pt->pte_lo = pte_lo; } static __inline void pmap_pte_synch(volatile pte_t *pt, pte_t *pvo_pt) { pvo_pt->pte_lo |= pt->pte_lo & (PTE_REF|PTE_CHG); } static __inline void pmap_pte_clear(volatile pte_t *pt, vaddr_t va, int ptebit) { /* * As shown in Section 7.6.3.2.3 */ pt->pte_lo &= ~ptebit; TLBIE(va); EIEIO(); TLBSYNC(); SYNC(); } static __inline void pmap_pte_set(volatile pte_t *pt, pte_t *pvo_pt) { #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK) if (pvo_pt->pte_hi & PTE_VALID) panic("pte_set: setting an already valid pte %p", pvo_pt); #endif pvo_pt->pte_hi |= PTE_VALID; /* * Update the PTE as defined in section 7.6.3.1 * Note that the REF/CHG bits are from pvo_pt and thus should * have been saved so this routine can restore them (if desired). */ pt->pte_lo = pvo_pt->pte_lo; EIEIO(); pt->pte_hi = pvo_pt->pte_hi; SYNC(); pmap_pte_valid++; } static __inline void pmap_pte_unset(volatile pte_t *pt, pte_t *pvo_pt, vaddr_t va) { #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK) if ((pvo_pt->pte_hi & PTE_VALID) == 0) panic("pte_unset: attempt to unset an inactive pte#1 %p/%p", pvo_pt, pt); if ((pt->pte_hi & PTE_VALID) == 0) panic("pte_unset: attempt to unset an inactive pte#2 %p/%p", pvo_pt, pt); #endif pvo_pt->pte_hi &= ~PTE_VALID; /* * Force the ref & chg bits back into the PTEs. */ SYNC(); /* * Invalidate the pte ... (Section 7.6.3.3) */ pt->pte_hi &= ~PTE_VALID; SYNC(); TLBIE(va); EIEIO(); TLBSYNC(); SYNC(); /* * Save the ref & chg bits ... */ pmap_pte_synch(pt, pvo_pt); pmap_pte_valid--; } static __inline void pmap_pte_change(volatile pte_t *pt, pte_t *pvo_pt, vaddr_t va) { /* * Invalidate the PTE */ pmap_pte_unset(pt, pvo_pt, va); pmap_pte_set(pt, pvo_pt); } /* * Try to insert the PTE @ *pvo_pt into the pmap_pteg_table at ptegidx * (either primary or secondary location). * * Note: both the destination and source PTEs must not have PTE_VALID set. */ STATIC int pmap_pte_insert(int ptegidx, pte_t *pvo_pt) { volatile pte_t *pt; int i; #if defined(DEBUG) DPRINTFN(PTE, ("pmap_pte_insert: idx 0x%x, pte 0x%x 0x%x\n", ptegidx, pvo_pt->pte_hi, pvo_pt->pte_lo)); #endif /* * First try primary hash. */ for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) { if ((pt->pte_hi & PTE_VALID) == 0) { pvo_pt->pte_hi &= ~PTE_HID; pmap_pte_set(pt, pvo_pt); return i; } } /* * Now try secondary hash. */ ptegidx ^= pmap_pteg_mask; for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) { if ((pt->pte_hi & PTE_VALID) == 0) { pvo_pt->pte_hi |= PTE_HID; pmap_pte_set(pt, pvo_pt); return i; } } return -1; } /* * Spill handler. * * Tries to spill a page table entry from the overflow area. * This runs in either real mode (if dealing with a exception spill) * or virtual mode when dealing with manually spilling one of the * kernel's pte entries. In either case, interrupts are already * disabled. */ int pmap_pte_spill(vaddr_t addr) { struct pvo_entry *source_pvo, *victim_pvo; struct pvo_entry *pvo; int ptegidx, i, j; sr_t sr; volatile pteg_t *pteg; volatile pte_t *pt; pmap_pte_spills++; sr = MFSRIN(addr); ptegidx = va_to_pteg(sr, addr); /* * Have to substitute some entry. Use the primary hash for this. * * Use low bits of timebase as random generator */ pteg = &pmap_pteg_table[ptegidx]; i = MFTB() & 7; pt = &pteg->pt[i]; source_pvo = NULL; victim_pvo = NULL; LIST_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) { /* * We need to find pvo entry for this address... */ PMAP_PVO_CHECK(pvo); /* sanity check */ if (source_pvo == NULL && pmap_pte_match(&pvo->pvo_pte, sr, addr, pvo->pvo_pte.pte_hi & PTE_HID)) { /* * Now found an entry to be spilled into the pteg. * The PTE is now be valid, so we know it's active; */ j = pmap_pte_insert(ptegidx, &pvo->pvo_pte); if (j >= 0) { PVO_PTEGIDX_SET(pvo, j); pmap_pte_overflow--; PMAP_PVO_CHECK(pvo); /* sanity check */ return 1; } source_pvo = pvo; if (victim_pvo != NULL) break; } /* * We also need the pvo entry of the victim we are replacing * so save the R & C bits of the PTE. */ if ((pt->pte_hi & PTE_HID) == 0 && victim_pvo == NULL && pmap_pte_compare(pt, &pvo->pvo_pte)) { victim_pvo = pvo; if (source_pvo != NULL) break; } } if (source_pvo == NULL) return 0; if (victim_pvo == NULL) { if ((pt->pte_hi & PTE_HID) == 0) panic("pmap_pte_spill: victim p-pte (%p) has " "no pvo entry!", pt); /* * If this is a secondary PTE, we need to search * its primary pvo bucket for the matching PVO. */ LIST_FOREACH(pvo, &pmap_pvo_table[ptegidx ^ pmap_pteg_mask], pvo_olink) { PMAP_PVO_CHECK(pvo); /* sanity check */ /* * We also need the pvo entry of the victim we are * replacing so save the R & C bits of the PTE. */ if (pmap_pte_compare(pt, &pvo->pvo_pte)) { victim_pvo = pvo; break; } } if (victim_pvo == NULL) panic("pmap_pte_spill: victim s-pte (%p) has " "no pvo entry!", pt); } /* * We are invalidating the TLB entry for the EA for the * we are replacing even though its valid; If we don't * we lose any ref/chg bit changes contained in the TLB * entry. */ source_pvo->pvo_pte.pte_hi &= ~PTE_HID; pmap_pte_unset(pt, &victim_pvo->pvo_pte, victim_pvo->pvo_vaddr); pmap_pte_set(pt, &source_pvo->pvo_pte); PVO_PTEGIDX_CLR(victim_pvo); PVO_PTEGIDX_SET(source_pvo, i); pmap_pte_replacements++; PMAP_PVO_CHECK(victim_pvo); PMAP_PVO_CHECK(source_pvo); return 1; } /* * Restrict given range to physical memory */ void pmap_real_memory(paddr_t *start, psize_t *size) { struct mem_region *mp; for (mp = mem; mp->size; mp++) { if (*start + *size > mp->start && *start < mp->start + mp->size) { if (*start < mp->start) { *size -= mp->start - *start; *start = mp->start; } if (*start + *size > mp->start + mp->size) *size = mp->start + mp->size - *start; return; } } *size = 0; } /* * Initialize anything else for pmap handling. * Called during vm_init(). */ void pmap_init(void) { int s; #ifdef __HAVE_PMAP_PHYSSEG struct pvo_head *pvoh; int bank; long sz; char *attr; s = splvm(); pvoh = pmap_physseg.pvoh; attr = pmap_physseg.attrs; for (bank = 0; bank < vm_nphysseg; bank++) { sz = vm_physmem[bank].end - vm_physmem[bank].start; vm_physmem[bank].pmseg.pvoh = pvoh; vm_physmem[bank].pmseg.attrs = attr; for (; sz > 0; sz--, pvoh++, attr++) { LIST_INIT(pvoh); *attr = 0; } } splx(s); #endif s = splvm(); pool_init(&pmap_mpvo_pool, sizeof(struct pvo_entry), sizeof(struct pvo_entry), 0, 0, "pmap_mpvopl", &pmap_pool_mallocator); pool_setlowat(&pmap_mpvo_pool, 1008); pmap_initialized = 1; splx(s); } /* * How much virtual space does the kernel get? */ void pmap_virtual_space(vaddr_t *start, vaddr_t *end) { /* * For now, reserve one segment (minus some overhead) for kernel * virtual memory */ *start = VM_MIN_KERNEL_ADDRESS + pmap_rkva_count * NBPG; *end = VM_MAX_KERNEL_ADDRESS; } /* * Allocate, initialize, and return a new physical map. */ pmap_t pmap_create(void) { pmap_t pm; pm = pool_get(&pmap_pool, PR_WAITOK); memset((caddr_t)pm, 0, sizeof *pm); pmap_pinit(pm); DPRINTFN(CREATE,("pmap_create: pm %p:\n" "\t%06x %06x %06x %06x %06x %06x %06x %06x\n" "\t%06x %06x %06x %06x %06x %06x %06x %06x\n", pm, pm->pm_sr[0], pm->pm_sr[1], pm->pm_sr[2], pm->pm_sr[3], pm->pm_sr[4], pm->pm_sr[5], pm->pm_sr[6], pm->pm_sr[7], pm->pm_sr[8], pm->pm_sr[9], pm->pm_sr[10], pm->pm_sr[11], pm->pm_sr[12], pm->pm_sr[13], pm->pm_sr[14], pm->pm_sr[15])); return pm; } /* * Initialize a preallocated and zeroed pmap structure. */ unsigned short pmap_context = 0; void pmap_pinit(pmap_t pm) { int i, mask; unsigned int entropy = MFTB(); /* * Allocate some segment registers for this pmap. */ pm->pm_refs = 1; for (i = 0; i < NPMAPS ; i += VSID_NBPW) { static unsigned int pmap_vsidcontext; unsigned int hash, n; /* Create a new value by multiplying by a prime adding in * entropy from the timebase register. This is to make the * VSID more random so that the PT Hash function collides * less often. (note that the prime causes gcc to do shifts * instead of a multiply) */ pmap_vsidcontext = (pmap_vsidcontext * 0x1105) + entropy; hash = pmap_vsidcontext & (NPMAPS - 1); if (hash == 0) /* 0 is special, avoid it */ continue; n = hash >> 5; mask = 1 << (hash & (VSID_NBPW-1)); hash = (pmap_vsidcontext & 0xfffff); if (pmap_vsid_bitmap[n] & mask) { /* collision? */ /* anything free in this bucket? */ if (pmap_vsid_bitmap[n] == 0xffffffff) { entropy = (pmap_vsidcontext >> 20); continue; } i = ffs(~pmap_vsid_bitmap[n]) - 1; mask = 1 << i; hash &= 0xfffff & ~(VSID_NBPW-1); hash |= i; } pmap_vsid_bitmap[n] |= mask; for (i = 0; i < 16; i++) pm->pm_sr[i] = VSID_MAKE(i, hash) | SR_PRKEY; return; } panic("pmap_pinit: out of segments"); } /* * Add a reference to the given pmap. */ void pmap_reference(pmap_t pm) { pm->pm_refs++; } /* * Retire the given pmap from service. * Should only be called if the map contains no valid mappings. */ void pmap_destroy(pmap_t pm) { if (--pm->pm_refs == 0) { pmap_release(pm); pool_put(&pmap_pool, pm); } } /* * Release any resources held by the given physical map. * Called when a pmap initialized by pmap_pinit is being released. */ void pmap_release(pmap_t pm) { int idx, mask; if (pm->pm_sr[0] == 0) panic("pmap_release"); idx = VSID_TO_HASH(pm->pm_sr[0]) & (NPMAPS-1); mask = 1 << (idx % VSID_NBPW); idx /= VSID_NBPW; pmap_vsid_bitmap[idx] &= ~mask; } /* * Copy the range specified by src_addr/len * from the source map to the range dst_addr/len * in the destination map. * * This routine is only advisory and need not do anything. */ void pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vaddr_t dst_addr, vsize_t len, vaddr_t src_addr) { } /* * Require that all active physical maps contain no * incorrect entries NOW. */ void pmap_update(struct pmap *pmap) { #ifdef MULTIPROCESSOR TLBSYNC(); #endif } /* * Garbage collects the physical map system for * pages which are no longer used. * Success need not be guaranteed -- that is, there * may well be pages which are not referenced, but * others may be collected. * Called by the pageout daemon when pages are scarce. */ void pmap_collect(pmap_t pm) { } /* * Fill the given physical page with zeroes. */ void pmap_zero_page(paddr_t pa) { caddr_t va; if (pa < SEGMENT_LENGTH) { va = (caddr_t) pa; } else if (pmap_initialized) { if (__predict_false(pmap_pvo_zeropage == NULL)) pmap_pvo_zeropage = pmap_rkva_alloc(VM_PROT_READ|VM_PROT_WRITE); pmap_pa_map(pmap_pvo_zeropage, pa, NULL, NULL); va = (caddr_t) PVO_VADDR(pmap_pvo_zeropage); } else { panic("pmap_zero_page: can't zero pa %#lx", pa); } #if 1 memset(va, 0, NBPG); #else { int i; for (i = NBPG/CACHELINESIZE; i > 0; i--) { __asm __volatile ("dcbz 0,%0" :: "r"(va)); va += CACHELINESIZE; } } #endif if (pa >= SEGMENT_LENGTH) pmap_pa_unmap(pmap_pvo_zeropage, NULL, NULL); } /* * Copy the given physical source page to its destination. */ void pmap_copy_page(paddr_t src, paddr_t dst) { if (src < SEGMENT_LENGTH && dst < SEGMENT_LENGTH) { memcpy((void *) dst, (void *) src, NBPG); return; } if (pmap_initialized) { if (__predict_false(pmap_pvo_copypage_src == NULL)) pmap_pvo_copypage_src = pmap_rkva_alloc(VM_PROT_READ); if (__predict_false(pmap_pvo_copypage_dst == NULL)) pmap_pvo_copypage_dst = pmap_rkva_alloc(VM_PROT_READ|VM_PROT_WRITE); pmap_pa_map(pmap_pvo_copypage_src, src, NULL, NULL); pmap_pa_map(pmap_pvo_copypage_dst, dst, NULL, NULL); memcpy((caddr_t)PVO_VADDR(pmap_pvo_copypage_dst), (caddr_t)PVO_VADDR(pmap_pvo_copypage_src), NBPG); pmap_pa_unmap(pmap_pvo_copypage_src, NULL, NULL); pmap_pa_unmap(pmap_pvo_copypage_dst, NULL, NULL); return; } panic("pmap_copy_page: failed to copy contents of pa %#lx to pa %#lx", src, dst); } static __inline int pmap_pvo_pte_index(const struct pvo_entry *pvo, int ptegidx) { int pteidx; /* * We can find the actual pte entry without searching by * grabbing the PTEG index from 3 unused bits in pte_lo[11:9] * and by noticing the HID bit. */ pteidx = ptegidx * 8 + PVO_PTEGIDX_GET(pvo); if (pvo->pvo_pte.pte_hi & PTE_HID) pteidx ^= pmap_pteg_mask * 8; return pteidx; } volatile pte_t * pmap_pvo_to_pte(const struct pvo_entry *pvo, int pteidx) { volatile pte_t *pt; #if !defined(DIAGNOSTIC) && !defined(DEBUG) && !defined(PMAPCHECK) if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0) return NULL; #endif /* * If we haven't been supplied the ptegidx, calculate it. */ if (pteidx == -1) { int ptegidx; sr_t sr = va_to_sr(pvo->pvo_pmap->pm_sr, pvo->pvo_vaddr); ptegidx = va_to_pteg(sr, pvo->pvo_vaddr); pteidx = pmap_pvo_pte_index(pvo, ptegidx); } pt = &pmap_pteg_table[pteidx >> 3].pt[pteidx & 7]; #if !defined(DIAGNOSTIC) && !defined(DEBUG) && !defined(PMAPCHECK) return pt; #else if ((pvo->pvo_pte.pte_hi & PTE_VALID) && !PVO_PTEGIDX_ISSET(pvo)) { panic("pmap_pvo_to_pte: pvo %p: has valid pte in " "pvo but no valid pte index", pvo); } if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0 && PVO_PTEGIDX_ISSET(pvo)) { panic("pmap_pvo_to_pte: pvo %p: has valid pte index in " "pvo but no valid pte", pvo); } if ((pt->pte_hi ^ (pvo->pvo_pte.pte_hi & ~PTE_VALID)) == PTE_VALID) { if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0) { #if defined(DEBUG) || defined(PMAPCHECK) pmap_pte_print(pt); #endif panic("pmap_pvo_to_pte: pvo %p: has valid pte in " "pmap_pteg_table %p but invalid in pvo", pvo, pt); } if (((pt->pte_lo ^ pvo->pvo_pte.pte_lo) & ~(PTE_CHG|PTE_REF)) != 0) { #if defined(DEBUG) || defined(PMAPCHECK) pmap_pte_print(pt); #endif panic("pmap_pvo_to_pte: pvo %p: pvo pte does " "not match pte %p in pmap_pteg_table", pvo, pt); } return pt; } if (pvo->pvo_pte.pte_hi & PTE_VALID) { #if defined(DEBUG) || defined(PMAPCHECK) pmap_pte_print(pt); #endif panic("pmap_pvo_to_pte: pvo %p: has invalid pte %p in " "pmap_pteg_table but valid in pvo", pvo, pt); } return NULL; #endif /* !(!DIAGNOSTIC && !DEBUG && !PMAPCHECK) */ } struct pvo_entry * pmap_pvo_find_va(pmap_t pm, vaddr_t va, int *pteidx_p) { struct pvo_entry *pvo; int ptegidx; sr_t sr; va &= ~ADDR_POFF; sr = va_to_sr(pm->pm_sr, va); ptegidx = va_to_pteg(sr, va); LIST_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) { #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK) if ((uintptr_t) pvo >= SEGMENT_LENGTH) panic("pmap_pvo_find_va: invalid pvo %p on " "list %#x (%p)", pvo, ptegidx, &pmap_pvo_table[ptegidx]); #endif if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) { if (pteidx_p) *pteidx_p = pmap_pvo_pte_index(pvo, ptegidx); return pvo; } } return NULL; } void pmap_pa_map(struct pvo_entry *pvo, paddr_t pa, pte_t *saved_pt, int *depth_p) { u_int32_t msr; int s; s = splvm(); msr = pmap_interrupts_off(); /* * If this pvo already has a valid PTE, we need to save it * so it can restored later. We then just reload the new * PTE over the old slot. */ if (saved_pt != NULL) { volatile pte_t *pt; pt = pmap_pvo_to_pte(pvo, -1); if (pt != NULL) { #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK) if (depth_p != NULL && *depth_p == 0) panic("pmap_pa_map: pvo %p: valid pt %p" " on 0 depth", pvo, pt); #endif pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr); PVO_PTEGIDX_CLR(pvo); pmap_pte_overflow++; } *saved_pt = pvo->pvo_pte; DPRINTFN(PAMAP, ("pmap_pa_map: saved pte %#x/%#x va %#lx\n", pvo->pvo_pte.pte_hi, pvo->pvo_pte.pte_lo, pvo->pvo_vaddr)); pvo->pvo_pte.pte_lo &= ~PTE_RPGN; #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK) } else if ((pvo->pvo_pte.pte_hi & PTE_VALID) || (depth_p != NULL && (*depth_p) > 0)) { panic("pmap_pa_map: unprotected recursive use of pvo %p", pvo); #endif } pvo->pvo_pte.pte_lo |= pa; if (!pmap_pte_spill(pvo->pvo_vaddr)) panic("pmap_pa_map: could not spill pvo %p", pvo); #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK) if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0) panic("pmap_pa_map: pvo %p: pte not valid after spill", pvo); if (PVO_PTEGIDX_ISSET(pvo) == 0) panic("pmap_pa_map: pvo %p: no pte index spill", pvo); #endif if (depth_p != NULL) (*depth_p)++; pmap_interrupts_restore(msr); splx(s); } void pmap_pa_unmap(struct pvo_entry *pvo, pte_t *saved_pt, int *depth_p) { volatile pte_t *pt; u_int32_t msr; int s; s = splvm(); msr = pmap_interrupts_off(); pt = pmap_pvo_to_pte(pvo, -1); if (pt != NULL) { pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr); PVO_PTEGIDX_CLR(pvo); pmap_pte_overflow++; } pvo->pvo_pte.pte_lo &= ~PTE_RPGN; /* * If there is a saved PTE and its valid, restore it * and return. */ if (saved_pt != NULL && (saved_pt->pte_lo & PTE_RPGN) != 0) { #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK) if (pvo->pvo_pte.pte_hi != saved_pt->pte_hi) panic("pmap_pa_unmap: pvo %p pte_hi %#x " "!= saved pte_hi %#x", pvo, pvo->pvo_pte.pte_hi, saved_pt->pte_hi); #endif if (depth_p != NULL && --(*depth_p) == 0) panic("pmap_pa_unmap: restoring but depth == 0"); pvo->pvo_pte = *saved_pt; DPRINTFN(PAMAP, ("pmap_pa_unmap: restored pte %#x/%#x va %#lx\n", pvo->pvo_pte.pte_hi, pvo->pvo_pte.pte_lo, pvo->pvo_vaddr)); if (!pmap_pte_spill(pvo->pvo_vaddr)) panic("pmap_pa_unmap: could not spill pvo %p", pvo); #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK) if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0) panic("pmap_pa_unmap: pvo %p: pte not valid after " "spill", pvo); } else { if (depth_p != NULL && --(*depth_p) != 0) panic("pmap_pa_unmap: reseting but depth (%u) > 0", *depth_p); #endif } pmap_interrupts_restore(msr); splx(s); } void pmap_syncicache(paddr_t pa, psize_t len) { static int depth; static u_int calls; DPRINTFN(SYNCICACHE, ("pmap_syncicache[%d]: pa %#lx\n", depth, pa)); if (pa + len <= SEGMENT_LENGTH) { __syncicache((void *)pa, len); return; } if (pmap_initialized) { pte_t saved_pte; psize_t offset = pa & ADDR_POFF; if (__predict_false(pmap_pvo_syncicache == NULL)) pmap_pvo_syncicache = pmap_rkva_alloc(VM_PROT_READ|VM_PROT_WRITE); calls++; pmap_pa_map(pmap_pvo_syncicache, pa, &saved_pte, &depth); __syncicache((void *)(PVO_VADDR(pmap_pvo_syncicache)|offset), len); pmap_pa_unmap(pmap_pvo_syncicache, &saved_pte, &depth); return; } panic("pmap_syncicache: can't sync the icache @ pa %#lx", pa); } /* * Return a unmapped pvo for a kernel virtual address. * Used by pmap function that operate of physical pages. */ struct pvo_entry * pmap_rkva_alloc(int prot) { struct pvo_entry *pvo; volatile pte_t *pt; vaddr_t kva; int pteidx; if (pmap_rkva_count == 0) panic("pmap_kva_alloc: no more reserved KVAs!"); kva = pmap_rkva_start + (NBPG * --pmap_rkva_count); pmap_kenter_pa(kva, 0, prot); pvo = pmap_pvo_find_va(pmap_kernel(), kva, &pteidx); if (pvo == NULL) panic("pmap_kva_alloc: pmap_pvo_find_va failed!"); pt = pmap_pvo_to_pte(pvo, pteidx); if (pt == NULL) panic("pmap_kva_alloc: pmap_pvo_to_pte failed!"); pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr); PVO_PTEGIDX_CLR(pvo); pmap_pte_overflow++; return pvo; } #if defined(DEBUG) || defined(PMAPCHECK) void pmap_pvo_check(const struct pvo_entry *pvo) { struct pvo_head *pvo_head; struct pvo_entry *pvo0; volatile pte_t *pt; int failed = 0; if ((uintptr_t)(pvo+1) >= SEGMENT_LENGTH) panic("pmap_pvo_check: pvo %p: invalid address", pvo); if ((uintptr_t)(pvo->pvo_pmap+1) >= SEGMENT_LENGTH) { printf("pmap_pvo_check: pvo %p: invalid pmap address %p\n", pvo, pvo->pvo_pmap); failed = 1; } if ((uintptr_t)pvo->pvo_olink.le_next >= SEGMENT_LENGTH || (((uintptr_t)pvo->pvo_olink.le_next) & 0x1f) != 0) { printf("pmap_pvo_check: pvo %p: invalid ovlink address %p\n", pvo, pvo->pvo_olink.le_next); failed = 1; } if ((uintptr_t)pvo->pvo_vlink.le_next >= SEGMENT_LENGTH || (((uintptr_t)pvo->pvo_vlink.le_next) & 0x1f) != 0) { printf("pmap_pvo_check: pvo %p: invalid ovlink address %p\n", pvo, pvo->pvo_vlink.le_next); failed = 1; } if (pvo->pvo_vaddr & PVO_MANAGED) { pvo_head = pa_to_pvoh(pvo->pvo_pte.pte_lo & PTE_RPGN, NULL); } else { if (pvo->pvo_vaddr < VM_MIN_KERNEL_ADDRESS) { printf("pmap_pvo_check: pvo %p: non kernel address " "on kernel unmanaged list\n", pvo); failed = 1; } pvo_head = &pmap_pvo_kunmanaged; } LIST_FOREACH(pvo0, pvo_head, pvo_vlink) { if (pvo0 == pvo) break; } if (pvo0 == NULL) { printf("pmap_pvo_check: pvo %p: not present " "on its vlist head %p\n", pvo, pvo_head); failed = 1; } if (pvo != pmap_pvo_find_va(pvo->pvo_pmap, pvo->pvo_vaddr, NULL)) { printf("pmap_pvo_check: pvo %p: not present " "on its olist head\n", pvo); failed = 1; } pt = pmap_pvo_to_pte(pvo, -1); if (pt == NULL) { if (pvo->pvo_pte.pte_hi & PTE_VALID) { printf("pmap_pvo_check: pvo %p: pte_hi VALID but no PTE\n", pvo); failed = 1; } } else { if ((uintptr_t) pt < (uintptr_t) &pmap_pteg_table || (uintptr_t) pt >= (uintptr_t) &pmap_pteg_table[pmap_pteg_cnt]) { printf("pmap_pvo_check: pvo %p: pte %p not in pteg table\n", pvo, pt); failed = 1; } if (((((uintptr_t) pt) >> 3) & 7) != PVO_PTEGIDX_GET(pvo)) { printf("pmap_pvo_check: pvo %p: pte_hi VALID but no PTE\n", pvo); failed = 1; } if (pvo->pvo_pte.pte_hi != pt->pte_hi) { printf("pmap_pvo_check: pvo %p: pte_hi differ: %#x/%#x\n", pvo, pvo->pvo_pte.pte_hi, pt->pte_hi); failed = 1; } if (((pvo->pvo_pte.pte_lo ^ pt->pte_lo) & (PTE_PP|PTE_W|PTE_I|PTE_G|PTE_RPGN)) != 0) { printf("pmap_pvo_check: pvo %p: pte_lo differ: %#x/%#x\n", pvo, pvo->pvo_pte.pte_lo & (PTE_PP|PTE_W|PTE_I|PTE_G|PTE_RPGN), pt->pte_lo & (PTE_PP|PTE_W|PTE_I|PTE_G|PTE_RPGN)); failed = 1; } if (pmap_pte_to_va(pt) != PVO_VADDR(pvo)) { printf("pmap_pvo_check: pvo %p: PTE %p derived VA %#lx" " doesn't not match PVO's VA %#lx\n", pvo, pt, pmap_pte_to_va(pt), PVO_VADDR(pvo)); failed = 1; } if (failed) pmap_pte_print(pt); } if (failed) panic("pmap_pvo_check: pvo %p, pm %p: bugcheck!", pvo, pvo->pvo_pmap); } #endif /* DEBUG || PMAPCHECK */ /* * This returns whether this is the first mapping of a page. */ int pmap_pvo_enter(pmap_t pm, struct pool *pl, struct pvo_head *pvo_head, vaddr_t va, paddr_t pa, u_int pte_lo, int flags) { struct pvo_entry *pvo; u_int32_t msr; sr_t sr; int ptegidx; int i; int poolflags = PR_NOWAIT; #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK) if (pmap_pvo_remove_depth > 0) panic("pmap_pvo_enter: called while pmap_pvo_remove active!"); if (++pmap_pvo_enter_depth > 1) panic("pmap_pvo_enter: called recursively!"); #endif pmap_pvo_enter_calls++; /* * Compute the PTE Group index. */ va &= ~ADDR_POFF; sr = va_to_sr(pm->pm_sr, va); ptegidx = va_to_pteg(sr, va); msr = pmap_interrupts_off(); /* * Remove any existing mapping for this page. Reuse the * pvo entry if there a mapping. */ LIST_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) { if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) { #ifdef DEBUG if ((pmapdebug & PMAPDEBUG_PVOENTER) && ((pvo->pvo_pte.pte_lo ^ (pa|pte_lo)) & ~(PTE_REF|PTE_CHG)) == 0 && va < VM_MIN_KERNEL_ADDRESS) { printf("pmap_pvo_enter: pvo %p: dup %#x/%#lx\n", pvo, pvo->pvo_pte.pte_lo, pte_lo|pa); printf("pmap_pvo_enter: pte_hi=%#x sr=%#x\n", pvo->pvo_pte.pte_hi, pm->pm_sr[va >> ADDR_SR_SHFT]); pmap_pte_print(pmap_pvo_to_pte(pvo, -1)); #ifdef DDBX Debugger(); #endif } #endif pmap_pvo_remove(pvo, -1); break; } } /* * If we aren't overwriting an mapping, try to allocate */ pmap_interrupts_restore(msr); pvo = pool_get(pl, poolflags); msr = pmap_interrupts_off(); if (pvo == NULL) { #if 0 pvo = pmap_pvo_reclaim(pm); if (pvo == NULL) { #endif if ((flags & PMAP_CANFAIL) == 0) panic("pmap_pvo_enter: failed"); #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK) pmap_pvo_enter_depth--; #endif pmap_interrupts_restore(msr); return ENOMEM; #if 0 } #endif } pmap_pvo_entries++; pvo->pvo_vaddr = va; pvo->pvo_pmap = pm; LIST_INSERT_HEAD(&pmap_pvo_table[ptegidx], pvo, pvo_olink); pvo->pvo_vaddr &= ~ADDR_POFF; if (flags & VM_PROT_EXECUTE) pvo->pvo_vaddr |= PVO_EXECUTABLE; if (flags & PMAP_WIRED) pvo->pvo_vaddr |= PVO_WIRED; if (pvo_head != &pmap_pvo_kunmanaged) pvo->pvo_vaddr |= PVO_MANAGED; pmap_pte_create(&pvo->pvo_pte, sr, va, pa | pte_lo); LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink); if (pvo->pvo_pte.pte_lo & PVO_WIRED) pvo->pvo_pmap->pm_stats.wired_count++; pvo->pvo_pmap->pm_stats.resident_count++; #if defined(DEBUG) if (pm != pmap_kernel() && va < VM_MIN_KERNEL_ADDRESS) DPRINTFN(PVOENTER, ("pmap_pvo_enter: pvo %p: pm %p va %#lx pa %#lx\n", pvo, pm, va, pa)); #endif /* * We hope this succeeds but it isn't required. */ i = pmap_pte_insert(ptegidx, &pvo->pvo_pte); if (i >= 0) { PVO_PTEGIDX_SET(pvo, i); } else { pmap_pte_overflow++; #if 0 if ((flags & (VM_PROT_READ|VM_PROT_WRITE)) != VM_PROT_NONE) pmap_pte_evict(pvo, ptegidx, MFTB() & 7); #endif } PMAP_PVO_CHECK(pvo); /* sanity check */ #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK) pmap_pvo_enter_depth--; #endif pmap_interrupts_restore(msr); return 0; } void pmap_pvo_remove(struct pvo_entry *pvo, int pteidx) { volatile pte_t *pt; #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK) if (++pmap_pvo_remove_depth > 1) panic("pmap_pvo_remove: called recursively!"); #endif PMAP_PVO_CHECK(pvo); /* sanity check */ /* * If there is an active pte entry, we need to deactivate it * (and save the ref & chg bits). */ pt = pmap_pvo_to_pte(pvo, pteidx); if (pt != NULL) { pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr); PVO_PTEGIDX_CLR(pvo); } else { pmap_pte_overflow--; } /* * Update our statistics */ pvo->pvo_pmap->pm_stats.resident_count--; if (pvo->pvo_pte.pte_lo & PVO_WIRED) pvo->pvo_pmap->pm_stats.wired_count--; /* * Save the REF/CHG bits into their cache if the page is managed. */ if (pvo->pvo_vaddr & PVO_MANAGED) { struct vm_page *pg = PHYS_TO_VM_PAGE(pvo->pvo_pte.pte_lo & PTE_RPGN); if (pg != NULL) { pmap_attr_save(pg, pvo->pvo_pte.pte_lo & (PTE_REF|PTE_CHG)); } } /* * Remove this PVO from the PV list */ LIST_REMOVE(pvo, pvo_vlink); /* * Remove this from the Overflow list and return it to the pool... * ... if we aren't going to reuse it. */ LIST_REMOVE(pvo, pvo_olink); pool_put(pvo->pvo_vaddr & PVO_MANAGED ? &pmap_mpvo_pool : &pmap_upvo_pool, pvo); pmap_pvo_entries--; pmap_pvo_remove_calls++; #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK) pmap_pvo_remove_depth--; #endif } /* * Insert physical page at pa into the given pmap at virtual address va. */ int pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot, int flags) { struct mem_region *mp; struct pvo_head *pvo_head; struct vm_page *pg; struct pool *pl; u_int32_t pte_lo; int s; int error; u_int pvo_flags; u_int was_exec = 0; if (__predict_false(!pmap_initialized)) { pvo_head = &pmap_pvo_kunmanaged; pl = &pmap_upvo_pool; pvo_flags = 0; pg = NULL; was_exec = PTE_EXEC; } else { pvo_head = pa_to_pvoh(pa, &pg); pl = &pmap_mpvo_pool; pvo_flags = PVO_MANAGED; } DPRINTFN(ENTER, ("pmap_enter(%p, 0x%lx, 0x%lx, 0x%x, 0x%x):", pm, va, pa, prot, flags)); /* * If this is a managed page, and it's the first reference to the * page clear the execness of the page. Otherwise fetch the execness. */ if (pg != NULL) { if (LIST_EMPTY(pvo_head)) { pmap_attr_clear(pg, PTE_EXEC); DPRINTFN(ENTER, (" first")); } else { was_exec = pmap_attr_fetch(pg) & PTE_EXEC; } } DPRINTFN(ENTER, (" was_exec=%d", was_exec)); /* * Assume the page is cache inhibited and access is guarded unless * it's in our available memory array. */ pte_lo = PTE_I | PTE_G; if ((flags & PMAP_NC) == 0) { for (mp = mem; mp->size; mp++) { if (pa >= mp->start && pa < mp->start + mp->size) { pte_lo &= ~(PTE_I | PTE_G); break; } } } if (prot & VM_PROT_WRITE) pte_lo |= PTE_BW; else pte_lo |= PTE_BR; #if 0 if (pm == pmap_kernel()) { if ((prot & (VM_PROT_READ|VM_PROT_WRITE)) == VM_PROT_READ) printf("pmap_pvo_enter: Kernel RO va %#lx pa %#lx\n", va, pa); if ((prot & (VM_PROT_READ|VM_PROT_WRITE)) == VM_PROT_NONE) printf("pmap_pvo_enter: Kernel N/A va %#lx pa %#lx\n", va, pa); } #endif /* * We need to know if this page can be executable */ flags |= (prot & VM_PROT_EXECUTE); /* * Record mapping for later back-translation and pte spilling. * This will overwrite any existing mapping. */ s = splvm(); error = pmap_pvo_enter(pm, pl, pvo_head, va, pa, pte_lo, flags); splx(s); /* * Flush the real page from the instruction cache if this page is * mapped executable and cacheable and was not previously mapped * (or was not mapped executable). */ if (error == 0 && (flags & VM_PROT_EXECUTE) && (pte_lo & PTE_I) == 0 && was_exec == 0) { DPRINTFN(ENTER, (" syncicache")); pmap_syncicache(pa, NBPG); if (pg != NULL) pmap_attr_save(pg, PTE_EXEC); } DPRINTFN(ENTER, (" error=%d\n", error)); return error; } void pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot) { struct mem_region *mp; u_int32_t pte_lo; u_int32_t msr; int error; int s; if (va < VM_MIN_KERNEL_ADDRESS) panic("pmap_kenter_pa: attempt to enter " "non-kernel address %#lx!", va); DPRINTFN(KENTER, ("pmap_kenter_pa(%#lx,%#lx,%#x)\n", va, pa, prot)); pte_lo = PTE_I | PTE_G; for (mp = mem; mp->size; mp++) { if (pa >= mp->start && pa < mp->start + mp->size) { pte_lo &= ~(PTE_I | PTE_G); break; } } if (prot & VM_PROT_WRITE) pte_lo |= PTE_BW; else pte_lo |= PTE_BR; s = splvm(); msr = pmap_interrupts_off(); error = pmap_pvo_enter(pmap_kernel(), &pmap_upvo_pool, &pmap_pvo_kunmanaged, va, pa, pte_lo, prot|PMAP_WIRED); pmap_interrupts_restore(msr); splx(s); if (error != 0) panic("pmap_kenter_pa: failed to enter va %#lx pa %#lx: %d", va, pa, error); /* * Flush the real memory from the instruction cache. */ if ((prot & VM_PROT_EXECUTE) && (pte_lo & (PTE_I|PTE_G)) == 0) { pmap_syncicache(pa, NBPG); } } void pmap_kremove(vaddr_t va, vsize_t len) { if (va < VM_MIN_KERNEL_ADDRESS) panic("pmap_kremove: attempt to remove " "non-kernel address %#lx!", va); DPRINTFN(KREMOVE,("pmap_kremove(%#lx,%#lx)\n", va, len)); pmap_remove(pmap_kernel(), va, va + len); } /* * Remove the given range of mapping entries. */ void pmap_remove(pmap_t pm, vaddr_t va, vaddr_t endva) { struct pvo_entry *pvo; u_int32_t msr; int pteidx; int s; for (; va < endva; va += PAGE_SIZE) { s = splvm(); msr = pmap_interrupts_off(); pvo = pmap_pvo_find_va(pm, va, &pteidx); if (pvo != NULL) { pmap_pvo_remove(pvo, pteidx); } pmap_interrupts_restore(msr); splx(s); } } /* * Get the physical page address for the given pmap/virtual address. */ boolean_t pmap_extract(pmap_t pm, vaddr_t va, paddr_t *pap) { struct pvo_entry *pvo; u_int32_t msr; int s; s = splvm(); msr = pmap_interrupts_off(); pvo = pmap_pvo_find_va(pm, va & ~ADDR_POFF, NULL); if (pvo != NULL) { PMAP_PVO_CHECK(pvo); /* sanity check */ *pap = (pvo->pvo_pte.pte_lo & PTE_RPGN) | (va & ADDR_POFF); } pmap_interrupts_restore(msr); splx(s); return pvo != NULL; } /* * Lower the protection on the specified range of this pmap. * * There are only two cases: either the protection is going to 0, * or it is going to read-only. */ void pmap_protect(pmap_t pm, vaddr_t va, vaddr_t endva, vm_prot_t prot) { struct pvo_entry *pvo; volatile pte_t *pt; u_int32_t msr; int s; int pteidx; #if 0 /* * Since this routine only downgrades protection, if the * maximal protection is desired, there isn't any change * to be made. */ if ((prot & (VM_PROT_READ|VM_PROT_WRITE)) == (VM_PROT_READ|VM_PROT_WRITE)) return; #endif /* * If there is no protection, this is equivalent to * remove the pmap from the pmap. */ if ((prot & VM_PROT_READ) == 0) { pmap_remove(pm, va, endva); return; } s = splvm(); msr = pmap_interrupts_off(); for (; va < endva; va += NBPG) { pvo = pmap_pvo_find_va(pm, va, &pteidx); if (pvo == NULL) continue; PMAP_PVO_CHECK(pvo); /* sanity check */ /* * Revoke executable if asked to do so. */ if ((prot & VM_PROT_EXECUTE) == 0) pvo->pvo_vaddr &= ~PVO_EXECUTABLE; #if 0 /* * If the page is already read-only, no change * needs to be made. */ if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR) continue; #endif /* * Grab the PTE pointer before we diddle with * the cached PTE copy. */ pt = pmap_pvo_to_pte(pvo, pteidx); /* * Change the protection of the page. */ pvo->pvo_pte.pte_lo &= ~PTE_PP; pvo->pvo_pte.pte_lo |= PTE_BR; /* * If the PVO is in the page table, update * that pte at well. */ if (pt != NULL) pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr); PMAP_PVO_CHECK(pvo); /* sanity check */ } pmap_interrupts_restore(msr); splx(s); } void pmap_unwire(pmap_t pm, vaddr_t va) { struct pvo_entry *pvo; u_int32_t msr; int s; s = splvm(); msr = pmap_interrupts_off(); pvo = pmap_pvo_find_va(pm, va, NULL); if (pvo != NULL) { if (pvo->pvo_vaddr & PVO_WIRED) { pvo->pvo_vaddr &= ~PVO_WIRED; pm->pm_stats.wired_count--; } PMAP_PVO_CHECK(pvo); /* sanity check */ } pmap_interrupts_restore(msr); splx(s); } /* * Lower the protection on the specified physical page. * * There are only two cases: either the protection is going to 0, * or it is going to read-only. */ void pmap_page_protect(struct vm_page *pg, vm_prot_t prot) { struct pvo_head *pvo_head; struct pvo_entry *pvo, *next_pvo; volatile pte_t *pt; u_int32_t msr; int s; /* * Since this routine only downgrades protection, if the * maximal protection is desired, there isn't any change * to be made. */ if ((prot & (VM_PROT_READ|VM_PROT_WRITE)) == (VM_PROT_READ|VM_PROT_WRITE)) return; s = splvm(); msr = pmap_interrupts_off(); pvo_head = vm_page_to_pvoh(pg); for (pvo = LIST_FIRST(pvo_head); pvo != NULL; pvo = next_pvo) { next_pvo = LIST_NEXT(pvo, pvo_vlink); PMAP_PVO_CHECK(pvo); /* sanity check */ /* * Downgrading to no mapping at all, we just remove the entry. */ if ((prot & VM_PROT_READ) == 0) { pmap_pvo_remove(pvo, -1); continue; } /* * If EXEC permission is being revoked, just clear the * flag in the PVO. */ if ((prot & VM_PROT_EXECUTE) == 0) pvo->pvo_vaddr &= ~PVO_EXECUTABLE; /* * If this entry is already RO, don't diddle with the * page table. */ if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR) { PMAP_PVO_CHECK(pvo); continue; } /* * Grab the PTE before the we diddle the bits so * pvo_to_pte can verify the pte contents are as * expected. */ pt = pmap_pvo_to_pte(pvo, -1); pvo->pvo_pte.pte_lo &= ~PTE_PP; pvo->pvo_pte.pte_lo |= PTE_BR; if (pt != NULL) pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr); PMAP_PVO_CHECK(pvo); /* sanity check */ } pmap_interrupts_restore(msr); splx(s); } /* * Activate the address space for the specified process. If the process * is the current process, load the new MMU context. */ void pmap_activate(struct proc *p) { struct pcb *pcb = &p->p_addr->u_pcb; pmap_t pmap = p->p_vmspace->vm_map.pmap; DPRINTFN(ACTIVATE, ("pmap_activate: proc %p (curproc %p)\n", p, curproc)); /* * XXX Normally performed in cpu_fork(). */ if (pcb->pcb_pm != pmap) { pcb->pcb_pm = pmap; pcb->pcb_pmreal = pmap; } /* * In theory, the SR registers need only be valid on return * to user space wait to do them there. */ if (p == curproc) { /* Store pointer to new current pmap. */ curpm = pmap; } } /* * Deactivate the specified process's address space. */ void pmap_deactivate(struct proc *p) { } boolean_t pmap_query_bit(struct vm_page *pg, int ptebit) { struct pvo_entry *pvo; volatile pte_t *pt; u_int32_t msr; int s; if (pmap_attr_fetch(pg) & ptebit) return TRUE; s = splvm(); msr = pmap_interrupts_off(); LIST_FOREACH(pvo, vm_page_to_pvoh(pg), pvo_vlink) { PMAP_PVO_CHECK(pvo); /* sanity check */ /* * See if we saved the bit off. If so cache, it and return * success. */ if (pvo->pvo_pte.pte_lo & ptebit) { pmap_attr_save(pg, ptebit); PMAP_PVO_CHECK(pvo); /* sanity check */ pmap_interrupts_restore(msr); splx(s); return TRUE; } } /* * No luck, now go thru the hard part of looking at the ptes * themselves. Sync so any pending REF/CHG bits are flushed * to the PTEs. */ SYNC(); LIST_FOREACH(pvo, vm_page_to_pvoh(pg), pvo_vlink) { PMAP_PVO_CHECK(pvo); /* sanity check */ /* * See if this pvo have a valid PTE. If so, fetch the * REF/CHG bits from the valid PTE. If the appropriate * ptebit is set, cache, it and return success. */ pt = pmap_pvo_to_pte(pvo, -1); if (pt != NULL) { pmap_pte_synch(pt, &pvo->pvo_pte); if (pvo->pvo_pte.pte_lo & ptebit) { pmap_attr_save(pg, ptebit); PMAP_PVO_CHECK(pvo); /* sanity check */ pmap_interrupts_restore(msr); splx(s); return TRUE; } } } pmap_interrupts_restore(msr); splx(s); return FALSE; } boolean_t pmap_clear_bit(struct vm_page *pg, int ptebit) { struct pvo_entry *pvo; volatile pte_t *pt; u_int32_t msr; int rv = 0; int s; s = splvm(); msr = pmap_interrupts_off(); /* * Clear the cached value. */ rv |= pmap_attr_fetch(pg); pmap_attr_clear(pg, ptebit); /* * Sync so any pending REF/CHG bits are flushed to the PTEs (so we * can reset the right ones). Note that since the pvo entries and * list heads are accessed via BAT0 and are never placed in the * page table, we don't have to worry about further accesses setting * the REF/CHG bits. */ SYNC(); /* * For each pvo entry, clear pvo's ptebit. If this pvo have a * valid PTE. If so, clear the ptebit from the valid PTE. */ LIST_FOREACH(pvo, vm_page_to_pvoh(pg), pvo_vlink) { PMAP_PVO_CHECK(pvo); /* sanity check */ pt = pmap_pvo_to_pte(pvo, -1); if (pt != NULL) { pmap_pte_synch(pt, &pvo->pvo_pte); if (pvo->pvo_pte.pte_lo & ptebit) pmap_pte_clear(pt, PVO_VADDR(pvo), ptebit); } rv |= pvo->pvo_pte.pte_lo; pvo->pvo_pte.pte_lo &= ~ptebit; PMAP_PVO_CHECK(pvo); /* sanity check */ } pmap_interrupts_restore(msr); splx(s); return (rv & ptebit) != 0; } void pmap_procwr(struct proc *p, vaddr_t va, size_t len) { struct pvo_entry *pvo; size_t offset = va & ADDR_POFF; int s; s = splvm(); while (len > 0) { size_t seglen = NBPG - offset; if (seglen > len) seglen = len; pvo = pmap_pvo_find_va(p->p_vmspace->vm_map.pmap, va, NULL); if (pvo != NULL && PVO_ISEXECUTABLE(pvo)) { pmap_syncicache( (pvo->pvo_pte.pte_lo & PTE_RPGN) | offset, seglen); PMAP_PVO_CHECK(pvo); } va += seglen; len -= seglen; offset = 0; } splx(s); } #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB) void pmap_pte_print(volatile pte_t *pt) { printf("PTE %p: ", pt); /* High word: */ printf("0x%08x: [", pt->pte_hi); printf("%c ", (pt->pte_hi & PTE_VALID) ? 'v' : 'i'); printf("%c ", (pt->pte_hi & PTE_HID) ? 'h' : '-'); printf("0x%06x 0x%02X", (pt->pte_hi &~ PTE_VALID)>>PTE_VSID_SHFT, pt->pte_hi & PTE_API); printf(" (va 0x%08lx)] ", pmap_pte_to_va(pt)); /* Low word: */ printf(" 0x%08x: [", pt->pte_lo); printf("0x%05x... ", pt->pte_lo >> 12); printf("%c ", (pt->pte_lo & PTE_REF) ? 'r' : 'u'); printf("%c ", (pt->pte_lo & PTE_CHG) ? 'c' : 'n'); printf("%c", (pt->pte_lo & PTE_W) ? 'w' : '.'); printf("%c", (pt->pte_lo & PTE_I) ? 'i' : '.'); printf("%c", (pt->pte_lo & PTE_M) ? 'm' : '.'); printf("%c ", (pt->pte_lo & PTE_G) ? 'g' : '.'); switch (pt->pte_lo & PTE_PP) { case PTE_BR: printf("br]\n"); break; case PTE_BW: printf("bw]\n"); break; case PTE_SO: printf("so]\n"); break; case PTE_SW: printf("sw]\n"); break; } } #endif #if defined(DDB) void pmap_pteg_check(void) { volatile pte_t *pt; int i; int ptegidx; u_int p_valid = 0; u_int s_valid = 0; u_int invalid = 0; for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) { for (pt = pmap_pteg_table[ptegidx].pt, i = 8; --i >= 0; pt++) { if (pt->pte_hi & PTE_VALID) { if (pt->pte_hi & PTE_HID) s_valid++; else p_valid++; } else invalid++; } } printf("pteg_check: v(p) %#x (%d), v(s) %#x (%d), i %#x (%d)\n", p_valid, p_valid, s_valid, s_valid, invalid, invalid); } void pmap_print_mmuregs(void) { int i; u_int cpuvers; vaddr_t addr; sr_t soft_sr[16]; struct bat soft_ibat[4]; struct bat soft_dbat[4]; u_int32_t sdr1; cpuvers = MFPVR() >> 16; __asm __volatile ("mfsdr1 %0" : "=r"(sdr1)); for (i=0; i<16; i++) { soft_sr[i] = MFSRIN(addr); addr += (1 << ADDR_SR_SHFT); } /* read iBAT (601: uBAT) registers */ __asm __volatile ("mfibatu %0,0" : "=r"(soft_ibat[0].batu)); __asm __volatile ("mfibatl %0,0" : "=r"(soft_ibat[0].batl)); __asm __volatile ("mfibatu %0,1" : "=r"(soft_ibat[1].batu)); __asm __volatile ("mfibatl %0,1" : "=r"(soft_ibat[1].batl)); __asm __volatile ("mfibatu %0,2" : "=r"(soft_ibat[2].batu)); __asm __volatile ("mfibatl %0,2" : "=r"(soft_ibat[2].batl)); __asm __volatile ("mfibatu %0,3" : "=r"(soft_ibat[3].batu)); __asm __volatile ("mfibatl %0,3" : "=r"(soft_ibat[3].batl)); if (cpuvers != MPC601) { /* read dBAT registers */ __asm __volatile ("mfdbatu %0,0" : "=r"(soft_dbat[0].batu)); __asm __volatile ("mfdbatl %0,0" : "=r"(soft_dbat[0].batl)); __asm __volatile ("mfdbatu %0,1" : "=r"(soft_dbat[1].batu)); __asm __volatile ("mfdbatl %0,1" : "=r"(soft_dbat[1].batl)); __asm __volatile ("mfdbatu %0,2" : "=r"(soft_dbat[2].batu)); __asm __volatile ("mfdbatl %0,2" : "=r"(soft_dbat[2].batl)); __asm __volatile ("mfdbatu %0,3" : "=r"(soft_dbat[3].batu)); __asm __volatile ("mfdbatl %0,3" : "=r"(soft_dbat[3].batl)); } printf("SDR1:\t0x%x\n", sdr1); printf("SR[]:\t"); addr = 0; for (i=0; i<4; i++) printf("0x%08x, ", soft_sr[i]); printf("\n\t"); for ( ; i<8; i++) printf("0x%08x, ", soft_sr[i]); printf("\n\t"); for ( ; i<12; i++) printf("0x%08x, ", soft_sr[i]); printf("\n\t"); for ( ; i<16; i++) printf("0x%08x, ", soft_sr[i]); printf("\n"); printf("%cBAT[]:\t", cpuvers == MPC601 ? 'u' : 'i'); for (i=0; i<4; i++) { printf("0x%08x 0x%08x, ", soft_ibat[i].batu, soft_ibat[i].batl); if (i == 1) printf("\n\t"); } if (cpuvers != MPC601) { printf("\ndBAT[]:\t"); for (i=0; i<4; i++) { printf("0x%08x 0x%08x, ", soft_dbat[i].batu, soft_dbat[i].batl); if (i == 1) printf("\n\t"); } } printf("\n"); } void pmap_print_pte(pmap_t pm, vaddr_t va) { struct pvo_entry *pvo; volatile pte_t *pt; int pteidx; pvo = pmap_pvo_find_va(pm, va, &pteidx); if (pvo != NULL) { pt = pmap_pvo_to_pte(pvo, pteidx); if (pt != NULL) { printf("VA %#lx -> %p -> %s %#x, %#x\n", va, pt, pt->pte_hi & PTE_HID ? "(sec)" : "(pri)", pt->pte_hi, pt->pte_lo); } else { printf("No valid PTE found\n"); } } else { printf("Address not in pmap\n"); } } void pmap_pteg_dist(void) { struct pvo_entry *pvo; int ptegidx; int depth; int max_depth = 0; unsigned int depths[64]; memset(depths, 0, sizeof(depths)); for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) { depth = 0; LIST_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) { depth++; } if (depth > max_depth) max_depth = depth; if (depth > 63) depth = 63; depths[depth]++; } for (depth = 0; depth < 64; depth++) { printf(" [%2d]: %8u", depth, depths[depth]); if ((depth & 3) == 3) printf("\n"); if (depth == max_depth) break; } if ((depth & 3) != 3) printf("\n"); printf("Max depth found was %d\n", max_depth); } #endif /* DEBUG */ #if defined(PMAPCHECK) || defined(DEBUG) void pmap_pvo_verify(void) { int ptegidx; int s; s = splvm(); for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) { struct pvo_entry *pvo; LIST_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) { if ((uintptr_t) pvo >= SEGMENT_LENGTH) panic("pmap_pvo_verify: invalid pvo %p " "on list %#x", pvo, ptegidx); pmap_pvo_check(pvo); } } splx(s); } #endif /* PMAPCHECK */ void * pmap_pool_ualloc(struct pool *pp, int flags) { struct pvo_page *pvop; pvop = SIMPLEQ_FIRST(&pmap_upvop_head); if (pvop != NULL) { pmap_upvop_free--; SIMPLEQ_REMOVE_HEAD(&pmap_upvop_head, pvop_link); return pvop; } if (uvm.page_init_done != TRUE) { return (void *) uvm_pageboot_alloc(PAGE_SIZE); } return pmap_pool_malloc(pp, flags); } void * pmap_pool_malloc(struct pool *pp, int flags) { struct pvo_page *pvop; struct vm_page *pg; pvop = SIMPLEQ_FIRST(&pmap_mpvop_head); if (pvop != NULL) { pmap_mpvop_free--; SIMPLEQ_REMOVE_HEAD(&pmap_mpvop_head, pvop_link); return pvop; } again: pg = uvm_pagealloc_strat(NULL, 0, NULL, UVM_PGA_USERESERVE, UVM_PGA_STRAT_ONLY, VM_FREELIST_FIRST256); if (__predict_false(pg == NULL)) { if (flags & PR_WAITOK) { uvm_wait("plpg"); goto again; } else { return (0); } } return (void *) VM_PAGE_TO_PHYS(pg); } void pmap_pool_ufree(struct pool *pp, void *va) { struct pvo_page *pvop; #if 0 if (PHYS_TO_VM_PAGE((paddr_t) va) != NULL) { pmap_pool_mfree(va, size, tag); return; } #endif pvop = va; SIMPLEQ_INSERT_HEAD(&pmap_upvop_head, pvop, pvop_link); pmap_upvop_free++; if (pmap_upvop_free > pmap_upvop_maxfree) pmap_upvop_maxfree = pmap_upvop_free; } void pmap_pool_mfree(struct pool *pp, void *va) { struct pvo_page *pvop; pvop = va; SIMPLEQ_INSERT_HEAD(&pmap_mpvop_head, pvop, pvop_link); pmap_mpvop_free++; if (pmap_mpvop_free > pmap_mpvop_maxfree) pmap_mpvop_maxfree = pmap_mpvop_free; #if 0 uvm_pagefree(PHYS_TO_VM_PAGE((paddr_t) va)); #endif } /* * This routine in bootstraping to steal to-be-managed memory (which will * then be unmanaged). We use it to grab from the first 256MB for our * pmap needs and above 256MB for other stuff. */ vaddr_t pmap_steal_memory(vsize_t vsize, vaddr_t *vstartp, vaddr_t *vendp) { vsize_t size; vaddr_t va; paddr_t pa = 0; int npgs, bank; struct vm_physseg *ps; if (uvm.page_init_done == TRUE) panic("pmap_steal_memory: called _after_ bootstrap"); *vstartp = VM_MIN_KERNEL_ADDRESS + pmap_rkva_count * NBPG; *vendp = VM_MAX_KERNEL_ADDRESS; size = round_page(vsize); npgs = atop(size); /* * PA 0 will never be among those given to UVM so we can use it * to indicate we couldn't steal any memory. */ for (ps = vm_physmem, bank = 0; bank < vm_nphysseg; bank++, ps++) { if (ps->free_list == VM_FREELIST_FIRST256 && ps->avail_end - ps->avail_start >= npgs) { pa = ptoa(ps->avail_start); break; } } if (pa == 0) panic("pmap_steal_memory: no approriate memory to steal!"); ps->avail_start += npgs; ps->start += npgs; /* * If we've used up all the pages in the segment, remove it and * compact the list. */ if (ps->avail_start == ps->end) { /* * If this was the last one, then a very bad thing has occurred */ if (--vm_nphysseg == 0) panic("pmap_steal_memory: out of memory!"); printf("pmap_steal_memory: consumed bank %d\n", bank); for (; bank < vm_nphysseg; bank++, ps++) { ps[0] = ps[1]; } } va = (vaddr_t) pa; memset((caddr_t) va, 0, size); pmap_pages_stolen += npgs; #ifdef DEBUG if (pmapdebug && npgs > 1) { u_int cnt = 0; for (bank = 0, ps = vm_physmem; bank < vm_nphysseg; bank++, ps++) cnt += ps->avail_end - ps->avail_start; printf("pmap_steal_memory: stole %u (total %u) pages (%u left)\n", npgs, pmap_pages_stolen, cnt); } #endif return va; } /* * Find a chuck of memory with right size and alignment. */ void * pmap_boot_find_memory(psize_t size, psize_t alignment, int at_end) { struct mem_region *mp; paddr_t s, e; int i, j; size = round_page(size); DPRINTFN(BOOT, ("pmap_boot_find_memory: size=%lx, alignment=%lx, at_end=%d", size, alignment, at_end)); if (alignment < NBPG || (alignment & (alignment-1)) != 0) panic("pmap_boot_find_memory: invalid alignment %lx", alignment); if (at_end) { if (alignment != NBPG) panic("pmap_boot_find_memory: invalid ending " "alignment %lx", alignment); for (mp = &avail[avail_cnt-1]; mp >= avail; mp--) { s = mp->start + mp->size - size; if (s >= mp->start && mp->size >= size) { DPRINTFN(BOOT,(": %lx\n", s)); DPRINTFN(BOOT, ("pmap_boot_find_memory: b-avail[%d] start " "0x%lx size 0x%lx\n", mp - avail, mp->start, mp->size)); mp->size -= size; DPRINTFN(BOOT, ("pmap_boot_find_memory: a-avail[%d] start " "0x%lx size 0x%lx\n", mp - avail, mp->start, mp->size)); return (void *) s; } } panic("pmap_boot_find_memory: no available memory"); } for (mp = avail, i = 0; i < avail_cnt; i++, mp++) { s = (mp->start + alignment - 1) & ~(alignment-1); e = s + size; /* * Is the calculated region entirely within the region? */ if (s < mp->start || e > mp->start + mp->size) continue; DPRINTFN(BOOT,(": %lx\n", s)); if (s == mp->start) { /* * If the block starts at the beginning of region, * adjust the size & start. (the region may now be * zero in length) */ DPRINTFN(BOOT, ("pmap_boot_find_memory: b-avail[%d] start " "0x%lx size 0x%lx\n", i, mp->start, mp->size)); mp->start += size; mp->size -= size; DPRINTFN(BOOT, ("pmap_boot_find_memory: a-avail[%d] start " "0x%lx size 0x%lx\n", i, mp->start, mp->size)); } else if (e == mp->start + mp->size) { /* * If the block starts at the beginning of region, * adjust only the size. */ DPRINTFN(BOOT, ("pmap_boot_find_memory: b-avail[%d] start " "0x%lx size 0x%lx\n", i, mp->start, mp->size)); mp->size -= size; DPRINTFN(BOOT, ("pmap_boot_find_memory: a-avail[%d] start " "0x%lx size 0x%lx\n", i, mp->start, mp->size)); } else { /* * Block is in the middle of the region, so we * have to split it in two. */ for (j = avail_cnt; j > i + 1; j--) { avail[j] = avail[j-1]; } DPRINTFN(BOOT, ("pmap_boot_find_memory: b-avail[%d] start " "0x%lx size 0x%lx\n", i, mp->start, mp->size)); mp[1].start = e; mp[1].size = mp[0].start + mp[0].size - e; mp[0].size = s - mp[0].start; avail_cnt++; for (; i < avail_cnt; i++) { DPRINTFN(BOOT, ("pmap_boot_find_memory: a-avail[%d] " "start 0x%lx size 0x%lx\n", i, avail[i].start, avail[i].size)); } } return (void *) s; } panic("pmap_boot_find_memory: not enough memory for " "%lx/%lx allocation?", size, alignment); } /* * This is not part of the defined PMAP interface and is specific to the * PowerPC architecture. This is called during initppc, before the system * is really initialized. */ void pmap_bootstrap(paddr_t kernelstart, paddr_t kernelend, const struct segtab *kernsegs) { struct mem_region *mp, tmp; paddr_t s, e; psize_t size; int i, j; /* * Get memory. */ mem_regions(&mem, &avail); #if defined(DEBUG) if (pmapdebug & PMAPDEBUG_BOOT) { printf("pmap_bootstrap: memory configuration:\n"); for (mp = mem; mp->size; mp++) { printf("pmap_bootstrap: mem start 0x%lx size 0x%lx\n", mp->start, mp->size); } for (mp = avail; mp->size; mp++) { printf("pmap_bootstrap: avail start 0x%lx size 0x%lx\n", mp->start, mp->size); } } #endif /* * Find out how much physical memory we have and in how many chunks. */ for (mem_cnt = 0, mp = mem; mp->size; mp++) { if (mp->start >= pmap_memlimit) continue; if (mp->start + mp->size > pmap_memlimit) { size = pmap_memlimit - mp->start; physmem += btoc(size); } else { physmem += btoc(mp->size); } mem_cnt++; } /* * Count the number of available entries. */ for (avail_cnt = 0, mp = avail; mp->size; mp++) avail_cnt++; /* * Page align all regions. */ kernelstart = trunc_page(kernelstart); kernelend = round_page(kernelend); for (mp = avail, i = 0; i < avail_cnt; i++, mp++) { mp->start = round_page(mp->start); mp->size = trunc_page(mp->size); s = mp->start; e = mp->start + mp->size; DPRINTFN(BOOT, ("pmap_bootstrap: b-avail[%d] start 0x%lx size 0x%lx\n", i, mp->start, mp->size)); /* * Don't allow the end to run beyond our artificial limit */ if (e > pmap_memlimit) e = pmap_memlimit; /* * Is this region empty or strange? skip it. */ if (e <= s) { mp->start = 0; mp->size = 0; continue; } /* * Does this overlap the beginning of kernel? * Does extend past the end of the kernel? */ else if (s < kernelstart && e > kernelstart) { if (e > kernelend) { avail[avail_cnt].start = kernelend; avail[avail_cnt].size = e - kernelend; avail_cnt++; } mp->size = kernelstart - s; } /* * Check whether this region overlaps the end of the kernel. */ else if (s < kernelend && e > kernelend) { mp->start = kernelend; mp->size = e - kernelend; } /* * Look whether this regions is completely inside the kernel. * Nuke it if it does. */ else if (s >= kernelstart && e <= kernelend) { mp->start = 0; mp->size = 0; } /* * If the user imposed a memory limit, enforce it. */ else if (s >= pmap_memlimit) { mp->start = -NBPG; /* let's know why */ mp->size = 0; } else { mp->start = s; mp->size = e - s; } DPRINTFN(BOOT, ("pmap_bootstrap: a-avail[%d] start 0x%lx size 0x%lx\n", i, mp->start, mp->size)); } /* * Move (and uncount) all the null return to the end. */ for (mp = avail, i = 0; i < avail_cnt; i++, mp++) { if (mp->size == 0) { tmp = avail[i]; avail[i] = avail[--avail_cnt]; avail[avail_cnt] = avail[i]; } } /* * (Bubble)sort them into asecnding order. */ for (i = 0; i < avail_cnt; i++) { for (j = i + 1; j < avail_cnt; j++) { if (avail[i].start > avail[j].start) { tmp = avail[i]; avail[i] = avail[j]; avail[j] = tmp; } } } /* * Make sure they don't overlap. */ for (mp = avail, i = 0; i < avail_cnt - 1; i++, mp++) { if (mp[0].start + mp[0].size > mp[1].start) { mp[0].size = mp[1].start - mp[0].start; } DPRINTFN(BOOT, ("pmap_bootstrap: avail[%d] start 0x%lx size 0x%lx\n", i, mp->start, mp->size)); } DPRINTFN(BOOT, ("pmap_bootstrap: avail[%d] start 0x%lx size 0x%lx\n", i, mp->start, mp->size)); #ifdef PTEGCOUNT pmap_pteg_cnt = PTEGCOUNT; #else /* PTEGCOUNT */ pmap_pteg_cnt = 0x1000; while (pmap_pteg_cnt < physmem) pmap_pteg_cnt <<= 1; pmap_pteg_cnt >>= 1; #endif /* PTEGCOUNT */ /* * Find suitably aligned memory for PTEG hash table. */ size = pmap_pteg_cnt * sizeof(pteg_t); pmap_pteg_table = pmap_boot_find_memory(size, size, 0); #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK) if ( (uintptr_t) pmap_pteg_table + size > SEGMENT_LENGTH) panic("pmap_bootstrap: pmap_pteg_table end (%p + %lx) > 256MB", pmap_pteg_table, size); #endif memset((void *)pmap_pteg_table, 0, pmap_pteg_cnt * sizeof(pteg_t)); pmap_pteg_mask = pmap_pteg_cnt - 1; /* * We cannot do pmap_steal_memory here since UVM hasn't been loaded * with pages. So we just steal them before giving them to UVM. */ size = sizeof(struct pvo_head) * pmap_pteg_cnt; pmap_pvo_table = pmap_boot_find_memory(size, NBPG, 0); #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK) if ( (uintptr_t) pmap_pvo_table + size > SEGMENT_LENGTH) panic("pmap_bootstrap: pmap_pvo_table end (%p + %lx) > 256MB", pmap_pvo_table, size); #endif for (i = 0; i < pmap_pteg_cnt; i++) LIST_INIT(&pmap_pvo_table[i]); #ifndef MSGBUFADDR /* * Allocate msgbuf in high memory. */ msgbuf_paddr = (paddr_t) pmap_boot_find_memory(MSGBUFSIZE, NBPG, 1); #endif #ifdef __HAVE_PMAP_PHYSSEG { u_int npgs = 0; for (i = 0, mp = avail; i < avail_cnt; i++, mp++) npgs += btoc(mp->size); size = (sizeof(struct pvo_head) + 1) * npgs; pmap_physseg.pvoh = pmap_boot_find_memory(size, NBPG, 0); pmap_physseg.attrs = (char *) &pmap_physseg.pvoh[npgs]; #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK) if ((uintptr_t)pmap_physseg.pvoh + size > SEGMENT_LENGTH) panic("pmap_bootstrap: PVO list end (%p + %lx) > 256MB", pmap_physseg.pvoh, size); #endif } #endif for (mp = avail, i = 0; i < avail_cnt; mp++, i++) { paddr_t pfstart = atop(mp->start); paddr_t pfend = atop(mp->start + mp->size); if (mp->size == 0) continue; if (mp->start + mp->size <= SEGMENT_LENGTH) { uvm_page_physload(pfstart, pfend, pfstart, pfend, VM_FREELIST_FIRST256); } else if (mp->start >= SEGMENT_LENGTH) { uvm_page_physload(pfstart, pfend, pfstart, pfend, VM_FREELIST_DEFAULT); } else { pfend = atop(SEGMENT_LENGTH); uvm_page_physload(pfstart, pfend, pfstart, pfend, VM_FREELIST_FIRST256); pfstart = atop(SEGMENT_LENGTH); pfend = atop(mp->start + mp->size); uvm_page_physload(pfstart, pfend, pfstart, pfend, VM_FREELIST_DEFAULT); } } /* * Make sure kernel vsid is allocated as well as VSID 0. */ pmap_vsid_bitmap[(KERNEL_VSIDBITS & (NPMAPS-1)) / VSID_NBPW] |= 1 << (KERNEL_VSIDBITS % VSID_NBPW); pmap_vsid_bitmap[0] |= 1; /* * Initialize kernel pmap and hardware. */ for (i = 0; i < 16; i++) { pmap_kernel()->pm_sr[i] = EMPTY_SEGMENT; __asm __volatile ("mtsrin %0,%1" :: "r"(EMPTY_SEGMENT), "r"(i << ADDR_SR_SHFT)); } pmap_kernel()->pm_sr[KERNEL_SR] = KERNEL_SEGMENT|SR_SUKEY|SR_PRKEY; __asm __volatile ("mtsr %0,%1" :: "n"(KERNEL_SR), "r"(KERNEL_SEGMENT)); #ifdef KERNEL2_SR pmap_kernel()->pm_sr[KERNEL2_SR] = KERNEL2_SEGMENT|SR_SUKEY|SR_PRKEY; __asm __volatile ("mtsr %0,%1" :: "n"(KERNEL2_SR), "r"(KERNEL2_SEGMENT)); #endif if (kernsegs != NULL) { for (i = 0; i < 16; i++) { if (kernsegs->st_mask & (1 << i)) { pmap_kernel()->pm_sr[i] = kernsegs->st_sr[i]; __asm __volatile ("mtsrin %0,%1" :: "r"(pmap_kernel()->pm_sr[i]), "r"(i << ADDR_SR_SHFT)); } } } __asm __volatile ("sync; mtsdr1 %0; isync" :: "r"((u_int)pmap_pteg_table | (pmap_pteg_mask >> 10))); tlbia(); #ifdef DEBUG if (pmapdebug & PMAPDEBUG_BOOT) { u_int cnt; int bank; char pbuf[9]; for (cnt = 0, bank = 0; bank < vm_nphysseg; bank++) { cnt += vm_physmem[bank].avail_end - vm_physmem[bank].avail_start; printf("pmap_bootstrap: vm_physmem[%d]=%#lx-%#lx/%#lx\n", bank, ptoa(vm_physmem[bank].avail_start), ptoa(vm_physmem[bank].avail_end), ptoa(vm_physmem[bank].avail_end - vm_physmem[bank].avail_start)); } format_bytes(pbuf, sizeof(pbuf), ptoa((u_int64_t) cnt)); printf("pmap_bootstrap: UVM memory = %s (%u pages)\n", pbuf, cnt); Debugger(); } #endif pool_init(&pmap_upvo_pool, sizeof(struct pvo_entry), sizeof(struct pvo_entry), 0, 0, "pmap_upvopl", &pmap_pool_uallocator); pool_setlowat(&pmap_upvo_pool, 252); pool_init(&pmap_pool, sizeof(struct pmap), sizeof(void *), 0, 0, "pmap_pl", &pmap_pool_uallocator); }